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Abstract

One of the main objectives of statistics is to estimate the parameters of
a probability distribution based on a sample taken from this distribution.
Of course, since the sample is finite, the estimate θ̂ is, in general, different
from the actual value θ of the corresponding parameter. What we can
require is that the corresponding estimate is unbiased, i.e., that the mean

value of the difference θ̂ − θ is equal to 0: E
[
θ̂
]

= θ. In some problems,

unbiased estimates are not possible. We show that in some such problems,
it is possible to have interval unbiased estimates, i.e., interval-valued es-

timates
[
θ̂, θ̂
]

for which θ ∈ E
[
θ̂, θ̂
]

def
=
[
E
[
θ̂
]
, E
[
θ̂
]]

. In some such

cases, it is possible to have asymptotically sharp estimates, for which the

interval
[
E
[
θ̂
]
, E
[
θ̂
]]

is the narrowest possible.

Keywords: statistics, interval uncertainty, unbiased numerical estimates,
unbiased interval estimates
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1 Traditional Unbiased Estimates: A Brief Re-
minder

Estimating parameters of a probability distribution: a practical prob-
lem. Many real-life phenomena are random. This randomness often come from
diversity: e.g., different plants in a field of wheat are, in general, of somewhat
different heights. In practice, we observe a sample x1, . . . , xn of the correspond-
ing values – e.g., we measure the heights of several plants, or we perform several
temperature measurements. Based on this sample, we want to estimate the
original probability distribution.

Let us formulate this problem in precise terms.

Estimating parameters of a probability distribution: towards a pre-
cise formulation of the problem. We want to estimate a probability dis-
tribution F that describes the actual values corresponding to possible samples
x = (x1, . . . , xn). In other words, we need to estimate a probability distribution
on the set IRn of all n-tuples of real numbers.

In statistics, it is usually assumed that we know the class D of possible
distributions. For example, we may know that the distribution is normal, in
which case D is the class of all normal distributions.

Usually, a distribution is characterized by several numerical characteristics
– usually known as its parameters. For example, a normal distribution N(µ, σ2)
can be uniquely characterized by its mean µ and variance σ2. In general, to
describe a parameter θ means to describe, for each probability distribution F
from the class F , the numerical value θ(F ) of this parameter for the distribution
F . For example, when D is a family of all normal distributions N(µ, σ2), then
the parameter θ describing the mean assigns, to each distribution F = N(µ, σ2)
from the class F , the value θ(F ) = µ. Alternatively, we can have a parameter
θ for which θ(N(µ, σ2)) = σ2, or a parameter for which θ(N(µ, σ2)) = µ+ 2σ.

In general, a parameter can be defined as a mapping from the class F to
real numbers. In these terms, to estimate a distribution means to estimate all
relevant parameters.

In some cases, we are interested in learning the values of all possible parame-
ters. In other situations, we are only interested in the values of some parameters.
For example, when we analyze the possible effect of cold weather on the crops,
we may be only interested in the lowest temperature. On the other hand, when
we are interested in long-term effects, we may be only interested in the average
temperature.

We need to estimate the value of this parameter based on the observations.
Due to the random character of the sample x1, . . . , xn, the resulting estimate
f(x1, . . . , xn) is, in general different from the desired parameter θ(F ). In princi-
ple, it is possible to have estimates that tend to overestimate θ(F ) and estimates
that tend to underestimate θ(F ). It is reasonable to consider unbiased estimates,

i.e., estimates for which the mean value EF

[
θ̂(x1, . . . , xn)

]
coincides with θ(F ).

Thus, we arrive at the following definition.
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Definition 1. Let n > 0 be a positive integer, and let F be a class of probability
distributions on IRn.

• By a parameter, we mean a mapping θ : F → IR.

• For each parameter θ, by its unbiased estimate, we mean a function
θ̂ : IRn → IR for which, for every F ∈ F , we have

EF

[
θ̂(x1, . . . , xn)

]
= θ(F ).

Examples. One can easily check that when each distribution from the class
F corresponds to n independent, identically distributed random variables, then

the arithmetic average µ̂(x1, . . . , xn) =
x1 + . . .+ xn

n
is an unbiased estimate

for the mean µ of the individual distribution. When, in addition, the individual
distributions are normal, the sample variance

V̂ (x1, . . . , xn) =
1

n− 1
·

n∑

i=1

(xi − µ̂)
2

is an unbiased estimate for the variance V of the corresponding distribution.

2 What If We Take Measurement Uncertainty
into Account

Need to take measurement uncertainty into account. In the traditional
approach, we assume that we know the exact sample values x1, . . . , xn. In prac-
tice, measurements are never absolutely accurate: due to measurement impre-
cision, the observed values x̃i are, in general, different from the actual values xi
of the corresponding quantities.

Since we do not know the exact values x1, . . . , xn, we need to estimate the
desired parameter θ(F ) based on the observed values x̃1, . . . , x̃n.

Towards a precise formulation of the problem. In addition to the prob-
ability distribution of possible values xi, we also have, for each xi, a probability
distribution of possible values of the difference x̃i− xi. In other words, we have
a joint distribution J on the set of all possible tuples (x1, . . . , xn, x̃1, . . . , x̃n).

The meaning of this joint distribution is straightforward:

• first, we use the distribution on the set of all tuples x to generate a random
tuple x ∈ IRn;

• second, for this tuple x, we use the corresponding probability distribution
of measurement errors to generate the corresponding values x̃i − xi, and
thus, the values x̃1, . . . , x̃n.
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Similarly to the previous case, we usually have some partial information
about the joint distribution – i.e., we know that the distribution J belongs to a
known class D of distributions.

We are interested in the parameter θ(F ) corresponding to the distribution
F of all possible tuples x = (x1, . . . , xn). In statistical terms, F is a marginal
distribution of J corresponding to x (i.e., obtained from J by averaging over
x̃ = (x̃1, . . . , x̃n)): F = Jx. Thus, we arrive at the following definition.

Definition 2. Let n > 0 be a positive integer, and let D be a class of probability
distributions on the set (IRn)2 of all pairs (x, x̃) of n-dimensional tuples. For
each distribution J ∈ D, we will denote the marginal distribution corresponding
to x by Jx. The class of all such marginal distributions is denoted by Dx.

• By a parameter, we mean a mapping θ : Dx → IR.

• For each parameter θ, by its unbiased estimate, we mean a function
θ̂ : IRn → IR for which, for every J ∈ D, we have

EJ

[
θ̂(x̃1, . . . , x̃n)

]
= θ(Jx).

Example. When the sample values are independent, identically distributed
random variables, and the measurement errors have 0 mean, (i.e., E[x̃i] = xi
for each i), then the arithmetic average µ̂ is still an unbiased estimate for the
mean.

What we show in this paper. In this paper, we show that in some real-life
situations, it is not possible to have number-valued unbiased estimates, but we
can have interval-valued estimates which are unbiased in some reasonable sense.

3 A Realistic Example In Which Unbiased Nu-
merical Estimates Are Impossible

Description of an example. Let us assume that the actual values x1, . . . , xn
are independent identically distributed (i.i.d.) normal variables N(µ, σ2) for
some unknown values µ and σ2 ≥ 0, and that the only information that we have

about the measurement errors ∆xi
def
= x̃i − xi is that each of these differences

is bounded by a known bound ∆i > 0: |∆xi| ≤ ∆i. The situation in which we
only know the upper bound on the measurement errors (and we do not have
any other information about the probabilities) is reasonably frequent in real life;
see, e.g., [3].

In this case, D is the class of all probability distributions for which the
marginal Jx corresponds to i.i.d. normal distributions, and |x̃i−xi| ≤ ∆i for all
i with probability 1. In other words, the variables x1, . . . , xn are i.i.d. normal,
and x̃i = xi+∆xi, where ∆xi can have any distribution for which ∆xi is located
on the interval [−∆i,∆i] with probability 1 (the distribution of ∆xi may depend
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on x1, . . . , xn, as long as each difference ∆xi is located within the corresponding
interval).

Let us denote the class of all such distributions by I. By definition, the
corresponding marginal distributions Jx correspond to i.i.d. normals. As a pa-
rameter, let us select the parameter µ of the corresponding normal distribution.

Proposition 1. For the class I, no unbiased estimate of µ is possible.

Proof. Let us prove this result by contradiction. Let us assume that there is
an unbiased estimate µ̂(x1, . . . , xn)). By definition of the unbiased distribution,
we must have EJ [µ̂(x̃1, . . . , x̃n)] = µ for all possible distributions J ∈ I.

Let us take two distributions from this class. In both distributions, we take
σ2 = 0, meaning that all the values xi coincide with µ with probability 1.

In the first distribution, we assume that each value ∆xi is equal to 0 with
probability 1. In this case, all the values x̃i = xi+∆xi coincide with µ with prob-
ability 1. Thus, the estimate µ̂(x̃1, . . . , x̃n) coincides with µ̂(µ, . . . , µ) with prob-
ability 1. So, its expected value EJ [µ̂(x̃1, . . . , x̃n)] is also equal to µ̂(µ, . . . , µ)
with probability 1, and thus, the equality that described that this estimate is
unbiased takes the form

µ̂(µ, . . . , µ) = µ.

In other words, for every real number x, we have

µ̂(x, . . . , x) = x.

In the second distribution, we select a number δ = min
i

∆i > 0, and as-

sume that each value ∆xi is equal to δ with probability 1. In this case, all the
values x̃i = xi + ∆xi coincide with µ + δ with probability 1. Thus, the esti-
mate µ̂(x̃1, . . . , x̃n) coincides with µ̂(µ+ δ, . . . , µ+ δ) with probability 1. So, its
expected value EJ [µ̂(x̃1, . . . , x̃n)] is also equal to µ̂(µ+ δ, . . . , µ+ δ) with prob-
ability 1, and thus, the equality that described that this estimate is unbiased
takes the form

µ̂(µ+ δ, . . . , µ+ δ) = µ.

However, from µ̂(x, . . . , x) = x, we conclude that

µ̂(µ+ δ, . . . , µ+ δ) = µ+ δ 6= µ.

This contradiction proves that an unbiased estimate for µ is not possible.

4 Unbiased Interval Estimates: From Idea to
Definition

Analysis of the problem. In the above example, the reason why we did not
have an unbiased estimate is that the estimate θ̂ depends only on the distribution
of the values x̃1, . . . , x̃n, i.e., only on the marginal distribution Jx̃. On the
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other hand, what we try to reconstruct is the characteristic of the marginal
distribution Jx. In the above example, even if we know Jx̃, we cannot uniquely
determine Jx, because there exists another distribution J ′ for which J ′

x̃ = Jx̃
but for which J ′

x 6= Jx and, moreover, θ(J ′
x) 6= θ(Jx). In this case, we cannot

uniquely reconstruct θ(Jx) from the sample x̃1, . . . , x̃n distributed according to
the distribution Jx̃.

