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Abstract

Let R be a commutative ring with # 0 and A(R) be the set of ideals with nonzero annihilators. The
annihilating-ideal graph oR is defined as the graphG(R) with the vertex sef\(R)* = A(R) \ {(0)} and
two distinct vertices andJ are adjacent if and only if 7 = (0). In this paper, we first study the interplay
between the diameter of annihilating-ideal graphs and-derisor graphs. Also, we characterize rin§swvhen
gr(AG(R)) > 4, and so we characterize rings whose annihilating-ideglhligare bipartite. Finally, in the last
section we discuss on a relation between the Smarandadieegernd diameter G (R).
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1 Introduction

Throughout this paper, all rings are assumed to be commetaiih identity. We denote the set of all ideals which
are a subset of an idedl of R by I(J). We call an ideall of R, anannihilating-idealif there exists a non-zero
ideal J of R such that/J = (0), and use the notatioA(R) for the set of all annihilating-ideals dk. By the
Annihilating-ldeal graphAG(R) of R we mean the graph with verticésG(R)* = A(R) \ {(0)} such that there is
an (undirected) edge between vertidesndJ if and only if I # J andIJ = (0). ThusAG(R) is an empty graph
if and only if R is an integral domain. The concept of the annihilatingdidgaph of a commutative ring was first
introduced by Behboodi and Rakeei lin [8] ahd [9]. Alsolih fiBle authors of this paper have extended and studied
this notion to a more general settingthe annihilating-ideal graph with respect to an ideal®f denotedAG;(R).
Let G be a graph. Recall thét is connected if there is a path between any two distinctaestofG. For vertices
x andy of G, letd(z, y) be the length of a shortest path franto y (d(z,z) = 0 andd(z,y) = oo if there is no such
path). The diameter a7, denoted byliam(G), is sup{d(x, y)|x andy are vertices o€z}. The girth ofGG, denoted
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by gr(G), is the length of a shortest cycle @ (gr(G) = oo if G contains no cycles)AG(R) is connected with
diam(AG(R)) < 3 [8, Theorem 2.1] and iAG(R) contains a cycle, thegr(AG(R)) < 4 [8, Theorem 2.1]. Thus
diam(AG(R)) = 0,1,2 or 3; andgr(AG(R)) = 3,4 or co. Also, AG(R) is a singleton (i.e.diam(AG(R)) = 0)

if and only if either R =~ % whereK is a field orR = L, whereL is a coefficient ring of characteristi, that

is L = o 5‘1) where A is a discrete valuation ring of characteridli@nd residue field of characteristic for some
prime numbep [2, Remark 10].

Let Z(R) be the set of zero-divisors @t. The zero-divisor graph aoR, denoted by'(R), is the (undirected)
graph with verticesZ (R)* = Z(R) \ {0}, the set of nonzero zero-divisors Bf and for distinctz, y € Z(R)*, the
verticesz andy are adjacent if and only ify = 0. Note thatl'(R) is the empty graph if and only i is an integral
domain. Moreover, a nonempty( R) is finite if and only if R is finite and not a field [5, Theorem 2.2]. The concept
of a zero-divisor graph was introduced by Beck [7]. Howeteret all the elements ak be vertices of the graph
and was mainly interested in coloringb(R) is connected withliam(I'(R)) < 3 [5, Theorem 2.3] and if'(R)
contains a cycle, thegr(I'(R)) < 4 [4, Theorem 2.2(c)]. Thugiam(T'(R)) = 0,1,2 or 3; andgr(I'(R)) = 3,4 or
oo. For aringR, nil(R) is the set of the nilpotent elements Bf We say thaf? is reduced ifnil(R) = 0.

Let K,, denote the complete graph ervertices. That isK,, has vertex se¥” with |V| = n anda — b is an edge
for everya,b € V. Let K,, , denote the complete bipartite graph. Thatis, ,, has vertex set” consisting of the
disjoint union of two subsetd/; andV%, such thatV;| = m and|V2| = n, anda — b is an edge if and only i& € V;
andb € V,. We may sometimes writ&y, | 1, to denote the complete bipartite graph with vertex $gtand V5.
Note thatk,, ,, = K, . Also, for every positive integet, we denote a path of order, by P,.

In the present paper, we study the diameter and girth of datiitg-ideal graphs. In Sectidl) we show that ifR
is a Noetherian ring Witlh\G (R) 2 Ka, thendiam(AG(R)) = diam(AG(R[z]) = diam(AG(R[z1, z2, ..., zy]) =
diam(AG(R][z]]) = diam(T'(R)) = diam(I'(R[z]) = diam(I'(R[x1, z2,...,z,]) = T'(R[[z]]). In Section3, we
characterize ring® whengr(AG(R)) > 4. Finally, in the last section, we study some properties @Bimarandache
verticesof AG(R).

