
HIGH DEGREE DIOPHANTINE EQUATION BY CLASSICAL

NUMBER THEORY

WU SHENG-PING

Abstract. The main idea of this article is simply calculating integer functions

in module. The algebraic in the integer modules is studied in completely new
style. By a careful construction a result is obtained on two finite numbers with

unequal logarithms, which result is applied to solving a kind of diophantine

equations. The proof of the results is mainly in the last two sections.
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1. Introduction

When the high degree diophantine equation is talked about, the most famous
result is Fermat’s last theorem. In this article purely algebraic method is applied
to discuss unequal (modulated) logarithms of finite integers under module and a
nice result on equation cq = ap + bp is finally obtained. In this article the ring
Z/(nZ) is called ”mod n” as a noun grammatically, or is called ”module of n”, and
all numbers denoted by letters are integers.

2. Modulated Function

In this section p is a prime greater than 2 unless further indication.

Definition 2.1. Function of x ∈ Z: c +
∑m

i=1 cix
i is called power-analytic (i.e

power series). Function of x: c +
∑m

i=1 cie
ix is called linear exponent-analytic of

bottom e. e, c, ci, i are constant integers. m is finite positive integer.

Theorem 2.2. Power-analytic functions modulo p are all the functions from mod
p to mod p, if p is a prime. And 1, xi, (0 < i ≤ p− 1, x ∈ mod p) are linear inde-
pendent vectors. For convenience 1 is always written as x0, and xp−1 is different
from x0.
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Proof. Make matrix X of rank n:

Xi,1 = 1, Xij = ij−1 (1 ≤ i ≤ p, 2 ≤ j ≤ p)

The columnar vector of this matrix is the values of xi. This matrix is Vander-
monde’s matrix and its determinant is not zero modulo p. The number of the
distinct functions in mod p and the number of the distinct linear combinations of
the columnar vectors are the same as pp. So the theorem is valid. �

A proportion of the row vector are values of exponent function modulo p.

Theorem 2.3. Exponent-analytic functions modulo p by a certain bottom are all
the functions from mod p− 1 to mod p, if p is a prime.

Proof. From theorem 2.2, p− 1 is the least positive number a for:

∀x 6= 0 mod p(xa = 1 mod p)

or, exists two unequal number c, b mod p − 1 such that functions xc, xb are of
xc = xb mod p. Hence exists e whose exponent can be any member in mod p
except 0. Because the part of row vector in matrix X (as in the previous theorems)
are values of exponent function, so this theorem is valid. �

Theorem 2.4. p is a prime. The members except zero factors in mod pn forms a
group of multiplication that is generated by single element e (here called generating
element of mod pn).

Thinking about p+1 that is the generating element of all the subgroups of rank
pi.

Definition 2.5. (Modulated Logarithm modulo pm) p is a prime, e is the gener-
ating element as in the last theorem:

lme(x) : x ∈ Z((x, p) = 1)→ mod pm−1(p− 1) : elme(x) = x mod pm

It’s inferred that

y = lmb(x) mod pm−1, b = ep−1 mod p.

Lemma 2.6.

lme(−1) = pm−1(p− 1)/2 mod pm−1(p− 1)

p is a prime. e is defined in mod pm.

Lemma 2.7. The power series expansions of log(1 + x), (|x| < 1) (real natural
logarithm), exp(x) (real natural exponent), and the series for exp(log(1+x)), (|x| <
1) that generated by the previous two being substituted in are absolutely convergent.

Definition 2.8. Because:
a

pm
= kpn ↔ a = 0 mod pm+n

a, k ∈ Z, it’s valid to make the rational number modulo integers, if it applies to
equations. It’s formally written as

a/pm = 0 mod pn

Definition 2.9. pi||a means pi|a and not that pj |a, j > i.
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Theorem 2.10. p is a prime greater than 2. x ∈ Z

E :=

n∑
i=0

pi

i!
mod pm

n is sufficiently great and dependent on m.

e1−p
m

:= E mod pm

e is the generating element.

lm(x) := lme(x) mod pm−1

Then the following are valid

Ex =

n∑
i=0

pi

i!
xi mod pm

lmE(px + 1) =

n∑
i=1

(−1)i+1pi−1

i
xi mod pm−1

lmE(x1−pm

) = lm(x1−pm

)/lm(E) = lm(x1−pm

) = lm(x) mod pm−1.

In fact m is free to be chosen. And E is nearly exp(p). If 2|x this theorem is also
valid for p = 2.

Proof. To prove the theorem, One can contrast the coefficients of Ex and Ef(x) to
those of exp(px) and exp(log(px + 1)). �

Theorem 2.11. Set dm : pdm ||pm/m!. It’s valid that dm(>pn) > dpn .

Theorem 2.12. (Modulated Derivative) p is a prime greater than 2. f(x) is a
certain power-analytic function mod pm, f (i)(x) is the real derivative of i-th order,
then

f(x + zp) =

n∑
i=0

pi

i!
zif (i)(x) mod pm

n is sufficiently great. f (i)(x) is called modulated derivative, which is connected to
the special difference by zp. If 2|z this theorem is also valid for p = 2.

3. Some Definitions

In this section p, pi are prime. m,m′ are sufficiently great.

Definition 3.1. x→ a means the variable x gets value a.

Definition 3.2.
[a]p := {a + kp : ∀k}

a, b, c, d, k, p, q are integers,(p, q) = 1:

[a]p = [a + kp]p

[a]p + [b]p = [a + b]p

[a = b]p means [a]p = [b]p.