From numerical to interval-valued estimates. While we cannot uniquely
reconstruct the value θ(Jx) – because we may have distributions J ′ with the
same marginal J ′

x̃ = Jx̃ for which the value θ(J ′
x) is different – we can try to

reconstruct the set of all possible values θ(J ′
x) corresponding to such distribu-

tions J ′.
Often, for every distribution J , the class C of all distributions J ′ for which

J ′
x̃ = Jx̃ is connected, and the function that maps a distribution J ′ into a

parameter θ(J ′
x) is continuous. In this case, the resulting set {θ(J ′

x) : J ′ ∈ C} is
also connected, and is, thus, an interval (finite or infinite). In such cases, it is

reasonable to consider interval-valued estimates, i.e., estimates θ̂ that map each

sample x̃ into an interval θ̂(x̃) =
[
θ̂(x̃), θ̂(x̃)

]
.

How to define expected value of an interval estimate. On the set of all
intervals, addition is naturally defined as

a + b
def
= {a+ b : a ∈ a, b ∈ b},

which leads to component-wise addition [a, a] + [b, b] = [a + b, a + b]. Simi-
larly, we can define an arithmetic mean of several intervals [a1, a1], . . . , [an, an],

and it will be equal to the interval [aav, aav], where aav
def
=

a1 + . . .+ an
n

and

aav
def
=

a1 + . . .+ an
n

. Thus, it is natural to define the expected value E[a] of an

interval-valued random variable a = [a, a] component-wise, i.e., as an interval

formed by the corresponding expected values E[a]
def
= [E[a], E[a]].

When is an interval-valued estimate unbiased? Main idea. It is natural
to say that an interval-valued estimate θ̂(x̃) is unbiased if the actual value of

the parameter θ(Jx) is contained in the interval E
[
θ̂(x̃)

]
.

Let us take into account that the expected value is not always defined.
The above idea seems a reasonable definition, but it may be a good idea to make
this definition even more general, by also considering situations when, e.g., the
expected value E[a] is not defined – i.e., when the function a is not integrable.
In this case, instead of the exactly defined integral E[a], we have a lower integral
E[a] and an upper integral E[a]. Let us remind what these notions mean.

Lower and upper integrals: a brief reminder. These notions are known
in calculus, where we often first define an integral of simple functions s(x) (e.g.,
piece-wise constant ones).

To define the integral of a general function, we can then use the fact that
if s(x) ≤ f(x) for all x, then

∫
s(x) dx ≤

∫
f(x) dx. Thus, the desired integral
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∫
f(x) dx is larger than or equal to the integrals of all simple functions s(x) for

which s(x) ≤ f(x). Hence, the desired integral is larger than or equal to the
supremum of all such integrals

∫
s(x) dx.

Similarly, if f(x) ≤ s(x) for all x, then
∫
f(x) dx ≤

∫
s(x) dx. So, the integral∫

f(x) dx is smaller than or equal to the integrals of all simple functions s(x)
for which s(x) ≤ f(x). Thus, the desired integral is smaller than or equal to
the infimum of all such integrals

∫
s(x) dx.

For well-behaving functions, both the supremum of the values
∫
s(x) dx for

all s(x) ≤ f(x) and the infimum of the values
∫
s(x) dx for all s(x) ≥ f(x)

coincide – and are equal to the integral. For some functions, however, these
supremum and infimum are different. The supremum – which is known to be
smaller than or equal to the desired integral

∫
f(x) dx – is called the lower

integral, and the infimum – which is known to be larger than or equal to the
desired integral

∫
f(x) dx – is called the upper integral.

For the expected value E[a]
def
=
∫
x · ρ(x) dx, the corresponding lower and

upper integrals are called lower and upper expected values, and denoted by E[a]
and E[a].

Towards the final definition. In the case of an integrable estimate, we would

like to require that E
[
θ̂
]
≤ θ(Jx) and that θ(Jx) ≤ E

[
θ̂
]
. When the estimate

θ̂ is not integrable, this means, crudely speaking, that we do not know the

expected value E
[
θ̂
]
, we only know the lower and upper bounds E

[
θ̂
]

and E
[
θ̂
]

for this mean value. When we know that E
[
θ̂
]
≤ θ(Jx), we cannot conclude

anything about the upper bound, but we can conclude that E
[
θ̂
]
≤ θ(Jx).

Similarly, crudely speaking, we do not know the expected value E
[
θ̂
]
, we

only know the lower and upper bounds E
[
θ̂
]

and E
[
θ̂
]

for this mean value.

When we know that θ(Jx) ≤ E
[
θ̂
]
, we cannot conclude anything about the

lower bound, but we can conclude that θ(Jx) ≤ E
[
θ̂
]
.

Thus, we conclude that E
[
θ̂
]
≤ θ(Jx) ≤ E

[
θ̂
]
, i.e., that

θ(Jx) ∈
[
E
[
θ̂
]
, E
[
θ̂
]]
.

So, we arrive at the following definition:

Definition 3. Let n > 0 be a positive integer, and let D be a class of probability
distributions on the set (IRn)2 of all pairs (x, x̃) of n-dimensional tuples. For
each distribution J ∈ D, we will denote:

• the marginal distribution corresponding to x by Jx, and

• the marginal distribution corresponding to x̃ by Jx̃.
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The classes of all such marginal distributions are denoted by Dx and Dx̃.

• By a parameter, we mean a mapping θ : Dx → IR.

• For each parameter θ, by its unbiased interval estimate, we mean a func-
tion θ̂ : IRn → II that maps IRn into the set II of all intervals for which,
for every J ∈ D, we have

θ(Jx) ∈
[
EJ

[
θ̂(x̃1, . . . , x̃n)

]
, EJ

[
θ̂(x̃1, . . . , x̃n)

]]
.

Comment. When the interval-values estimate θ̂(x̃) =
[
θ̂(x̃), θ̂(x̃)

]
is integrable,

and its expected value is well-defined, the above requirement takes a simpler
form

θ(Jx) ∈ EJ

[
θ̂(x̃1, . . . , x̃n)

]
.

5 Unbiased Interval Estimates are Often Possi-
ble when Unbiased Numerical Estimates are
Not Possible

Let us show that for examples similar to the one presented above – for which
unbiased numerical estimates are not possible – it is possible to have unbiased
interval estimates.

Proposition 2. Let D0 be a class of probability distributions on IRn, let θ be
a parameter, let θ̂(x1, . . . , xn) be a continuous function which is an unbiased
numerical estimate for θ, and let ∆1, . . . ,∆n be positive real numbers. Let D
denote the class of all distributions J on (x, x̃) for which the marginal Jx belongs
to D0 and for which, for all i, we have |xi − x̃i| ≤ ∆i with probability 1. Then,
the following interval-values function is an unbiased interval estimate for θ:

θ̂r(x̃1, . . . , x̃n)
def
=

{
θ̂(x1, . . . , xn) : x1 ∈ [x̃1 −∆1, x̃1 + ∆1], . . . , xn ∈ [x̃n −∆n, x̃n + ∆n]

}
.

Comment. Since the function θ̂(x1, . . . , xn) is continuous, its range θ̂r(x̃1, . . . , x̃n)
on the box [x̃1−∆1, x̃1 + ∆1]× . . .× [x̃n−∆n, x̃n + ∆n] is an interval. Method
of estimating this intervals are known as methods of interval computations; see,
e.g., [1, 2].

Proof. For every tuple x = (x1, . . . , xn), since |xi − x̃i| ≤ ∆i, we have xi ∈
[x̃i −∆i, x̃i + ∆i]. Thus,

θ(x1, . . . , xn) ∈
{
θ̂(x1, . . . , xn) : x1 ∈ [x̃1 −∆1, x̃1 + ∆1], . . . , xn ∈ [x̃n −∆n, x̃n + ∆n]

}
=
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θ̂r(x̃) =
[
θ̂r(x̃), θ̂r(x̃)

]

and thus,

θ̂r(x̃) ≤ θ(x) ≤ θ̂r(x̃).

It is known that if f(x) ≤ g(x), then E(f) ≤ E[g] and E[f ] ≤ E[g]. Thus, we
get

E
[
θ̂r(x̃)

]
≤ E[θ(x)] and E[θ(x)] ≤ E

[
θ̂r(x̃)

]
.

We have assumed that θ is an unbiased estimate; this means that the man
E[θ(x)] is well defined and equal to θ(Jx). Since the mean is well-defined,
this means that E[θ(x)] = E[θ(x)] = E[θ(x)] = θ(Jx). Thus, the above two
inequalities take the form

E
[
θ̂r(x̃)

]
≤ θ(Jx) ≤ E

[
θ̂r(x̃)

]
.

This is exactly the inclusion that we want to prove. The proposition is thus
proven.

6 Case When We Can Have Sharp Unbiased In-
terval Estimates

Need for sharp unbiased interval estimates. All we required in our defini-
tion of an unbiased interval estimate (Definition 3) is that the the actual value
θ of the desired parameter is contained in the interval obtained as an expected
value of the interval-valued estimates θ̂r(x).

So, if, instead of the original interval-valued estimate θ̂r(x) =
[
θ̂r(x), θ̂r(x)

]
,

we take a wider enclosing interval, e.g., an interval
[
θ̂r(x)− 1, θ̂r(x) + 1

]
, this

wider interval estimate will also satisfy our definition.
It is therefore desirable to come up with the narrowest possible (“sharpest”)

unbiased interval estimates.

A realistic example where sharp unbiased interval estimates are possi-
ble. Let us give a realistic example in which a sharp unbiased interval estimate
is possible. This example will be a (slight) generalization of the example on
which we showed that an unbiased numerical estimate is not always possible.

Specifically, let us assume that the actual values x1, . . . , xn have a joint nor-
mal distribution N(µ,Σ) for some unknown means µ1, . . . , µn and an unknown
covariance matrix Σ, and that the only information that we have about the mea-

surement errors ∆xi
def
= x̃i− xi is that each of these differences is bounded by a

known bound ∆i > 0: |∆xi| ≤ ∆i. As we have mentioned earlier, the situation
in which we only know the upper bound on the measurement errors (and we do
not have any other information about the probabilities) is reasonably frequent
in real life.
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In this case, D is the class of all probability distributions for which the
marginal distribution Jx is normal, and |x̃i−xi| ≤ ∆i for all i with probability 1.
In other words, the tuple (x1, . . . , xn) is normally distributed, and x̃i = xi+∆xi,
where ∆xi can have any distribution for which ∆xi is located on the interval
[−∆i,∆i] with probability 1 (the distribution of ∆xi may depend on x1, . . . , xn,
as long as each ∆xi is located within the corresponding interval).

Let us denote the class of all such distributions by I ′. By definition, the
corresponding marginal distributions Jx correspond to n-dimensional normal
distribution. As a parameter, let us select the average

β
def
=

µ1 + . . .+ µn

n
.