2 Diameter of AG(R), AG(R[x]), and AG(R][z]])

In this section, we show that R is a Noetherian ring with G (R) 2 K5, thendiam(AG(R)) = diam(AG(R[z])) =
diam(AG(R[x1, z2, ..., zy])) = diam(AG(R[[z]])) = diam(T'(R)) = diam(T'(R[x])) = diam(T'(R[[z]])).

We remark that ifR is a commutative ring with identity, then the set of regul@ngents ofR forms a saturated
and multiplicatively closed subset @f. Hence the collection of zero-divisors &f is the set-theoretic union of
prime ideals. We writeZ (R) = U;ea P; with eachP; prime. We will also assume that these primes are maximal
with respect to being contained ¥\ R).

Theorem 2.1 Let R be aring andAG(R) 2 K,. Then the following conditions are equivalent:
(1) AG(R) is a complete graph.

(2) AG(R]x]) is a complete graph.

(3) AG(Rx1, 2, ..., z,]) for all n > 0 is a complete graph.
(4) AG(R][x]]) is a complete graph.

(5) I'(R) is a complete graph.

(6) T'(R[z]) is a complete graph.

(7) T'(R[z1,x2, ..., xy,]) for all n > 0 is a complete graph.
(8) T'(R[[z]]) iIsa complete graph.

(9) (Z(R))? =



Proof. If R & Zy x Zo, thenAG(R) = Ko, yielding a contradiction. Thus By |5, Theorem 2.8} R) is a
complete graph if and only ifZ(R))? = (0). Also, by [2, Theorem 3]JAG(R) is a complete graph if and only if
(Z(R))? = (0). So, the results follow easily froml[6, Theorem 3.2]. O

Lemma 2.2 Let R be a ring such thatliam(AG(R)) = 2. If Z(R) = P, U P, with P, and P; distinct primes in
Z(R), thenP, N P, = (0)

Proof. Letz € PLN Py, p1 € P\ P, andps € P, \ P;. Sincediam(AG(R)) = 2, either(Rp;1)(Rp2) = (0) or
there exists a non-zero ideasuch thatl C Ann(p;)NAnn(ps). If (Rp1)(Rp2) # (0), thenI(py+p2) = (0). Thus
p1 + p2 € Z(R), yielding a contradiction. ThereforéRp;)(Rp2) = (0) and sop1p2 = 0. Sinceps +x € P, \ P,
andp; + x € P, \ P, we conclude that = p;(p2 + ) = p1z and0 = pa(p1 + =) = paz. Thusz(p; + p2) = 0,
soz = 0. Therefore,P; N P = (0). O

Lemma 2.3 Let R be a Noetherian ring andG(R) 2 K. Thendiam(AG(R)) = 2 if and only if Z(R) is either
the union of two primes with intersectigf) or Z(R) is a prime ideal such thatZ (R))? # (0).

Proof. Suppose thaZ (R) = U;ea P; Where everyP; is a maximal prime inZ(R) and |[A| > 2. SinceR is a
Noetherian ring, by [12, Theorem 80},is finite. LetPr, %, P3 € {P; : i € A}. If P C Ujep\ (13 P, then by [12,
Theorem 81],P; C P, forsomei € A\ {1}, yielding a contradiction. Therefore, there existsc P, \UieA\{l}Pi-
Similarly, there existgz € P \ Ujep\ 23 F;- Sincediam(AG(R)) = 2, either(Rp;)(Rp2) = (0) or there exists a
non-zero ideal such that/ C Ann(p;) N Ann(pe). If (Rp1)(Rp2) # (0), thenI(Rp; + Rp2) = (0). Thus there
existsP, € {P; : i € A} such thatRp, + Rps C Py, yielding a contradiction. ThereforéRp,)(Rp2) = (0) and
sopips = 0. Thuspips € P3, S0p; € P3 or ps € P, yielding a contradiction. Thug\| < 2. If (Z(R))? = (0),
then sinceAG(R) % K>, by Theoreni Z]1diam(AG(R)) < 1, yielding a contradiction. We conclude th&tR) =
Py U P,. Then by Lemma2]2P, N P, = (0). ThusZ(R) is either the union of two primes with intersecti@) or
Z(R) is prime such thatZ(R))? # (0).

Conversely, ifZ(R) = P is a prime ideal, then by [12, Theorem 82], there exists a @anelement € R
such thataZ(R) = (0). LetI,J € V(AG(R)). Then(Ra)I = (Ra)J = (0). Thereforediam(AG(R)) < 2.
If diam(AG(R)) < 1, then sinceAG(R) 2 K, by Theorenl2]1{Z(R))?> = (0), yielding a contradiction.
Thus diam(AG(R)) = 2. Now, we assume thaf (R) is the union of two primes with intersectiof®). Let
Z(R) = PPUPyandI,J € V(AG(R)). Sincel C Z(R) = P, U P», by [12, Theorem 81]/ C P, or
I C P,. Similarly, J C P, or J C P,. Without loss of generality we can assume that P;. If I C P, then
IJ C PP, = (0). If I C P, thenIP, = JP, = (0). Thereforediam(AG(R)) < 2. If diam(AG(R)) < 1,
then sinceAG(R) % K,, by Theoreni 2]1Z (R) is a prime ideal such th&¥ (R))? = (0), yielding a contradiction.
Thusdiam(AG(R)) = 2.