[a]p[b]q = [x : [x = b]p, [x = b]q]pq

[a]p · [b]p = [ab]p

Easy to verify:
[a + c]p[b + d]q = [a]p[b]q + [c]p[d]q
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[ka]p[kb]q = k[a]p[b]q

[ak]p[bk]q = ([a]p[b]q)k

Definition 3.3. ϕ(x) is the Euler’s character as the least positive integer s meeting

∀y((y, x) = 1→ [ys = 1]x)

Definition 3.4. The complete logarithm on composite modules is complicated,
but this definition is easy:

[lm(x)]pn1
1 p

n2
2 ···p

nm
m

:= [[lm(x)](p1−1)p
n1
1

]pn1
1

[[lm(x)](p2−1)p
n2
2

]pn2
2
···[[lm(x)](pm−1)pnm

m
]pnm

m

pi are distinct primes. This definition will be used without detailed indication.

Definition 3.5. P (q) is the product of all the distinct prime factors of q.

Definition 3.6. Q(x) :=
∏

i[pi]pm
i

, pi is all the prime factors of x. m is sufficiently
great.

Theorem 3.7. 2|q → 2|x:

[Q(q)lm(1 + xq) =
∑
i=1

(xq)i(−1)i+1/i]qm

The method of the proof is to get result in module of powers of any prime and
to synthesize them in composite module.

Definition 3.8.
[lm(px) = plm(x)]pm

Definition 3.9.
[i : i2 = −1]pm , 4|p− 1

4. Unequal Logarithms on Two Numbers

m is sufficiently great. pi are primes.

Definition 4.1.
x→ a

means the variable x gets the value a.

Theorem 4.2.
P (q)|a|+ 2|b| < q, |a| > |b|

(a, q) = (b, q) = (a, b) = (a− b, q) = 1

then
[lm(a) 6= lm(b)]q3/P (q)

Proof.
r := P (q)

v :=
∏
i

[−pmi ]pm′
i (pi−1),m

′ >> m, v > 0, pi|q

Set

(4.1) 0 ≤ U < qr, 0 ≤W < 2q, [(U,W ) = (b, a)]r

(U,W )→ (x, y), (x′, y′), (x, y) 6= (x′, y′)

d := (q, x− x′, y − y′)
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Presume

(4.2) [lm(a) = lm(b)]q3/r, [a
v+1 = bv+1]q3

Consider

(4.3) [(x− y)(ax− by) = (x′ − y′)(ax′ − by′)]q2

(4.4) [ax− by = ax′ − by′ = qC]qr, (C, q) = 1

Checking the freedom of variables and the symmetry between (x, y), (x′, y′) we can
find two distinct points (x, y) 6= (x′, y′) satisfy the equations 4.3 and 4.4.

From the equations 4.3 and 4.4 we have

[a2x2 − b2y2 = a2x′2 − b2y′2]q2

Make

(4.5) (x, y, x′, y′)→ (x + q2l, y, x′, y′) : [(x− y)(ax− by) = (x′ − y′)(ax′ − by′)]qm

With the conditions 4.2 and 4.5 and 4.1 and 4.4

[
(x + qz)2

(x′ + qz)2
yv+1 − xv+1

xv(y − x)
− y′v+1 − x′v+1

x′v(y′ − x′)

=

v∑
n=0

an

bn
(

(x + qz)2

(x′ + qz)2
(
by

ax
)n − (

by′

ax′
)n)]q3

=

v∑
n=0

an

bn
n(

(x + qz)2

(x′ + qz)2
(
by

ax
− 1)− (

by′

ax′
− 1)) + q2dC ′]q3

Choose z to meet
= 0]q3

Hence

(4.6) [(x + qz)2
ax− by

y − x
= (x′ + qz)2

ax′ − by′

y′ − x′
]q3

With the condition 4.5 we have

[
(x + qz)2

(y − x)2
=

(x′ + qz)2

(y′ − x′)2
]q2

[
x + qz

y + qz − x− qz
=

x′ + qz

y′ + qz − x′ − qz
]q2

then

[
x + qz

y + qz
=

x′ + qz

y′ + qz
]q2

[a(x + qz)− b(y + qz) = 0]qr

With the condition 4.6

[(x+ qz)(ax− by) = (x′ + qz)(ax′ − by′), (y + qz)(ax− by) = (y′ + qz)(ax′ − by′)]q3

[(a(x + qz)− b(y + qz))(ax− by) = (a(x′ + qz)− b(y′ + qz))(ax′ − by′)]q3

[(ax− by + qz(a− b)/2)2 = (ax′ − by′ + qz(a− b)/2)2]q2(dr,q)

[ax− by = ax′ − by′]q(dr,q)

It’s invalid unless

(4.7) [x− x′ = y − y′ = 0]q, d = q
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With the conditions 4.7 and 4.1 and 4.3 and for the original variables

[ax− by = ax′ − by′]q2

and
|ax− by − (ax′ − by′)| < q2

then

(4.8) k = (x− x′)/b = (y − y′)/a, (a, b) = 1

(4.9) |k| = |y − y′|/|a| < q

With the conditions 4.9 and 4.7

x− x′ = y − y′ = 0

This means
(x, y) = (x′, y′)

This contradicts to the previous condition. �

Theorem 4.3. For prime p and positive integer q the equation

ap + bp = cq

has no integer solution (a, b, c) such that (a, b) = (b, c) = (a, c) = 1, a, b > 0 if
p, q > 26.

Proof. Make logarithm on a, b in mod cq. It’s a condition sufficient for a controversy.
�
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