For the class of all marginal distributions Jx, there is an unbiased numerical

estimate: namely, we can take β̂(x1, . . . , xn) =
x1 + . . .+ xn

n
. Indeed, one can

easily check that since the expected value of each variable xi is equal to µi, the
expected value of the estimate β̂(x) is indeed equal to β. Due to Proposition 2,
we can conclude that the range

β̂r(x̃1, . . . , x̃n)
def
=

{
β̂(x1, . . . , xn) : x1 ∈ [x̃1 −∆1, x̃1 + ∆1], . . . , xn ∈ [x̃n −∆n, x̃n + ∆n]

}
=

{
x1 + . . .+ xn

n
: x1 ∈ [x̃1 −∆1, x̃1 + ∆1], . . . , xn ∈ [x̃n −∆n, x̃n + ∆n]

}

is an unbiased interval estimate for the parameter β.
This range can be easily computed if we take into account that the function

β̂(x1, . . . , xn) =
x1 + . . .+ xn

n
is an increasing function of all its variables. Thus:

• the smallest value of this function is attained when each of the variables
xi attains its smallest possible value xi = x̃i −∆i, and

• the largest value of this function is attained when each of the variables xi
attains its largest possible value xi = x̃i + ∆i.

So, the range has the form

β̂r(x̃1, . . . , x̃n) =

[
(x̃1 −∆1) + . . .+ (x̃n −∆n)

n
,

(x̃1 + ∆1) + . . .+ (x̃n + ∆n)

n

]
.

Let us show that this unbiased interval estimate is indeed sharp.

Proposition 3. For the class I ′, if β̂′
r(x̃) is an unbiased interval estimate for

β, then for every tuple x̃, we have β̂r(x̃) ⊆ β̂′
r(x̃).

Comment. So, the above interval estimate β̂r(x̃) is indeed the narrowest possi-
ble.
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Proof. Let us pick an arbitrary tuple ỹ = (ỹ1, . . . , ỹn), and let us show that for

this tuple, the interval β̂r (ỹ ) is contained in the interval β̂′
r (ỹ ). To prove this,

it is sufficient to prove that both endpoints of the interval β̂r (ỹ ) are contained

in the interval β̂′
r (ỹ ). Without losing generality, let us consider the left end-

point
(ỹ1 −∆1) + . . .+ (ỹn −∆n)

n
of the interval β̂r (ỹ ); for the right endpoint

(ỹ1 + ∆1) + . . .+ (ỹn + ∆n)

n
of this interval, the proof is similar.

To prove that
(ỹ1 −∆1) + . . .+ (ỹn −∆n)

n
∈ β̂′

r (ỹ ), we will use the fact

that the function β̂′
r(x̃) is an unbiased interval estimate. Let us consider a

distribution J ∈ I ′ for which each value xi is equal to µi = ỹi − ∆i with
probability 1, and each value x̃i is equal to ỹi with probability 1. One can easily
see that here, |x̃i − xi| ≤ ∆i and therefore, this distribution indeed belongs to
the desired class I ′.

For this distribution, since µi = ỹi −∆i, the actual value

β(Jx) =
µ1 + . . .+ µn

n

is equal to

β(Jx) =
(ỹ1 −∆1) + . . .+ (ỹn −∆n)

n
.

On the other hand, since x̃i = ỹi with probability 1, we have β̂′
r(x̃) = β̂′

r (ỹ )

with probability 1, and thus, the expected value of β̂′
r(x̃) also coincides with

the interval β̂′
r (ỹ ): EJ

[
β̂′

r(x̃)
]

= β̂′
r (ỹ ).

So, from the condition that β(Jx) ∈ EJ

[
β̂′

r(x̃)
]
, we conclude that

(ỹ1 −∆1) + . . .+ (ỹn −∆n)

n
∈ β̂′

r (ỹ ) ,

i.e., that the left endpoint of the interval β̃r (ỹ ) indeed belongs to the interval

β̂′
r (ỹ ). We can similarly prove that the right endpoint of the interval β̃r (ỹ )

belongs to the interval β̂′
r (ỹ ). Thus, the whole interval β̃r (ỹ ) is contained in

the interval β̂′
r (ỹ ). The proposition is proven.
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Abstract: In this paper we proposed a new distance and several 
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I. INTRODUCTION 
The neutrsophic set, founded by F.Smarandache [1], has 

capability to deal with uncertainty, imprecise, incomplete and 
inconsistent information which exist in the real world. 
Neutrosophic set theory is a powerful tool in the formal 
framework, which generalizes the concepts of the classic set, 
fuzzy set [2], interval-valued fuzzy set [3], intuitionistic fuzzy 
set [4], interval-valued intuitionistic fuzzy set [5], and so on. 

After the pioneering work of Smarandache, in 2005 Wang 
[6] introduced the notion of interval neutrosophic set (INS for 
short) which is a particular case of the neutrosophic set. INS 
can be described by a membership interval, a non-membership 
interval, and the indeterminate interval. Thus the interval value 
neutrosophic set has the virtue of being more flexible and 
practical than single value neutrosophic set. And the Interval 
Neutrosophic Set provides a more reasonable mathematical 
framework to deal with indeterminate and inconsistent 
information. 

Many papers about neutrosophic set theory have been done 
by various researchers [7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 
18, 19, 20]. 

A similarity measure for neutrosophic set (NS) is used for 
estimating the degree of similarity between two neutrosophic 
sets. Several researchers proposed some similarity measures 
between NSs, such as S. Broumi and F. Smarandache [26], Jun 
Ye [11, 12], P. Majumdar and S.K.Smanta [23].  

In the literature, there are few researchers who studied the 
distance and similarity measure of IVNS. 

In 2013, Jun Ye [12] proposed similarity measures between 
interval neutrosophic set based on the Hamming and Euclidean 
distance, and developed a multicriteria decision–making 
method based on the similarity degree. S. Broumi and F. 

Smarandache [10] proposed a new similarity measure, called 
“cosine similarity measure of interval valued neutrosophic 
sets”.  On the basis of numerical computations, S. Broumi and 
F. Smarandache found out that their similarity measures are 
stronger and more robust than Ye’s measures.  

We all know that there are various distance measures in 
mathematics. So, in this paper, we will extend the generalized 
distance of single valued neutrosophic set proposed by Ye [12] 
to the case of interval neutrosophic set and we’ll study some 
new similarity measures. 

This paper is organized as follows. In section 2, we review 
some notions of neutrosophic set andinterval valued 
neutrosophic set. In section 3, some new similarity measures of 
interval valued neutrosophic sets and their proofs are 
introduced. Finally, the conclusions are stated in section 4. 

II. PRELIMIAIRIES 

This section gives a brief overview of the concepts of 
neutrosophic set, and interval valued neutrosophic set. 

A. Neutrosophic Sets 
1) Definition [1] 

Let X be a universe of discourse, with a generic element in 
X denoted by x, then a neutrosophic set A is an object having 
the form:  

A = {< x: T! x , I! x , F! x >, x ∈ X}, where the 
functions T, I, F : X→ ]−0, 1+[  define respectively the degree 
of membership (or Truth), the degree of indeterminacy, and the 
degree of non-membership (or Falsehood) of the element x ∈ X 
to the set A with the condition: 

             −0≤T! x +I! x +F! x ≤3+.                       (1) 
              

From philosophical point of view, the neutrosophic set 
takes the value from real standard or non-standard subsets of 
]−0, 1+[. Therefore, instead of ]−0, 1+[ we need to take the 
interval [0, 1] for technical applications, because ]−0, 1+[ will 
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be difficult to apply in the real applications such as in scientific 
and engineering problems.  

For two NSs, 𝐴!"= {<x, T! x ,   I! x ,   F! x >|x ∈ X}      (2)                                                                                          

and 𝐵!" ={ <x, T! x ,   I! x ,   F! x > | x ∈ X } the two 
relations are defined as follows: 

(1)  𝐴!" ⊆   𝐵!"  if and only if T! x  ≤ T! x ,  I! x  ≥
I! x ,  F! x  ≥ F! x . 

(2)  𝐴!" =   𝐵!"    if  and  only  if  , T! x =T! x ,  I! x  
=I! x ,  F! x  =F! x . 

B. Interval Valued Neutrosophic Sets 

In actual applications, sometimes, it is not easy to express the 
truth-membership, indeterminacy-membership and falsity-
membership by crisp value, and they may be easier to be 
expressed by interval numbers. Wang et al. [6] further defined 
interval neutrosophic sets (INS) shows as follows: 
 

1) Definition [6] 
Let X be a universe of discourse, with generic element in X 

denoted by x. An interval valued neutrosophic set (for short 
IVNS) A in X is characterized by truth-membership 
functionT!(x), indeteminacy-membership function I! x , and 
falsity-membership function    F!(x). For each point x in X, we 
have that  T!(x), I!(x), F!(x) ∈   [ 0 ,1] . 

For two IVNS, A!"#$={<x,[T!! x ,T!! x ],   [I!! x , I!! x ], 
[F!! x , F!! x ]> | x ∈ X }                                                 (3) 

 
and B!"#$= {<x, [T!! x ,T!! x ], 
[I!! x , I!! x ],  [F!! x , F!! x ]  > | x ∈ X } the two relations are 
defined as follows: 

(1)  A!"#$ ⊆   B!"#$  if and only if T!! x  ≤ T!! x ,T!! x  
≤ T!! x , I!! x  ≥ I!! x ,  I!! x  ≥ I!! x ,   F!! x  
≥ F!! x ,  F!! x  ≥ F!! x .  
(2)  A!"#$ =   B!"#$    if  and  only  if T!! x! = T!! x! ,   T!! x! =
  T!! x! ,  I!! x! = I!! x! ,I!! x! = I!! x! ,    F!! x! = F!! x!  
and F!! x! = F!! x!   for any x ∈ X. 

C. Defintion  
Let A and B be two interval valued neutrosophic sets, then  

i. 0 ≤ 𝑆(𝐴,𝐵) ≤ 1. 
ii. 𝑆(𝐴,𝐵) =  𝑆 𝐵,𝐴 . 

iii. 𝑆(𝐴,𝐵)  = 1  if A= B, i.e  
𝑇!! 𝑥! =   𝑇!! 𝑥! ,      𝑇!! 𝑥! = 𝑇!! 𝑥!  ,  
𝐼!! 𝑥! =    𝐼!! 𝑥! ,      𝐼!! 𝑥!   =    𝐼!!(𝑥!) and  
𝐹!! 𝑥! =   𝐹!! 𝑥! ,        𝐹!! 𝑥!   =   𝐹!! 𝑥! ,   for  i = 1, 2,…., n. 
        iv .    A⊂  B ⊂ C ⇒ S(A,B) ≤ min (S(A,B), S(B,C). 
 

III. NEW DISTANCE MEASURE OF INTERVAL VALUED 
NEUTROSOPHIC SETS 

Let  A and B be two single  neutrosophic sets, then J. Ye 
[11] proposed a generalized single valued neutrosophic 
weighted distance measure between A and B as follows:  

𝑑!(𝐴  ,𝐵) = !
!

𝑤! 𝑇! 𝑥! − 𝑇! 𝑥! ! + 𝐼! 𝑥! −!
!!!