Theorem 2.4 Let R be a Noetherian ring andG(R) % K,. Then the following conditions are equivalent:

Proof. It follows from Lemmd2.B and |6, Theorem 3.11]. O
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3 A Characterization of the Ring R When gr(AG(R)) > 4

In [1, Section 3], the authors have studied rings whose d#atiitg-ideal graphs are bipartite. In this section, we
characterize ring® whengr(AG(R)) > 4, and so we characterize rings whose annihilating-idegitgrare bipar-
tite.

Proposition 3.1 Let R be a reduced ring. Then the following statements are eqemgal
(1) Z(R) is the union of two primes with intersectigf).
(2) AG(R) is a complete bipartite graph.

Proof. (1) = (2) Let Z(R) = P, U P, whereP; and P, are prime ideals such th&y N P, = (0). Therefore,
PP, = (0). SinceAnn(P;)P; = (0) € P, andP; ¢ P,, we conclude thann(P;) C P,. Note thatP, C
ADH(Pl), SOAHD(Pl) = P Slmllarly ADH(PQ) = P. LetV] = ]I(Pl) andV, = H(PQ) Let Ji,Jo € Vo be
two nonzero ideals such thdt.J, = (0). ThenJ;J; C Pj, and soJ; € P, or J, € Py, yielding a contradiction
since P, N P, = (0). Therefore, every non-zero ideals and J, in V, are not adjacent. Similarly, evet
and I, in V; are not adjacent. SincB N P, = (0), Ann(P;) = P, andAnn(P3) = P;, we can conclude that
AG(R) = K}y, |1,v3)-1-

(2) = (1) Let AG(R) = Ky, v, Suchthaty = {I; € A(R) : i € A1} \ {(0)} andVa = {J; € A(R) : j €
A}\{(0)}. Let P = U;cp, Ii and Py = U, ¢y, Jj- Therefore Z(R) = PLUP,. Letay, az € P1. Then there exist
idealsI;, I C P; such that; € I; anday € I». Since for every ideal; C P, J;(R(a+b)) C J(I1 + I2) = (0),
we conclude thafk(a + b) C P;. Thusa + b € P;. Also, it is easy to see that for everyce R anda € P,
ra € Pj, sSOP; is an ideal. SimilarlyP, is an ideal. LetP, N P> # (0). SinceP P> = (0), (P1 N P)Z(R) =
(PLN P)(PLUPy) = (0). ThusZ(R) is an ideal, yielding a contradiction. Therefofg,n P, = 0. Now, we show
that P, and P, are prime ideals. Letb € P, anda,b ¢ P;. Sinceab € Z(R), a € Z(R) orb € Z(R). Without
loss of generality we assume that Z(R). SinceZ(R) = P, U P, anda ¢ P;, we conclude that € P». Hence
ab € P,. Sinceab € PN P, = (0), ab = 0. If Ra = Rb, thena? = 0, yielding a contradiction sincg is a reduced
ring. ThusRa # Rb. SinceRa C P, Ra € {J; : j € As}. HenceRb € {I; : i € A;}. ThusRb € P, yielding
a contradiction sincé ¢ P;. Therefore,P; is a prime ideal. Similarly?, is a prime ideal. SoZ(R) = P, U P,
whereP; and P, are prime ideals such th&y N P, = (0). O

Theorem 3.2 The following statements are equivalent for a reduced fing
(1) er(AG(R)) = 4.
(2) AG(R) = K\V1|,|V2\- Where\Vly, ‘VQ’ > 2.
(3) Z(R) is the union of two prime#; and P, with intersection(0) and [I(P;)], [I(P2)| > 3.

Proof. (1) = (2) First, we show thatliam(AG(R)) = 2. If diam(AG(R)) = 0 or 1, thenAG(R) is a
complete graph and ser(AG(R)) is 3 or oo, yielding a contradiction. Ifliam(AG(R)) = 3, then there exist
I, 15,15,14 € A(R) such thatl; — I — I3 — 1y, 1113 75 (0), Iy 75 (0) andl iy 75 (0) If I;1, = I, then since
(I 1,)I, = (0), (I3)? = (0), yielding a contradiction. Similarly;I; # I3. Thusl, — I3 — I, 1, — I5 is a cycle
and sogr(AG(R)) = 3, yielding a contradiction. Therefordjam(AG(R)) = 2. We now show that\G(R) is a
complete bipartite graph. Singe(AG(R)) = 4, there existl, J, K,L € A(R) suchthatl — J — K — L — 1. We
show thatAG(R) = Ky, | v,, whereVy = {T' € A(R)* : T'C Ann(I)} andV, = {S € A(R)* : S € Ann(I)}.
LetT, T} € Vi andS, S, € Va. ThenIT = (0) andIS # (0). Assume thafl'S # (0). Sincediam(AG(R)) = 2,
there existsd € A(R) suchthal — H — S. If TS = H or T'S = I, then(T'S)? = (0), yielding a contradiction.
Therefore,] — T'S — H — I is a cycle, contrary tgr(AG(R)) = 4. ThusTS = (0). If 7Ty = (0), then
I — T —Ty, — Iis acycle, yielding a contradiction. S&1; # (0). Similarly SS; # (0). Also Vi NV, = (.
Therefore,AG(R) = Ky, ||, and soAG(R) is a complete bipartite graph, and by Proposifiod 3(R) is the
union of two primes with intersectiofi0) }.



(2) = (1) Clear.
(2) < (3) It follows from Propositior 3.1. O

Theorem 3.3 The following statements are equivalent for a reduced ¥ing
(1) AG(R) is nonempty witler(AG(R)) = oo.
(2) There is a vertex which is adjacent to every verteAGf( R).
(3) R 2 K x D, whereK is a field andD is an integral domain.
(4) AG(R) is a star graph.

Proof. (1) = (2) Suppose to the contrary that there is not a vertex which &cedj to every vertex cfG(R).
Therefore, there exist distinct verticés, Io, I3, I, such thatly — Iy — Is — Iy, I1Is # (0), and 214 # (0). If
LI, = (0), thenl; — I, — Is — I, — I is a cycle, contrary tgr(AG(R)) = co. So we may assume thatl, # (0).
Therefore,ly — Io — I3 — I 1, — I; is a cycle, contrary tgr(AG(R)) = oo. Therefore, there exists a vertex which
is adjacent to every vertex &fG(R).

(2) = (3) It follows from [8, Corollary 2.3].

(3) = (4) Clear.

(4) = (1) Clear. O

Theorem 3.4 The following statements are equivalent for a non-redudeg R.
(1) AG(R) is nonempty witlgr(AG(R)) = oc.
(2) One of the following occurs:
K

(a) Either R = % whereK is a field orR = L, whereL is a coefficient ring of characteristig?.

(b) R = R; x Ry such thatR, is a field and eitherRy = %, whereK is a field orRy, = L, whereL is a
coefficient ring of characteristip?.

(c) Z(R) is an annihilating ideal and if J = (0) andI # J, then = Ann(Z(R)) or J = Ann(Z(R)).

(3) One of the following occurs:

(b) AG(R) = Py.

() AG(R) = K, for somen > 1.

Proof. (1) = (2) SinceR is a non-reduced ring, there exists an idéaluch that/> = (0). If [I(I)| > 4, then
there exist distinct ideal$;, I», Is € I(I), such that/; — I, — I3 — I; is a cycle and s@r(AG(R)) = 3, yielding
a contradiction. Thus without loss of generality we may assthat/ is a minimal ideal. We have the following
cases:

Case 1: There exists a minimal ideal such that! # J. Then either/? = J or J? = 0. If J? = (0), then
I—J—(I+J)—Iisacycle, yielding a contradiction. So we may assume fRat .J. Thus by Brauer's Lemma
(se€l10, 10.22])J = Re for some idempotent elemeatc R, SOR = Re ® R(1 — e). Therefore,R = Ry x Ra.
Suppose thafl(R;)| > 3 and|I(Rs)| > 3. LetI; be a nonzero proper ideal &; and /> be a nonzero proper
ideal of Ry. Then([1,0) — (0, R2) — (R1,0) — (0,I2) — (I1,0) is a cycle, yielding a contradiction. So we may
assume that eithef(R;)| = 2 or I(R2) = 2. Without loss of generality we assume tHEtR; )| = 2 and soR; is a
field. SinceR; is a field andR is a non-reduced ring, we conclude that is a non-reduced ring. Ldt andJ, be
nonzero ideals oRy such thatls.Jo = (0). If Iy # Jo, then(0, Iy) — (R1,0) — (0, .J2) — (0, I) is a cycle, contrary
to gr(AG(R)) = oco. Thus|A(R2)| = 3. By [2, Remark 10] eitheRy = ]gf)] whereK is a field orR, = L, where
L is a coefficient ring of characteristi€.

Case 2: I is the unique minimal ideal aR. Suppose that there exisk§ € A(R)* such tha/ K # (0). Since
K € A(R)*, there exists/ € A(R)* such thatK'J = (0). If I.J # (0), then sincel is minimal ideal,/J = I.




HencelK = (IJ)K = I(JK) = (0), yielding a contradiction. Thereford,J = (0). SinceJK = (0) and
IK # (0 I ¢ J. Sincel is the unique minimal ideal ak and/ ¢ J, there exists/; C J such that/; # I. Hence
I—-J, —K—Jy,—Iisacycle and sgr(AG(R)) = 3, contrary togr(AG(R)) = oco. Therefore, we must have
IK = (0) for everyK € A(R)*. ThusIZ(R) = (0). Now, we have two subcases:

Subcase 2-1: Ann(Z(R)) # 1. If [I(Z(R))| > 4, then there exist§ € A(R)* such thatl # S # Ann(Z(R))
and sol — Ann(Z(R)) — S — I is a cycle, yielding a contradiction. So we may assume |théR)| = 3. Thus
A(R)* ={I,Ann(Z(R))}.