𝐼! 𝑥! ! + 𝐹! 𝑥! − 𝐹! 𝑥! !
!
!                                      (4) 

where  
𝜆 > 0 and 𝑇! 𝑥! ,  𝐼! 𝑥! ,  𝐹! 𝑥! ,  𝑇! 𝑥! , 𝐼! 𝑥! ,  𝐹! 𝑥!  ∈  [ 

0, 1]. 

Based on the geometrical distance model and using the 
interval neutrosophic sets, we extended the distance (4) as 
follows: 

𝑑!(𝐴  ,𝐵) = !
!

𝑤! 𝑇!! 𝑥! − 𝑇!! 𝑥! ! + 𝑇!! 𝑥! − 𝑇!! 𝑥! ! + 𝐼!! 𝑥! − 𝐼!! 𝑥! ! + 𝐼!! 𝑥! − 𝐼!! 𝑥! ! + 𝐹!! 𝑥! −!
!!!

𝐹!! 𝑥! ! + 𝐹!! 𝑥! − 𝐹!! 𝑥! !
!
!.                                                                                                                                            (5) 

The normalized generalized interval neutrosophic distance is 

𝑑!(𝐴  ,𝐵) = !
!!

𝑤! 𝑇!! 𝑥! − 𝑇!! 𝑥! ! + 𝑇!! 𝑥! − 𝑇!! 𝑥! ! + 𝐼!! 𝑥! − 𝐼!! 𝑥! ! + 𝐼!! 𝑥! − 𝐼!! 𝑥! ! + 𝐹!! 𝑥! −!
!!!

𝐹!! 𝑥! ! + 𝐹!! 𝑥! − 𝐹!! 𝑥! !
!
!.                                                                                                                                           (6) 

If w={!
!
, !
!
,… , !

!
}, the distance (6)  is reduced to the following distances:  

𝑑!(𝐴  ,𝐵) = !
!

𝑇!! 𝑥! − 𝑇!! 𝑥! ! + 𝑇!! 𝑥! − 𝑇!! 𝑥! ! + 𝐼!! 𝑥! − 𝐼!! 𝑥! ! + 𝐼!! 𝑥! − 𝐼!! 𝑥! ! + 𝐹!! 𝑥! −!
!!!

𝐹!! 𝑥! ! + 𝐹!! 𝑥! − 𝐹!! 𝑥! !
!
!.                                                                                                                                           (7) 

 
𝑑!(𝐴  ,𝐵) = !

!!
𝑇!! 𝑥! − 𝑇!! 𝑥! ! + 𝑇!! 𝑥! − 𝑇!! 𝑥! ! + 𝐼!! 𝑥! − 𝐼!! 𝑥! ! + 𝐼!! 𝑥! − 𝐼!! 𝑥! ! + 𝐹!! 𝑥! −!

!!!

𝐹!! 𝑥! ! + 𝐹!! 𝑥! − 𝐹!! 𝑥! !
!
!.                                                                                                                                           (8) 

 

Particular case. 
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(i)  If   𝜆 = 1 then the distances (7) and (8) are reduced to the following Hamming distance and respectively normalized Hamming 
distance defined by Ye Jun [11]: 
𝑑!(𝐴  ,𝐵) = !

!
𝑇!! 𝑥! − 𝑇!! 𝑥! + 𝑇!! 𝑥! − 𝑇!! 𝑥! + 𝐼!! 𝑥! − 𝐼!! 𝑥! + 𝐼!! 𝑥! − 𝐼!! 𝑥! + 𝐹!! 𝑥! − 𝐹!! 𝑥! +!

!!!

𝐹!! 𝑥! − 𝐹!! 𝑥! ,                                                                                                                                                                  (9) 
 

𝑑!"(𝐴  ,𝐵) = !
!!

𝑇!! 𝑥! − 𝑇!! 𝑥! + 𝑇!! 𝑥! − 𝑇!! 𝑥! + 𝐼!! 𝑥! − 𝐼!! 𝑥! + 𝐼!! 𝑥! − 𝐼!! 𝑥! + 𝐹!! 𝑥! − 𝐹!! 𝑥! +!
!!!

𝐹!! 𝑥! − 𝐹!! 𝑥! .                                                                                                                                                                 (10) 
 

(ii) If   𝜆 = 2 then the distances (7) and (8) are reduced to the following Euclidean distance and respectively normalized Euclidean 
distance defined by Ye Jun [12]: 
𝑑!(𝐴  ,𝐵) = !

!
𝑇!! 𝑥! − 𝑇!! 𝑥! ! + 𝑇!! 𝑥! − 𝑇!! 𝑥! ! + 𝐼!! 𝑥! − 𝐼!! 𝑥! ! + 𝐼!! 𝑥! − 𝐼!! 𝑥! ! + 𝐹!! 𝑥! −!

!!!

𝐹!! 𝑥! ! + 𝐹!! 𝑥! − 𝐹!! 𝑥! !
!
!,                                                                                                                                              (11) 

𝑑!"(𝐴  ,𝐵) = !
!!

𝑇!! 𝑥! − 𝑇!! 𝑥! ! + 𝑇!! 𝑥! − 𝑇!! 𝑥! ! + 𝐼!! 𝑥! − 𝐼!! 𝑥! ! + 𝐼!! 𝑥! − 𝐼!! 𝑥! ! + 𝐹!! 𝑥! −!
!!!

𝐹!! 𝑥! ! + 𝐹!! 𝑥! − 𝐹!! 𝑥! !
!
! .                                                                                                                                             (12) 

 
IV. NEW SIMILARITY MEASURES OF INTERVAL VALUED NEUTROSOPHIC SET 

A.  Similarity measure based on the geometric distance model  
Based on distance (4), we define the similarity measure between the interval valued neutrosophic sets A and B as follows: 

S!"(A  ,B) = 1- !
!"

T!! x! − T!! x!
!
+ T!! x! − T!! x!

!
+ I!! x! − I!! x!

!
+ I!! x! − I!! x!

!
+ F!! x! −!

!!!

F!! x!
!
+ F!! x! − F!! x!

!
!
!,                                                                                                                                                   (13) 

where λ > 0  and  S!" A  ,B     is the degree of similarity of A and B .  

If we take the weight of each element 𝑥!  ∈  X into account, then 

S!"! A  ,B =1- !
!

w! T!! x! − T!! x!
!
+ T!! x! − T!! x!

!
+ I!! x! − I!! x!

!
+ I!! x! − I!! x!

!
+ F!! x! −!

!!!

F!! x!
!
+ F!! x! − F!! x!

!
!
!.                                                                                                                                           (14) 

If each elements has the same importance, i.e. w =  {!
!
, !
!
,… , !

!
}, then similarity (14) reduces to (13). 

By (definition C) it can easily be known that S!"(A  ,B) satisfies all the properties of the definition.. 

Similarly, we define another similarity measure of A and B, as: 

S( A, B) = 1 – 
!!
! !! !!!

! !!
λ
! !!

! !! !!!
! !!

λ
! !!

! !! !!!
! !!

λ
! !!

! !! !!!
! !!

λ
! !!

! !! !!!
! !!

λ
! !!

! !! !!!
! !!

λ!
!!!

!!
! !! !!!

! !!
λ
! !!

! !! !!!
! !!

λ
! !!

! !! !!!
! !!

λ
! !!

! !! !!!
! !!

λ
! !!

! !! !!!
! !!

λ
! !!

! !! !!!
! !!

λ!
!!!

!
!

.              (15) 

If we take the weight of each element 𝑥!  ∈  X into account, then 

S( A, B) = 1 – 
!! !!

! !! !!!
! !!

λ
! !!

! !! !!!
! !!

λ
! !!

! !! !!!
! !!

λ
! !!

! !! !!!
! !!

λ
! !!

! !! !!!
! !!

λ
! !!

! !! !!!
! !!

λ!
!!!

!! !!
! !! !!!

! !!
λ
! !!

! !! !!!
! !!

λ
! !!

! !! !!!
! !!

λ
! !!

! !! !!!
! !!

λ
! !!

! !! !!!
! !!

λ
! !!

! !! !!!
! !!

λ!
!!!

!
!

.          (16) 

 
 

It also has been proved that all conditions of the definition are 
satisfied. If each elements has the same importance, and then 
the similarity (16) reduces to (15). 

B.  Similarity measure based on the interval valued 
neutrosophic theoretic approach: 
In this section, following the similarity measure between 

two neutrosophic sets defined by P. Majumdar in [24], we 
extend Majumdar’s definition to interval valued neutrosophic 
sets. 
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Let A and B be two interval valued neutrosophic sets, then we define a similarity measure between A and B as follows:  

𝑆!" 𝐴,𝐵 = {!"# !!
! !! ,!!

! !! !!"# !!
! !! ,!!

! !! !!"# !!
! !! ,!!

! !! !!"# !!
! !! ,!!

! !! !!"# !!
! !! ,!!

! !! !!"# !!
! !! ,!!

! !!
!
!!!
{!"# !!

! !! ,!!
! !! !!"# !!

! !! ,!!
! !! !!"# !!

! !! ,!!
! !! !!"# !!

! !! ,!!
! !! !!"# !!

! !! ,!!
! !! !!"# !!

! !! ,!!
! !!!

!!!
       (17) 

 
1) Proposition  

Let A and B be two interval valued neutrosophic sets, then  

iv. 0 ≤ 𝑆!" 𝐴,𝐵  ≤ 1. 
v. 𝑆!" 𝐴,𝐵   =  𝑆!" 𝐴,𝐵 . 

vi. 𝑆(𝐴,𝐵)  = 1  if A = B i.e.   
𝑇!! 𝑥! =   𝑇!! 𝑥! ,      𝑇!! 𝑥! = 𝑇!! 𝑥! ,  𝐼!! 𝑥! =    𝐼!! 𝑥! ,      𝐼!! 𝑥!   =    𝐼!!(𝑥!) and  
𝐹!! 𝑥! =   𝐹!! 𝑥! ,        𝐹!! 𝑥!   =   𝐹!! 𝑥!    for  i = 1, 2, …., n. 
         iv.     A⊂  B ⊂ C ⇒ 𝑆!" 𝐴,𝐵 ≤ min (𝑆!" 𝐴,𝐵 , 𝑆!" 𝐵,𝐶 ). 

Proof. Properties (i) and (ii) follow from the definition.  

(iii) It is clearly that if A = B ⇒ 𝑆!" 𝐴,𝐵  =1 
⇒ {min T!! x! ,T!! x! +min T!! x! ,T!! x! +min I!! x! , I!! x! +min I!! x! , I!! x! +min F!! x! , F!! x! +!

!!!
min F!! x! , F!! x!  
= {𝑚𝑎𝑥 𝑇!! 𝑥! ,𝑇!! 𝑥! +𝑚𝑎𝑥 𝑇!! 𝑥! ,𝑇!! 𝑥! +𝑚𝑎𝑥 𝐼!! 𝑥! , 𝐼!! 𝑥! +𝑚𝑎𝑥 𝐼!! 𝑥! , 𝐼!! 𝑥! +𝑚𝑎𝑥 𝐹!! 𝑥! ,𝐹!! 𝑥! +!