Subcase 2-2: 1 = Ann(Z(R)). If |A(R)*| = 1, then by [2, Remark 10] eitheR = Kle )] whereK is a field or
R = L, whereL is a coefficient ring of characteristi¢. So we may assume thgk(R)* \ > 2. LetS,J € A(R)*
such thatSJ = (0) andS # J. If S # I andJ # I, thenl — S — J — I is a cycle, yielding a contradiction.
Therefore,5 = I = Ann(Z(R)) or J = I = Ann(Z(R)).

(2) = (3) If either R = %q ; whereK is a field orR = L, whereL is a coefficient ring of characteristj, then
AG(R) = Kj.

If R = R;xRysuchthatR; is afield and eithefRy = @ Klz ; whereK is afield orRy =2 L, whereL is a coefficient
ring of characteristigp?, then R, has a non-trivial ideal sa¥, andAG(R) = (Ry,I) — (0,1) — (R1,0) — (0, Ry) =
Py.

Let Z(R) is an annihilating ideal and ifJ = (0) (I # J), thenI = Ann(Z(R)) or J = Ann(Z(R)). Then
every annihilating ideal is only adjacent fand so eitheAG(R) = K; or AG(R) = K ,, for somen > 1.

(3) = (1) Clear. O

/\

Theorem 3.5 The following statements are equivalent for a non-redudeg R.

(1) AG(R) is nonempty witler(AG(R)) = 4.

(2) R = Ry x Ry, where eitherR; = ]Eq ; whereK is a field or Ry = L, whereL is a coefficient ring of
characteristicp? and R, is an integral domain which is not a field.

(3) AG(R) is isomorphic to Figure 1.

Proof. (1) = (2) SinceR is a non-reduced ring, there exists an idealich thati? = (0). If [I(I)| > 4, then there
exist distinct ideald, I, Is € I(I)*, such that!y — I, — I3 — I = (0) is a cycle and sgr(AG(R)) = 3, yielding

a contradiction. Without loss of generality we may assuna¢ fhis a minimal ideal. We first show that there exist
distinct idealsly, I, I3 € A(R)* such thatl; — Io — Is — I — I; is a cycle inAG(R). Sincegr(AG(R)) = 4,
there exist distinct ideal$;, I, I3, I, € A(R)* such thatly — I, — Is — I, — I;. Assume thaf = I; for some

i. Without loss of generality assume that 4. Thenl; — I, — Is — I — I; is a cycle inAG(R). So we may
assume thal; # Iforalll1 <i <4. If I ¢ I,foralll <i < 4,thenll; = (0). Hencel — I, — I, —Iisa
cycle, yielding a contradiction. Therefore, there exisssich that! C I;. Without loss of generality assume that
i =4. Thusl; — Iy — Is — I — I  is acycle inAG(R). If II, = (0), thenI — I, — I, — I is a cycle inAG(R),
yielding a contradiction. Thu$ly # (0) and sincel is a minimal ideal,/ C 5. Suppose thaAnn(l) N I # I.

If (Ann(I) N Iz) # I3, thenI — (Ann(l) N Iy) — Is — I is a cycle inAG(R), yielding a contradiction. If
Ann(I)NIy = I3, thenl — (Ann(I)NIy)— I —I isacycle inAG(R), yielding a contradiction. Thus we can assume
thatAnn(I) N I; = I. Let0 # z € I. ThenRz = I. SinceRz = R/Ann(z) andRz is a minimal ideal ofR, we
conclude thaf\nn(z) = Ann(/) is @ maximal ideal. Sincél, # (0), I» ¢ Ann(I). Therefore Ann(I) + I, = R.
Thus there exist € Ann(z) andy € I such thate +y = 1. SlnceAnn(I) NIy = I, (Rz)N (Ry) C I Cnil(R).

If x € nil(R), then there exists a positive integeisuch thatz™ = 0. Therefore,(x + y)” € (Ry), contrary to
x+y = 1. Thusz ¢ nil(R). Similarly y ¢ nil(R). Note thatry € (Rx) N (Ry) C nil(R), we obtain that
22+ nil(R) = (22 + 2y) +nil(R) = x(x +y) +nil(R) = x + nil(R). Thusz + nil(R) is a nontrivial idempotent
in R/nil(R) and hence by [11, Corollary, p.78] has a nontrivial idempotent. Sinéehas a nontrivial idempotent,
R = R; x Ro. Note thatR is a non-reduced ring, so eithB% or R is a non-reduced ring. Without loss of generality



assume thaR; is a non-reduced ring. Suppose tliatind/;, are ideals of?; such that/; I, = (0). If I; # I, then
(0, R2) — (I1,0) — (I2,0) — (0, R2) is a cycle inAG(R), yielding a contradiction. Thug = I,. We conclude that
|A(Ry)*| = 1. Thus by [2, Remark 10], eithe®; = %, whereK is a field orR; = L, wherelL is a coefficient
ring of characteristip?. We have the following cases:

Case 1: R, is an integral domain. IR, is a field then it is easy to see thaGz(R) is a star graph, yielding a
contradiction sincgr(AG(R)) = 4. Therefore,R; is an integral domain which is not a field.