!!!
𝑚𝑎𝑥 𝐹!! 𝑥! ,𝐹!! 𝑥!  
⇒ {[min T!! x! ,T!! x! −max 𝑇!! 𝑥! ,𝑇!! 𝑥! ] + [min T!! x! ,T!! x! −max 𝑇!! 𝑥! ,𝑇!! 𝑥! ] + [min I!! x! , I!! x! −!

!!!
max 𝐼!! 𝑥! , 𝐼!! 𝑥! ] + [min I!! x! , I!! x! −max 𝐼!! 𝑥! , 𝐼!! 𝑥! ] + [min F!! x! , F!! x! −max 𝐹!! 𝑥! ,𝐹!! 𝑥! ] +
[min F!! x! , F!! x! −max 𝐹!! 𝑥! ,𝐹!! 𝑥! ]  = 0.  

Thus for each x, one has that 

[min T!! x! ,T!! x! −max 𝑇!! 𝑥! ,𝑇!! 𝑥! ] = 0 
[min T!! x! ,T!! x! −max 𝑇!! 𝑥! ,𝑇!! 𝑥! ] = 0 
[min I!! x! , I!! x! −max 𝐼!! 𝑥! , 𝐼!! 𝑥! ] = 0 
[min I!! x! , I!! x! −max 𝐼!! 𝑥! , 𝐼!! 𝑥! ] = 0 
[min F!! x! , F!! x! −max 𝐹!! 𝑥! ,𝐹!! 𝑥! ] = 0 
  [min F!! x! , F!! x! −max 𝐹!! 𝑥! ,𝐹!! 𝑥! ] = 0    
hold. 
Thus T!! x! = T!! x!  ,  T!! x! =   T!! x!  ,  I!! x! = I!! x!  , I!! x! = I!! x!  ,  F!! x! = F!! x!  and F!! x! = F!! x!  ⇒ A=B 
(iv) Now we prove the last result. 
Let A⊂  B ⊂ C, then we have  
T!! x  ≤ T!! x ≤ T!! x ,T!! x   ≤ T!! x ≤ T!! x   , I!! x  ≥ I!! x  ≥ I!! x ,  I!! x  ≥ I!! x  ≥ I!! x ,   F!! x  
≥ F!! x ≥ F!! x ,  F!! x  ≥ F!! x  ≥ F!! x  for all x ∈ X. 
Now 
T!! x  +T!! x  +I!! x  +I!! x  +F!! x +F!! x  ≥ T!! x  +T!! x  +I!! x  +I!! x +F!! x +F!! x  
and  

T!! x  +T!! x  +I!! x  +I!! x  +F!! x +F!! x  ≥ T!! x  +T!! x  +I!! x  +I!! x +F!! x +F!! x . 
 

S(A,B) =!!
! !   !!!

! !   !!!
! !   !!!

! !   !!!
! ! !!!

! !
!!
! !   !!!

! !   !!!
! !   !!!

! !   !!!
! ! !!!

! !
  ≥   !!

! !   !!!
! !   !!!

! !   !!!
! ! !!!

! ! !!!
! !

!!
! !   !!!

! !   !!!
! !   !!!

! ! !!!
! ! !!!

! !
 = S(A,C). 

Again, similarly we have 

T!! x  +T!! x  +I!! x  +I!! x +F!! x +F!! x ≥ T!! x  +T!! x  +I!! x  +I!! x +F!! x +F!! x  
T!! x  +T!! x  +I!! x  +I!! x +F!! x +F!! x ≥ T!! x  +T!! x  +I!! x  +I!! x +F!! x +F!! x  

S(B,C) =!!
! !   !!!

! !   !!!
! !   !!!

! ! !!!
! ! !!!

! !
!!
! !   !!!

! !   !!!
! !   !!!

! ! !!!
! ! !!!

! !
  ≥   !!

! !   !!!
! !   !!!

! !   !!!
! ! !!!

! ! !!!
! !

!!
! !   !!!

! !   !!!
! !   !!!

! ! !!!
! ! !!!

! !
 = S(A,C) 

⇒ 𝑆!" 𝐴,𝐵 ≤ min (𝑆!" 𝐴,𝐵 , 𝑆!" 𝐵,𝐶 ). 
      Hence the proof of this proposition.  

If we take the weight of each element 𝑥! ∈  X into account, then 
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𝑆(𝐴,𝐵)= !!{!"# !!
! !! ,!!

! !! !!"# !!
! !! ,!!

! !! !!"# !!
! !! ,!!

! !! !!"# !!
! !! ,!!

! !! !!"# !!
! !! ,!!

! !! !!"# !!
! !! ,!!

! !!
!
!!!
  !!{!"# !!

! !! ,!!
! !! !!"# !!

! !! ,!!
! !! !!"# !!

! !! ,!!
! !! !!"# !!

! !! ,!!
! !! !!"# !!

! !! ,!!
! !! !!"# !!

! !! ,!!
! !!!

!!!
 

                                                                                                                                                                                                                      (18) 
Particularly, if each element has the same importance, then 

(18) is reduced to (17), clearly this also satisfies all the 
properties of the definition. 

C. Similarity measure based on matching function by using 
interval neutrosophic sets: 
Chen [24] and Chen et al. [25] introduced a matching 

function to calculate the degree of similarity between fuzzy 

sets. In the  following, we  extend  the matching  function to 
deal with the similarity measure of interval valued 
neutrosophic  sets. 

Let  A and B be two interval  valued neutrosophic sets, then 
we define a similarity measure between A and B as follows:  

𝑆!"(A,B) =  
𝑇!! 𝑥! ∙     𝑇!! 𝑥! + 𝑇!! 𝑥! ∙     𝑇!! 𝑥! + 𝐼!! 𝑥! ∙      𝐼!! 𝑥! + 𝐼!! 𝑥! ∙      𝐼!! 𝑥! + 𝐹!! 𝑥! ∙     𝐹!! 𝑥! + 𝐹!! 𝑥! ∙     𝐹!! 𝑥!𝒏

𝒊!𝟏

max( (T!! x! ! + T!
! x! ! +    I!! x! ! +

!
!! I!

! x! ! +   F!! x! ! + F!
! x! !) ,       (T!! x! ! + T!

! x! ! +    I!! x! ! +
!
!! I!

! x! ! +   F!! x! ! + F!
! x! !))

 

                                                                                                                                                                                                                          (19) 
Proof.  

i. 0 ≤ 𝑆!"(A,B) ≤ 1. 
The inequality 𝑆!"(A,B) ≥ 0 is obvious. Thus, we only prove the inequality S(A, B) ≤ 1. 

𝑆!"(A,B)= 𝑇!! 𝑥! ∙     𝑇!! 𝑥! + 𝑇!! 𝑥! ∙     𝑇!! 𝑥! + 𝐼!! 𝑥! ∙      𝐼!! 𝑥! + 𝐼!! 𝑥! ∙      𝐼!! 𝑥! + 𝐹!! 𝑥! ∙     𝐹!! 𝑥! +𝒏
𝒊!𝟏

𝐹!! 𝑥! ∙     𝐹!! 𝑥!  
=  𝑇!! 𝑥! ∙     𝑇!! 𝑥! +𝑇!! 𝑥! ∙     𝑇!! 𝑥! +…+𝑇!! 𝑥! ∙     𝑇!! 𝑥! +𝑇!! 𝑥! ∙     𝑇!! 𝑥! +𝑇!! 𝑥! ∙     𝑇!! 𝑥! +…+𝑇!! 𝑥! ∙     𝑇!! 𝑥! + 
𝐼!! 𝑥! ∙      𝐼!! 𝑥! +𝐼!! 𝑥! ∙      𝐼!! 𝑥! +…+𝐼!! 𝑥! ∙      𝐼!! 𝑥! +𝐼!! 𝑥! ∙      𝐼!! 𝑥! +𝐼!! 𝑥! ∙      𝐼!! 𝑥! +…+𝐼!! 𝑥! ∙      𝐼!! 𝑥! + 
𝐹!! 𝑥! ∙     𝐹!! 𝑥! +𝐹!! 𝑥! ∙     𝐹!! 𝑥! +…+𝐹!! 𝑥! ∙     𝐹!! 𝑥! +𝐹!! 𝑥! ∙     𝑇!! 𝑥! +𝐹!! 𝑥! ∙     𝐹!! 𝑥! +…+𝐹!! 𝑥! ∙     𝐹!! 𝑥! . 

According to the Cauchy–Schwarz inequality: 

(𝑥! ∙ 𝑦! + 𝑥! ∙ 𝑦! +⋯+ 𝑥! ∙ 𝑦!)! ≤ (𝑥!
! + 𝑥!! +⋯+ 𝑥!!)    ∙ (𝑦!

! + 𝑦!! +⋯+ 𝑦!!) 
where  (𝑥!, 𝑥!, …, 𝑥!) ∈  𝑅!  and  (𝑦!, 𝑦!, …, 𝑦!)  ∈ 𝑅!  
we can obtain 
[𝑆!"(A,B)]! ≤ T!! x! ! + T!! x! ! + I!! x! ! + I!! x! ! + F!! x! ! + F!! x! !𝒏

𝒊!𝟏  ∙ 
T!! x! ! + T!! x! ! + I!! x! ! + I!! x! ! + F!! x! ! + F!! x! !𝒏

𝒊!𝟏 = S(A, A) ∙ S(B, B) 

Thus   𝑆!"(A,B)≤ [𝑆(𝐴,𝐴)]
!
!  ∙ [𝑆(𝐵,𝐵)]

!
! .  

Then 𝑆!"(A,B)≤ max{S(A,A), S(B,B)]. 

Therefore 𝑆!"(A, B) ≤ 1. 

If we take the weight of each element 𝑥! ∈  X into account, then 

𝑆!"! (A,B)=   
!! !!

! !! ∙    !!
! !! ! !!

! !! ∙    !!
! !! ! !!

! !! ∙    !!
! !! ! !!

! !! ∙    !!
! !! ! !!

! !! ∙    !!
! !! ! !!

! !! ∙    !!
! !!

𝒏
𝒊!𝟏

!"#( !!  (!!
! !! !!!!

! !! !!  !!
! !! !!!

!! !!
! !! !!  !!

! !! !!!!
! !! !) ,       !!  (!!

! !! !!!!
! !! !!  !!

! !! !!!
!! !!

! !! !!  !!
! !! !!!!

! !! !))
                  

                                                                                                                                                                                                                                                                                                                                                                                                                                          (20) 
                                                                                                                    

Particularly, if  each element  has  the same importance, 
then the similarity (20) is reduced to (19). Clearly this also 
satisfies all the properties of definition. 

The larger the value of S(A,B), the more the similarity 
between A and B. 

V. COMPARISON OF NEW  SIMILARITY MEASURE OF IVNS 
WITH THE EXISTING MEASURES. 

Let A and B be two interval  valued neutrosophic sets in the 
universe of discourse X = {𝑥!, 𝑥! ,.., 𝑥!}.The new similarity 
𝑆!" 𝐴,𝐵   of IVNS and the existing similarity measures of 

interval valued neutrosophic sets (examples 1 and 2) 
introduced in [10, 12, 23] are listed as follows: 
 
Pinaki similarity I: 

this similarity  measure was proposed as concept of 
association coefficient of the neutrosophic sets  as follows 

𝑆!"= {!"# !! !! ,!! !! !!"# !! !! ,!! !! !!"# !! !! ,!! !! }!
!!!
{!"# !! !! ,!! !! !!"# !! !! ,!! !! !!"# !! !! ,!! !! }!