Case 2: Ry is not an integral domain. Then there exXigtJo € A(R2)* such thatlyJo = (0). Since|A(R;)*| =
1, there existd; € A(R;)* such that(1;)? = (0). Thus(Iy,0) — (I1,.J5) — (0,I5) — (I1,0) is a cycle inAG(R),
yielding a contradiction. Therefore, this case is impdssib

(2) = (3) Let I be the only nontrivial ideal oR?;. ThenAG(R) is isomorphic to Figure 1.

(3) = (1) Clear. O

(I7 RQ)

Figure 1

4 A Relation Between the Smarandache Vertices, Girth, and @imeter of the
Annihilating-ideal Graphs

The concept of &marandache vertein a (simple) graph was first introduced by Rahimil[13] in ortte study
the Smarandache zero-divisoof a commutative ring which was introduced by Vasantha Kaadw in [14] for
semigroups and rings (not necessarily commutative). A zen-element: in a commutative ringR is said to
be a Smarandache zero-divisor if there exist three diffenenzero elements, y, andb (# a) in R such that
ar = ab = by = 0, butzy # 0. This definition of a Smarandache zero-divisor (which wagiin [13]) is
slightly different from the definition of Vasantha Kandagam [14], where in her definitiod could also be equal
to a. In this section, we provide some examples and facts abeusmharandache vertices ®rverticedor short)

of AG(R). First, we define the notion of a Smarandache vertex in a sigwalph and provide several (in particular,
graph-theoretic) examples (see Lemimas[4.1, 4.4, and Rtiopd$.3). Also we provide some more ring-theoretic
examples as well.

Definition. A vertexa in a simple grapltz is said to be a Smarandache vertex (or S-vertex for shortjged that
there exist three distinct verticesy, andb (# a) in G such thatt —x, a—b, andb—y are edges irx; but there is
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no edge between andy.

Note that a graph containing a Smarandache vertex shoutladtdeast four vertices and three edges, and also
the degree of each S-vertex must be at least 2. The proofe ot two lemmas (Lemnia 4.1 and Lemimd 4.4) are
not difficult and can be followed directly from the definitiand we leave them to the reader. Recall that for a graph
G, a complete subgraph of G is callectligue Theclique numberw(G), is the greatest integer > 1 such that
K, C G, andw(G) is infinite if K,, C G for all n > 1. Thechromatic number (G) of a graphG is defined to be
the minimum number of colors required to color the verticeé&an such a way that no two adjacent vertices have
the same color. A graph is calleceakly perfecif its chromatic number equals its clique number.

Lemma 4.1 The following statements are true for the given graphs:
1) A complete graph does not have any S-vertices.
2) A star graph does not have any S-vertices.

(

(

(3) A complete bipartite graph has no S-vertices.

(4) LetG be a complete-partite graph ¢ > 3) with partsVy, Vs, ..., V.. If at least one part, say;, has at least
two elements, then every element noVjns an S-vertex. Further, if there exist at least two partgzasuch

that each of which has at least two elements, then every atavh€' is an S-vertex.

(5) A bistar graph has two Smarandache vertices; namely, théecef each star. A bistar graph is a graph
generated by two star graphs when their centers are joined.

(6) Every vertex in a cycle of size greater than or equal to five @raph is an S-vertex provided that there is
no edge between the nonneighbouring vertices. In particaelaery vertex in a cyclic grapty,, of size larger
than or equal to 5 is a Smarandache vertex. Note that for oteyersn > 5, x(C,,) = 3 andw(C,,) = 2;
and for even integers > 5, x(C),) = w(Cy,) = 2.

(7) LetG be a graph containing two distinct verticesandy such thatd(x, y) = 3. ThenG has an S-vertex. But
the converse is not true in general. Supp6sés the graphz—a, a—b, b—y, and a—y; where obviouslyg
is an S-vertex and(x,y) = 2. Note that if diameter of7 is 3, then it has an S-vertex since there exist two
distinct verticesc andy in G such thatd(x,y) = 3.

Example 4.2 In [8| Corollary 2.3], it is shown that for any reduced ring, AG(R) is a star graph if and only if
R = F x D,whereF is a field andD is an integral domain. In this cas&G(R) has no Smarandache vertices.

Example 4.3 In [Q) Lemma 1.8] it is shown that for any reduced ridg) with finitely many minimal primes,
diam(AG(R)) = 3 provided R has more than two minimal primes. Thus by Lenim& 4. %)(R) has an S-
vertex. This also could be an example of a weakly perfecttgcaptaining an S-vertex since hy [9, Corollary 2.11],
AG(R) is weakly perfect for any reduced rirfg (see also Proposition 4.5, Remark]4.6, and Exarple 4.7).

Lemma 4.4 LetC be a clique in a graphG such thatC| > 3. Suppose that is a vertex inG \ C' andz makes a
link with at least one vertex or at most| — 2 vertices ofC, then every vertex @' is an S-vertex. In other case, if
x makes links withC'| — 1 vertices ofC, then all thosgC'| — 1 vertices are S-vertices.

Proposition 4.5 Let G be a connected graph whose cliqgue number is strictly largant2. Ifw(G) # x(G), then
G has an S-vertex. In other words, for any connected g@phith w(G) > 3 and no S-vertices, then(G) = x(G)
(i.e.,G is weakly perfect).



Proof. LetC be a (largest) clique itr with |C'| > 3. Sincew(G) # x(G), thenG is not a complete graph. Thus,
there exists a vertex € G \ C which makes edge(s) with at least one or at mgs¥) — 1 elements of”. Now the
proof is immediate from Lemnia 4.4.

Remark 4.6 In the next example we show that The converse of the abovegitiop need not be true in general.
Also None of the graphs in Parts (1), (2), and (3) of Lemhmé Has,an S-vertex whete(G) = x(G). Note that
each of the graphs in Parts (2) and (3) ha$G) = x(G) = 2. The graph in Part (5) has two S-vertices and
w(G) = x(G) = 2. See also Part (6) of Lemrha 4.1.

Example 4.7 As in [9, Proposition 2.1], let
R=74X,Y,Z])/(X? -2,Y? -2,7%2 2X,2Y, 272, XY, X Z,Y 7 — 2)

be a ring andC = {(2), (x), (v), (y + 2)} a cliqgue inAG(R). Since(z) ¢ C and it does not make a link with all
the elements af', then by Lemma 4.4, contains an S-vertex. Hence hy [9, Proposition 2.1], thiarisexample of
a weakly perfect graph containing a Smarandache vertex WithG(R)) = w(AG(R)) =4 > 3.

Remark 4.8 Conjecture 0.1 in[[9] states thatG(R) is weakly perfect for any rindg2. Now from Proposition 415,
this conjecture is true for any ring? with w(AG(R)) > 3 and AG(R) containing no S-vertices. Note that [9,
Corollary 2.11] proves the validity of this conjecture famyareduced ringR.

Proposition 4.9 Let{I;, I, ..., I,} be aclique inAG(R) withn > 3. Then

(1) AG(R) containsn S-vertices provided thaf’ # (0) and I} # (0) for somel < i # j < n.
(2) AG(R) containsn S-vertices provided thdf # (0) andI; Z I, for somel < i = j < n.
(3) AG(R) containsn S-vertices provided thd‘g? # (0) andI; £ I; for somel < i # j <mn.
(4) AG(R) containsn S-vertices provided that is a reduced ring.

Proof. We just prove Part (1) and leave the other parts to the readlithout loss of generality suppose that
I? # (0) and 2 # (0). Now the proof follows from Lemm@a4.4 and the fact tiat- I is a vertex different from
all vertices of the clique and makes a link with each of therepx/; andI,. Note thatl; + I, # R. Otherwise,
I3 =13R =131 + I3], = (0) which is a contradiction.

Lemma4.10 LetR = Ry x Ry x --- X R, be the direct product of > 2 rings. If AG(R) has no S-vertices, then
n =2andR = R; x R,, where each of the ringR, and R, is an integral domain.

Proof. Without loss of generality suppose = 3. Let C = {Iy,Is, I3}, wherel; = R; x (0) x (0), [ =
(0) x Ry x (0), andl3z = (0) x (0) x Rs. ClearlyC is a clique inAG(R). Let A = (0) x Ry x R3. Now Lemma
4.4 implies the existence of an S-vertexifiz(R) which is a contradiction. Hence= 2 andR = R; X Ra.

Now suppose thaRs is not an integral domain. Thus, there exist two nonzerogrrafeals/ and.J in Ry such that
IJ = (0). Therefore,

(07 RQ)_(RD O)_(Ov I)_(Rl ) J)
implies the existence of an S-vertex, yielding a contraaiict ThusR, and similarly R; are integral domains.

Proposition 4.11 Let R be a commutative ring. Then



(1) If Ris anon-local Artinian ring, thed\G(R) has no S-vertices if and only = F, x F, where each of?
and I, is a field.

(2) LetR be an Artinian ring withgr(AG(R)) = 4. ThenR can not be a local ring.