!!!
     

                                                                      (21) 
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𝐶!(    𝐴,𝐵)= !
!
  (!!

!(!!)  !  !!
!(!!))  (!!

! !! !!!
! !! )!(!!

!(!!)  !  !!
!(!!))  (!!

!(!!)  !  !!
!(!!))  !(!!

!(!!)  !  !!
!(!!))  (!!

!(!!)  !  !!
!(!!))  

(!!
!(!!)  !  !!

!(!!))!!(!!
! !! !!!

! !! )!!(!!
!(!!)  !  !!

!(!!))!     (!!
!(!!)  !  !!

!(!!))!!(!!
! !! !!!

! !! )!!(!!
!(!!)  !  !!

!(!!))!  

!
!!!      

                                                                                                                                                                  (22) 
 

Ye similarity   

𝑆!"(A, B) = 1- !
!
 

!
!!! infT! x! − infT! x! + supT! x! − supT! x! + infI! x! − infI! x! + supI! x! − supI! x! + infF! x! −

infF! x! + supF! x! − supF! x! .                                                                                         (23) 
 

 
Example 1 

Let  A = {<x, (a, 0.2 , 0.6 , 0.6), (b, 0.5, 0.3 , 0.3), (c, 0.6 , 
0.9  , 0.5)>}    

 and B = {<x, (a, 0.5 , 0.3 , 0.8), (b, 0.6 , 0.2 , 0.5), (c, 0.6 , 
0.4 , 0.4)>}.  

Pinaki similarity I = 0.6. 

𝑆!"(A, B) = 0.38       (with w! =1). 

 Cosine similarity  𝐂𝐍(𝐀,𝐁) = 0.95. 

𝑆!" 𝐴,𝐵   = 0.8.	
  

Example 2: 

Let  A= {<x, (a, [ 0.2 , 0.3 ] ,[0.2,  0.6], [0.6 , 0.8]), (b, [ 0.5 
, 0.7 ], [0.3,  0.5], [0.3 , 0.6]), (c, [0.6 , 0.9] ,[0.3,  0.9], [0.3, 
0.5])>} and  

B={<x, (a, [ 0.5 , 0.3 ] ,[0.3,  0.6], [0.6 , 0.8]), (b, [ 0.6, 0.8 
] ,[0.2,  0.4], [0.5 , 0.6]), (c, [ 0.6 , 0.9] ,[0.3,  0.4], [0.4 , 
0.6])>}. 

Pinaki similarity I = NA. 

𝑆!"(A, B)  = 0.7 (with w! =1). 

 Cosine similarity  𝐂𝐍(  𝐀,𝐁) = 0.92. 

𝑆!" 𝐴,𝐵  = 0.9. 

On the basis of computational study Jun Ye [12] has shown 
that their measure is more effective and reasonable. A similar 
kind of study with the help of the proposed new measure based 
on theoretic approach, it has been done and it is found that the 
obtained results are more refined and accurate. It may be 
observed from the above examples that the values of similarity 
measures are closer to 1 with 𝑆!" 𝐴,𝐵  which is this proposed 
similarity measure.  

VI. CONCLUSIONS 

Few distance and similarity measures have been proposed in 
literature for measuring the distance and the degree of 
similarity between interval neutrosophic sets. In this paper, we 
proposed a new method for distance and similarity measure for 
measuring the degree of similarity between two weighted 
interval valued neutrosophic sets, and we have extended the 
work of Pinaki, Majumdar and S. K. Samant and Chen. The 
results of the proposed similarity measure and existing 

similarity measure are compared.  
In the future, we will use the similarity measures which are 

proposed in this paper in group decision making 
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Abstract: In this paper, we extend the lower and upper soft interval valued intuitionstic fuzzy 
rough approximations of IVIFS –relations proposed by Anjan et al.  to the case of interval 
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Keywords: Interval valued neutrosophic soft , Interval valued neutrosophic soft set relation 
 

 
0. Introduction	
  

 
 
 
 

This paper is an attempt to extend the concept of interval valued intuitionistic fuzzy soft 
relation (IVIFSS-relations) introduced by A. Mukherjee et al  [45 ]to  IVNSS relation . 
 
 
The organization of this paper is as follow: In section 2, we briefly present some basic 
definitions and preliminary results are given which will be used in the rest of the paper. In 
section 3, relation interval neutrosophic soft relation is  presented. In section 4 various type of 
interval valued neutrosophic soft relations. In section 5, we concludes the paper 
 

1. Preliminaries	
  

Throughout this paper, let U be a universal set and E be the set of all possible parameters 
under consideration with respect to U, usually, parameters are attributes, characteristics, or 
properties of objects in U. We now recall some basic notions of neutrosophic set, interval 
neutrosophic set, soft set, neutrosophic  soft set and  interval neutrosophic soft set. 
 

Definition 2.1.  

then the neutrosophic set A is an object having the form  Let U be an universe of discourse  
A= {< x: 𝛍 A(x),  𝛎 A(x),  𝛚 A(x) >,x ∈ U}, where the functions 𝛍,  𝛎,  𝛚 : U→]−0,1+[  define 
respectively the degree of membership , the degree of indeterminacy, and the degree of 
non-membership of the element x ∈ X to the set A with the condition.  
                                                                                 −0 ≤µμ A(x)+ ν A(x) + ω A(x) ≤ 3+. 
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From philosophical point of view, the neutrosophic set takes the value from real standard or 
non-standard subsets of ]−0,1+[.so instead of ]−0,1+[ we need to take the interval [0,1] for 
technical applications, because ]−0,1+[will be difficult to apply in the real applications  such as 
in scientific and engineering problems.  
 
Definition 2.2. A neutrosophic set A is contained in another neutrosophic set B i.e. A ⊆ B 
if ∀x ∈ U, µ A(x) ≤ µ B(x), ν A(x) ≥ ν B(x), ω A(x) ≥ ω B(x).  

Definition 2.3. Let X be a space of points (objects) with generic elements in X denoted by x. 
An interval valued neutrosophic set (for short IVNS) A in X is characterized by truth-
membership function 𝛍𝐀(𝐱), indeteminacy-membership function 𝛎𝐀 𝐱  and falsity-
membership function    𝛚𝐀(𝐱). For each point x in X, we have that  𝛍𝐀(𝐱), 𝛎𝐀(𝐱), 
𝛚𝐀(𝐱) ∈   [0 ,1] .  
For two IVNS , 𝐴!"#$ ={ <x , [µ!

! x , µ!
! x ] , [ν!! x , ν!! x ]  , [ω!! x ,ω!! x ]    > | x ∈ X } 

And 𝐵!"#$ ={ <x , [µ!
! x , µ!

! x ] , [ν!! x , ν!! x ]  , [ω!! x ,ω!! x ]> | x ∈ X } the two 
relations are defined as follows: 
(1)  𝐴!"#$ ⊆   𝐵!"#$  if and only if µ!

! x  ≤ µ!
! x ,µ!

! x  ≤ µ!
! x   , ν!! x  ≥ ν!! x  ,  ω!! x  

≥ ω!! x  ,   ω!! x  ≥ ω!! x  ,  ω!! x  ≥ ω!! x   
(2)  𝐴!"#$ =   𝐵!"#$    if  and  only  if  , µ! x  =µ! x  ,  ν! x  =ν! x  ,  ω! x  =ω! x  for any 
x ∈ X 
As an illustration ,let us consider the following example. 
Example 2.4.  Assume that the universe of discourse U={x1,x2,x3},where x1 characterizes the 
capability, x2 characterizes the trustworthiness and x3 indicates the prices of the objects. It 
may be further assumed that the values of x1, x2 and x3 are in [0,1] and they are obtained from 
some questionnaires of some experts. The experts may impose their opinion in three 
components viz. the degree of goodness,  
the degree of indeterminacy and that of poorness to explain the characteristics of the objects. 
Suppose A is an interval neutrosophic set (INS) of U, such that, 
A = {< x1,[0.3 0.4],[0.5 0.6],[0.4 0.5] >,< x2, ,[0.1 0.2],[0.3 0.4],[0.6 0.7]>,< x3, [0.2 
0.4],[0.4 0.5],[0.4 0.6] >}, where the degree of goodness of capability is 0.3, degree of 
indeterminacy of capability is 0.5 and degree of falsity of capability is 0.4 etc. 
 
Definition 2.5.  
Let U be an initial universe set and E be a set of parameters. Let P(U) denotes the power set of 
U. Consider a nonempty set A, A ⊂ E. A pair (K, A) is called a soft set over U, where K is a 
mapping given by K : A → P(U).  
As an illustration, let us consider the following example. 
Example 2.6 . 
Suppose that U is the set of houses under consideration, say U = {h1, h2, . . ., h5}. Let E be the 
set of some attributes of such houses, say E = {e1, e2, . . ., e8}, where e1, e2, . . ., e8 stand for the 
attributes “beautiful”, “costly”, “in the green surroundings’”, “moderate”, respectively.  
In this case, to define a soft set means to point out expensive houses, beautiful houses, and so 
on. For example, the soft set (K,A) that describes the “attractiveness of the houses” in the 
opinion of a buyer, say Thomas, may be defined like this:  
A={e1,e2,e3,e4,e5};  
K(e1) = {h2, h3, h5}, K(e2) = {h2, h4}, K(e3) = {h1}, K(e4) = U, K(e5) = {h3, h5}.  
 
Definition 2.7 .  
Let U be an initial universe set and A ⊂ E  be a set of parameters. Let IVNS(U) denotes the 
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set of all interval neutrosophic subsets of U. The collection (K,A) is termed to be the soft 
interval neutrosophic set over U, where F is a mapping given by K : A → IVNS(U).  
The interval neutrosophic soft set defined over an universe   is denoted by INSS. 
To illustrate let us consider the following example: 
Let U be the set of houses under consideration and E is the set of parameters (or qualities). 
Each parameter is a interval neutrosophic word or sentence involving interval neutrosophic 
words. Consider E = { beautiful, costly, in the green surroundings, moderate, expensive }. In 
this case, to define a interval neutrosophic soft set means to point out beautiful houses, costly 
houses, and so on. Suppose that, there are five houses in the universe U given by, U = 
{h1,h2,h3,h4,h5} and the set of parameters A = {e1,e2,e3,e4}, where each  ei  is a specific 
criterion for houses: 
 e1 stands for ‘beautiful’, 
 e2 stands for ‘costly’, 
 e3 stands for ‘in the green surroundings’, 
 e4 stands for ‘moderate’, 
Suppose that, 
 
K(beautiful)={< h1,[0.5, 0.6], [0.6, 0.7], [0.3, 0.4]>,< h2,[0.4, 0.5], [0.7 ,0.8], [0.2, 0.3] >, < 
h3,[0.6, 0.7],[0.2 ,0.3],[0.3, 0.5] >,< h4,[0.7 ,0.8],[0.3, 0.4],[0.2, 0.4] >,< h5,[ 0.8, 0.4] ,[0.2 
,0.6],[0.3, 0.4] >}.K(costly)={< b1,[0.5, 0.6], [0.6, 0.7], [0.3, 0.4]>,< h2,[0.4, 0.5], [0.7 ,0.8], 
[0.2, 0.3] >, < h3,[0.6, 0.7],[0.2 ,0.3],[0.3, 0.5] >,< h4,[0.7 ,0.8],[0.3, 0.4],[0.2, 0.4] >,< h5,[ 
0.8, 0.4] ,[0.2 ,0.6],[0.3, 0.4] >}. 
K(in the green surroundings)= {< h1,[0.5, 0.6], [0.6, 0.7], [0.3, 0.4]>,< b2,[0.4, 0.5], [0.7 ,0.8], 
[0.2, 0.3] >, < h3,[0.6, 0.7],[0.2 ,0.3],[0.3, 0.5] >,< h4,[0.7 ,0.8],[0.3, 0.4],[0.2, 0.4] >,< h5,[ 
0.8, 0.4] ,[0.2 ,0.6],[0.3, 0.4] >}.K(moderate)={< h1,[0.5, 0.6], [0.6, 0.7], [0.3, 0.4]>,< h2,[0.4, 
0.5], [0.7 ,0.8], [0.2, 0.3] >, < h3,[0.6, 0.7],[0.2 ,0.3],[0.3, 0.5] >,< h4,[0.7 ,0.8],[0.3, 0.4],[0.2, 
0.4] >,< h5,[ 0.8, 0.4] ,[0.2 ,0.6],[0.3, 0.4] >}. 
Definition 2.8. 
Let U  be an initial universe and (F,A) and (G,B) be two interval valued neutrosophic soft set . 
Then a relation between them is defined as a pair (H, AxB), where H is mapping given by H: 
AxB→IVNS(U). This is called an interval valued neutrosophic soft sets relation ( IVNSS-
relation for short).the collection of relations on interval valued neutrosophic soft sets on Ax 
Bover U is denoted by 𝜎!(𝐴x  𝐵). 
 
Defintion 2.9.   Let P, Q ∈ 𝜎! 𝐴𝑥  𝐵  and the ordre of their relational matrices are same. Then   
P ⊆ Q if H (𝑒!,𝑒!)  ⊆ J (𝑒!,𝑒!)  for (𝑒!,𝑒!)  ∈ A x B where P=(H, A x B) and Q = (J, A x B) 
Example: 
P 

 
Q 

U  (𝑒! ,𝑒!) (𝑒! ,𝑒!) (𝑒! ,𝑒!) (𝑒! ,𝑒!) 
h1 ([0.2, 0.3],[0.2, 0.3],[0.4, 0.5]) ([0.4, 0.6],[0.7, 0.8],[0.1,0.4]) ([0.4, 0.6],[0.7, 0.8],[0.1,0.4]) ([0.4, 0.6],[0.7, 0.8],[0.1,0.4]) 
h2 ([0.6, 0.8],[0.3, 0.4],[0.1,0.7]) ([1, 1],[0, 0],[0, 0]) ([0.1, 0.5],[0.4, 0.7],[0.5,0.6]) ([0.1, 0.5],[0.4, 0.7],[0.5,0.6]) 
h3 ([0.3, 0.6],[0.2, 0.7],[0.3,0.4]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) ([1, 1],[0, 0],[0, 0]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) 
h4 ([0.6, 0.7],[0.3, 0.4],[0.2,0.4]) ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([1, 1],[0, 0],[0, 0]) 

U  (𝑒! ,𝑒!) (𝑒! ,𝑒!) (𝑒! ,𝑒!) (𝑒! ,𝑒!) 
h1 ([0.3, 0.4],[0, 0],[0, 0]) ([0.4, 0.6],[0.7, 0.8],[0.1,0.4]) ([0.4, 0.6],[0.7, 0.8],[0.1,0.4]) ([0.4, 0.6],[0.7, 0.8],[0.1,0.4]) 
h2 ([0.6, 0.8],[0.3, 0.4],[0.1,0.7]) ([1, 1],[0, 0],[0, 0]) ([0.1, 0.5],[0.4, 0.7],[0.5,0.6]) ([0.1, 0.5],[0.4, 0.7],[0.5,0.6]) 
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Definition 2.10. 
Let U be an initial universe and (F, A) and (G, B) be two interval valued neutrosophic soft 
sets. Then a null relation between them is denoted 
by O!    and is defined as O!  =(H!  , A xB) where H!   𝑒!,𝑒! ={<h!  , [0, 0],[1, 1],[1, 1]>;  h!   ∈ 
U} for 𝑒!,𝑒!  ∈ A xB. 
Example. Consider the interval valued neutrosophic soft sets (F, A) and (G, B). Then a null 
relation between them is given by 

 
Remark. It can be easily seen that P ∪ O!   =P and P ∩ O!   =O!   for any P ∈ 𝜎! 𝐴𝑥  𝐵  
Definition 2.11.   
Let U be an initial universe and (F, A) and (G, B) be two interval valued neutrosophic soft 
sets. Then an absolute relation between them is denoted by I!    and is defined as I!  =(H!  , A 
xB) where H!   𝑒!,𝑒! ={<h!  , [1, 1],[0, 0],[0, 0]>;  h!   ∈ U} for 𝑒!,𝑒!  ∈ A xB. 
 

 
Defintion.2.12 Let P ∈ 𝜎! 𝐴𝑥  𝐵 , P= (H, AxB) ,Q = (J, AxB) and the order of their relational 
matrices are same.Then we define 

(i) P ⋃ Q= (H ∘J, AxB) where  H∘ J :AxB →IVNS(U) is defined as 
 (H ∘J)(  𝑒!,𝑒!)= H(𝑒!,𝑒!) ∨ J(𝑒!,𝑒!) for (𝑒!,𝑒!)  ∈ A x B, where ∨ denotes the interval 
valued neutrosophic union. 

(ii)  P ∩ Q= ( H ∎J, AxB) where  H∎J :AxB →IVNS(U) is defined as (H∎J)(  𝑒!,𝑒!)= 
H(𝑒!,𝑒!) ∧ J(𝑒!,𝑒!) for (𝑒!,𝑒!)  ∈ A x B, where ∧ denotes the interval valued 
neutrosophic intersection 

(iii) P!= (∼H, AxB) , where  ∼H :AxB →IVNS(U) is defined as 
∼H(  𝑒!,𝑒!)=[H(𝑒!,𝑒!)]  ! for (𝑒!,𝑒!)  ∈ A x B, where 𝑐 denotes the interval valued 
neutrosophic complement. 

 
Defintion.2.13.  
Let R be an equivalence relation on the universal set U. Then the pair (U, R) is called a 
Pawlak approximation space. An equivalence class of R containing x will be denoted by [𝑥]!. 
Now for X ⊆ U, the lower and upper approximation of X with respect to (U, R) are denoted 
by respectively R *X and R* X and are defined by 

h3 ([0.3, 0.6],[0.2, 0.7],[0.3,0.4]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) ([1, 1],[0, 0],[0, 0]) ([0.4, 0.7],[0.1, 0.3],[0.2,0.4]) 
h4 ([0.6, 0.7],[0.3, 0.4],[0.2,0.4]) ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([0.3, 0.4],[0.7, 0.9],[0.1,0.2]) ([1, 1],[0, 0],[0, 0]) 

U  (𝑒! ,𝑒!) (𝑒! ,𝑒!) (𝑒! ,𝑒!) (𝑒! ,𝑒!) 
h1 ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) 
h2 ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) 
h3 ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) 
h4 ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) ([0, 0],[1, 1],[1, 1]) 

U  (𝑒! ,𝑒!) (𝑒! ,𝑒!) (𝑒! ,𝑒!) (𝑒! ,𝑒!) 
h1 ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) 
h2 ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) 
h3 ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) 
h4 ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) ([1, 1],[0, 0],[0, 0]) 
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R*X={x∈U: [𝑥]! ⊆X}, 
R*X={ x∈U: [𝑥]! ∩ 𝑋 ≠}. 
Now if R *X = R* X, then X is called definable; otherwise X is called a rough set. 
 
3-Lower  and upper soft interval valued neutrosophic rough approximations of an 
IVNSS-relation 
 
Defntion 3.1 .Let R ∈ 𝜎!(𝐴x  𝐴) and R=( H, Ax A). Let Θ=(f,B) be an interval valued 
neutrosophic soft set over U and S= (U, Θ) be the soft interval valued neutrosophic 
approximation space. Then the lower and upper soft interval valued neutrosophic rough 
approximations of R with respect to S are denoted by Lwr!(R)and Upr!(R) respectively, 
which are IVNSS- relations over AxB in U given by: 
Lwr!(R)= ( J, A xB)    and Upr!(R) =(K, A xB) 
J( 𝒆𝒊 ,𝒆𝒌) ={<x, [ (inf µμ𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∧    inf µμ𝐟   𝒆𝒌   (x)) , (sup µμ𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∧   sup µμ𝐟   𝒆𝒌   (x)) ], 

  
[ (inf ν𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    inf ν𝐟   𝒆𝒌   (x)) , (sup ν𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨   sup ν𝐟   𝒆𝒌   (x)) ], 
[ (infω𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    infω𝐟   𝒆𝒌   (x)) , (supω𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨   supω𝐟   𝒆𝒌   (x)) ] :x ∈ U}. 
 
K( 𝒆𝒊 ,𝒆𝒌) ={<x, [ (inf µμ𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒊∈𝑨 (x) ∨    inf µμ𝐟   𝒆𝒌   (x)) , (sup µμ𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨   sup µμ𝐟   𝒆𝒌   (x)) 
], 

  
[ (inf ν𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∧    inf ν𝐟   𝒆𝒌   (x)) , (sup ν𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∧   sup ν𝐟   𝒆𝒌   (x)) ], 
[ (infω𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∧    infω𝐟   𝒆𝒌   (x)) , (supω𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∧   supω𝐟   𝒆𝒌   (x)) ] :x ∈ U}. 
 
For 𝑒! ∈ A ,  𝑒! ∈ B 
 
Theorem 3.2. Let  be an interval valued neutrosophic soft over U and S = ( U,Θ) be the soft 
approximation space. Let   𝑅!  ,  𝑅! ∈ 𝜎!(𝐴x  𝐴) and 𝑅!=( G,Ax A) and 𝑅!=( H,Ax A).Then 
 

(i) Lwr!(O!)=	
  O!	
  
(ii) Lwr!(1!)=	
  1!	
  