Proof. Part (1) is an immediate consequence of Propositionl 4.1Qtendact that any Artinian ring is a finite
direct product of local rings?, Theorem 8.7]. For Part (2), suppo&®, M) is an Artinian local ring. Thus by [12,
Theorem 82],M = Ann(z) for some0 # = € M. Hencel = Rz is an ideal which is adjacent to every nonzero
proper ideal ofR. Now sinceAG(R) contains a cycle, there exist two verticéand K such thatl — J — K — I.
This is impossible sincgr(AG(R)) = 4. ThusR can not be a local ring.

Lemma 4.12 Let R be a reduced ring such th&t(R) contains an S-vertex. ThekG(R) has an S-vertex. Thus the
number of S-vertices @f(R) is less than or equal to the number of S-verticeA@f( R) for any reduced ring.

Proof. Leta — z —y — b be a path of length 3 ifr(R) such thatz is an S-vertex iT'(R). Clearlyab # 0 by
definition. ThusRa — Rz — Ry — Rbis a path of length 3 iAG(R) sinceR is reduced. Therefor&z is an S-vertex
in AG(R) by definition.

Theorem 4.13 The following are true for a reduced ring.
1) AssumeR containsk > 3 distinct minimal prime ideals. Then eachIofR) and AG(R) has an S-vertex.
2) LetZ(R) be the union of two primes with intersecti¢®). ThenAG(R) has no S-vertices.

(
(
(3) If gr(AG(R)) = 4, thenAG(R) has no S-vertices.
(

4) Suppose thabG(R) is nonempty witlgr(AG(R)) = co. ThenAG(R) has no S-vertices.

Proof. We just prove Part (1) since the other three parts are imreefiam Lemmd_4.J1 and Propositign B.1,
Theorem 3.2, and Theorelm B.3 respectively. Sifces reduced, themil(R) = (0) = NP, for1 < i < k,
wherenil(R) is the ideal of all nilpotent elements &. Leta; be in P; \ UP; forall 1 < j # ¢ < k. Clearly
aijasas---ap = 0. Letx = asag - --ap andy = ajazay - - - a. Now by hypothesis, it is easy to see thaf z, v,
andas are all distinct and nonzero elementsitnda;z = 2y = yas = 0 with a1as # 0. Thereforex andy are
S-vertices in'(R). Now the proof is complete by Lemrha 4]112.

Remark 4.14 From Lemma4lJ1(7), itis clear thatlif( R) [resp. AG(R)] contains no S-vertices, thellam (I'(R)) #

3 [resp. diam(AG(R)) # 3]. In other words,diam(I'(R)) < 2 [resp. diam(AG(R)) < 2] since the diameter of
each of these graphs is less than or equal to 3. Also, Prapasit1 of [9] provides a relation between the diameters
of I'(R) and AG(R). Consequently, combining the results [of [9, Propositial] &nd existence (nonexistence) of
S-vertices of these graphs may provide a relation betweerstertices and diameters BfR) and AG(R). For
example, ifAG(R) contains no S-vertices, theiam(AG(R)) # 3 which by [9, Proposition 1.1(d)], it implies
diam(I'(R)) # 3. Notice that[9, Proposition 1.1(d)] states thatdfam (I'(R)) = 3, thendiam(AG(R)) = 3.

Theorem 4.15 The following are true for a commutative rirfg.

(1) Letgr(AG(R)) =4andl —J — K — L — I be a cycle irAG(R) such that/? # 0. ThenAG(R) is complete
bipartite whenAG(R) has no S-vertices.

(2) If AG(R) is complete bipartite, the(AG(R) has no S-vertices witgr(AG(R)) = 4 or cc.
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Proof. We just give a proof for Part (1) since the other part is obsioQlearly,diam(AG(R)) # 3 sinceAG(R)
has no S-vertices. ldiam(AG(R)) = 0 or 1, thenAG(R) is a complete graph and $9(AG(R)) is 3 or oo,
yielding a contradiction. Therefordjam(AG(R)) = 2. We now show that\G(R) is a complete bipartite graph.
Sincegr(AG(R)) = 4, there existl, J, K, L. € AG(R) such thatl —J — K — L— I with I? # (0) by hypothesis. We
show thatAG(R) = K\, | |15, whereVy = {T € A(R)* : T C Ann(I)} andVy = {S € A(R)*: S € Ann(I)}.
LetT, Ty € Vi andS, S; € Va. ThenIT = (0) andIS # (0). Assume thaf'S # (0). Sincediam(AG(R)) = 2,
there existsH € A(R)* such thatl — H — S. Clearly, TS # (0) implies thatT is not contained ind and
T # H. If TH = (0), thengr(AG(R)) = 3, yielding a contradiction. Als@’ is not a proper subset ¢f since
TH # (0). Thus! is an S-vertex iM\G(R) which is a contradiction. TherefofBS = (0). If TT; = (0), then
I —T —T, — Iis acycle, yielding a contradiction. S®,77 # (0). Similarly SS; # (0). AlsoV; NV, = 0.
Therefore AG(R) = K\y,| 15| and sSOAG(R) is a complete bipartite graph.
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