(iii) 𝑹𝟏 ⊆	
  𝑹𝟐	
  ⟹	
  Lwr!	
  (𝑹𝟏)  ⊆	
  Lwr!	
  (𝑹𝟐)	
  
(iv) 𝑹𝟏 ⊆	
  𝑹𝟐	
  ⟹	
  Upr!	
  (𝑹𝟏)  ⊆	
  Upr!	
  (𝑹𝟐	
  
(v) Lwr!	
  (𝑹𝟏 ∩	
  𝑹𝟐)	
  ⊆ LwrS	
  (𝑹𝟏)  ∩	
  Lwr!	
  (𝑹𝟐)	
  
(vi) Upr!	
  (𝑹𝟏 ∩	
  𝑹𝟐)	
  ⊆	
  Upr!	
  (𝑹𝟏)  ∩	
  Upr!	
  (𝑹𝟐)	
  
(vii) Lwr!	
  (𝑹𝟏)  ∪	
  Lwr!	
  (𝑹𝟐)  ⊆	
  Lwr!	
  (𝑹𝟏 ∪	
  𝑹𝟐)	
  
(viii) Upr!	
  (𝑹𝟏)  ∪	
  Upr!	
  (𝑹𝟐)  ⊆	
  Upr!	
  (𝑹𝟏 ∪	
  𝑹𝟐)	
  

Proof. (i) –(iv) are straight forward. 
Let Lwrs(𝑅! ∩ 𝑅!) =(S, Ax B).Then for   𝒆𝒊  , 𝒆𝒌  ∈ A xB , we have  

 
S   𝒆𝒊  , 𝒆𝒌  ={<x, [ (inf µμ𝐆∘𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∧    inf µμ𝐟   𝒆𝒌   (x)) ,   (sup µμ𝐆∘𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) 
∧   sup µμ𝐟   𝒆𝒌   (x))], 
[ (inf ν𝐆∘𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    inf ν𝐟   𝒆𝒌   (x)) ,   (sup ν𝐆∘𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨   sup ν𝐟   𝒆𝒌   (x))], 
  
[ (infω𝐆∘𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    infω𝐟   𝒆𝒌   (x)) , (supω𝐆∘𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨   supω𝐟   𝒆𝒌   (x)) ] :x ∈ U} 
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={<x, [ (min(inf µμ𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , inf µμ𝐇   𝒆𝒊  ,𝒆𝒋 (x)) ∧    inf µμ𝐟   𝒆𝒌   (x)) 
, (min(sup µμ𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , sup µμ𝐇   𝒆𝒊  ,𝒆𝒋 (x)) ∧   sup µμ𝐟   𝒆𝒌   (x))], 
 
[ (max(inf ν𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , inf ν𝐇   𝒆𝒊  ,𝒆𝒋 (x))  ∨    inf ν𝐟   𝒆𝒌   (x)) 
, (max(sup ν𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , sup ν𝐇   𝒆𝒊  ,𝒆𝒋 (x))  ∨   sup ν𝐟   𝒆𝒌   (x))], 
  
[ (max(infω𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , infω𝐇   𝒆𝒊  ,𝒆𝒋 (x))     ∨    infω𝐟   𝒆𝒌   (x)) 
, (max(supω𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , supω𝐇   𝒆𝒊  ,𝒆𝒋 (x)) ∨   supω𝐟   𝒆𝒌   (x)) ] :x ∈ U} 
 
Also for Lwr! (𝑹𝟏)  ∩ Lwr! (𝑹𝟐) =(Z,A x B) and   𝒆𝒊  , 𝒆𝑲 ∈ A xB ,we have , 
Z   𝒆𝒊  , 𝒆𝑲 = {<x, [ Min ( (inf µμ𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∧    inf µμ𝐟   𝒆𝒌   (x)) ,  (inf µμ𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∧
  inf µμ𝐟   𝒆𝒌   (x)) )  , Min( (sup µμ𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∧   sup µμ𝐟   𝒆𝒌   (x)) ,  (sup µμ𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) 
∧   sup µμ𝐟   𝒆𝒌   (x)) )] , 
[Max ( (inf ν𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    inf ν𝐟   𝒆𝒌   (x)) ,  (inf ν𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    inf ν𝐟   𝒆𝒌   (x)) )  , 
Max( (sup ν𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨   sup ν𝐟   𝒆𝒌   (x)) ,  (sup ν𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨   sup ν𝐟   𝒆𝒌   (x)) )] , 
 
[Max ( (infω𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    infω𝐟   𝒆𝒌   (x)) ,  (infω𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    infω𝐟   𝒆𝒌   (x)) )  , 
Max( (supω𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨   supω𝐟   𝒆𝒌   (x)) ,  (supω𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨   supω𝐟   𝒆𝒌   (x)) )] :x ∈ 
U} 
 
 
Now since  min(inf µμ𝐆   𝒆𝒊  ,𝒆𝒋  ,  inf µμ𝐇   𝒆𝒊  ,𝒆𝒋 (x) ) ≤    inf µμ𝐆   𝒆𝒊  ,𝒆𝒋  (x) and  
min(inf µμ𝐆   𝒆𝒊  ,𝒆𝒋  ,  inf µμ𝐇   𝒆𝒊  ,𝒆𝒋 (x) ) ≤    inf µμ𝐇   𝒆𝒊  ,𝒆𝒋  (x) we have 

(min(inf µμ𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , inf µμ𝐇   𝒆𝒊  ,𝒆𝒋 (x)) ∧    inf µμ𝐟   𝒆𝒌   (x)) ≤ Min ( (inf µμ𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) 
∧    inf µμ𝐟   𝒆𝒌   (x)) ,  (inf µμ𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∧    inf µμ𝐟   𝒆𝒌   (x)) ). 
Similarly we can get  

(min(sup µμ𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , sup µμ𝐇   𝒆𝒊  ,𝒆𝒋 (x)) ∧   sup µμ𝐟   𝒆𝒌   (x)) ≤ Min ( (sup µμ𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) 
∧   sup µμ𝐟   𝒆𝒌   (x)) ,  (sup µμ𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∧   sup µμ𝐟   𝒆𝒌   (x)) ). 
 
Again as    max(inf ν𝐆   𝒆𝒊  ,𝒆𝒋  ,  inf ν𝐇   𝒆𝒊  ,𝒆𝒋 (x) ) ≥    inf ν𝐆   𝒆𝒊  ,𝒆𝒋  (x) ,and 
max(inf ν𝐆   𝒆𝒊  ,𝒆𝒋  ,  inf ν𝐇   𝒆𝒊  ,𝒆𝒋 (x) ) ≥    inf ν𝐇   𝒆𝒊  ,𝒆𝒋  (x) 
 
we have 
 

(max(inf ν𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , inf ν𝐇   𝒆𝒊  ,𝒆𝒋 (x)) ∨    inf ν𝐟   𝒆𝒌   (x)) ≥ Max ( (inf ν𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) 
∨    inf ν𝐟   𝒆𝒌   (x)) ,  (inf ν𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    inf ν𝐟   𝒆𝒌   (x)) ). 
Similarly we can get  
 

(max(sup ν𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , sup ν𝐇   𝒆𝒊  ,𝒆𝒋 (x)) ∨   sup ν𝐟   𝒆𝒌   (x)) ≥ Max ( (sup ν𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) 
∨   sup ν𝐟   𝒆𝒌   (x)) ,  (sup ν𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨   sup ν𝐟   𝒆𝒌   (x)) ). 
Again as    max(infω𝐆   𝒆𝒊  ,𝒆𝒋  ,  infω𝐇   𝒆𝒊  ,𝒆𝒋 (x) ) ≥    infω𝐆   𝒆𝒊  ,𝒆𝒋  (x) ,and 
max(infω𝐆   𝒆𝒊  ,𝒆𝒋  ,  infω𝐇   𝒆𝒊  ,𝒆𝒋 (x) ) ≥    infω𝐇   𝒆𝒊  ,𝒆𝒋  (x) 
 
we have 
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(max(infω𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , infω𝐇   𝒆𝒊  ,𝒆𝒋 (x)) ∨    infω𝐟   𝒆𝒌   (x)) ≥ Max ( (infω𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) 
∨    infω𝐟   𝒆𝒌   (x)) ,  (infω𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    infω𝐟   𝒆𝒌   (x)) ). 
Similarly we can get  
 

(max(supω𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , supω𝐇   𝒆𝒊  ,𝒆𝒋 (x)) ∨   supω𝐟   𝒆𝒌   (x)) ≥ Max ( (supω𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) 
∨   supω𝐟   𝒆𝒌   (x)) ,  (supω𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨   supω𝐟   𝒆𝒌   (x)) ). 
 
Consequently,                           Lwr! (𝑹𝟏 ∩ 𝑹𝟐) ⊆ LwrS (𝑹𝟏)  ∩ Lwr! (𝑹𝟐) 
(vi) Proof is similar to (v) 
 
(vii) Let Lwr! (𝑹𝟏 ∪ 𝑹𝟐) =( S, A xB).Then for   𝒆𝒊  , 𝒆𝒌 ∈ A xB , we have  
 
S   𝒆𝒊  , 𝒆𝒌 ={<x, [ (inf µμ𝐆∎𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∧    inf µμ𝐟   𝒆𝒌   (x)) , (sup µμ𝐆∎𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) 
∧   sup µμ𝐟   𝒆𝒌   (x))], 
[ (inf ν𝐆∎𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    inf ν𝐟   𝒆𝒌   (x)) , (inf ν𝐆∎𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    inf ν𝐟   𝒆𝒌   (x))], 
  
[ (infω𝐆∎𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    infω𝐟   𝒆𝒌   (x)) , (infω𝐆∎𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    infω𝐟   𝒆𝒌   (x)) ] :x ∈ U} 
 
={<x, [ (max(inf µμ𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , inf µμ𝐇   𝒆𝒊  ,𝒆𝒋 (x)) ∧    inf µμ𝐟   𝒆𝒌   (x)) 
, (max(sup µμ𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , sup µμ𝐇   𝒆𝒊  ,𝒆𝒋 (x)) ∧   sup µμ𝐟   𝒆𝒌   (x))], 
 
[ (min(inf ν𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , inf ν𝐇   𝒆𝒊  ,𝒆𝒋 (x))  ∨    inf ν𝐟   𝒆𝒌   (x)) 
, (min(sup ν𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , sup ν𝐇   𝒆𝒊  ,𝒆𝒋 (x))  ∨   sup ν𝐟   𝒆𝒌   (x))], 
  
[ (min(infω𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , infω𝐇   𝒆𝒊  ,𝒆𝒋 (x))     ∨    infω𝐟   𝒆𝒌   (x)) 
, (min(supω𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , supω𝐇   𝒆𝒊  ,𝒆𝒋 (x)) ∨   supω𝐟   𝒆𝒌   (x)) ] :x ∈ U} 
 
Also for Lwrs(𝑹𝟏) ∪ Lwrs(𝑹𝟐) = ( Z, AxB) and   𝒆𝒊  , 𝒆𝒌 ∈ A xB ,we have , 
 
Z   𝒆𝒊  , 𝒆𝑲 = {<x, [ Max ( (inf µμ𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∧    inf µμ𝐟   𝒆𝒌   (x)) ,  (inf µμ𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∧
  inf µμ𝐟   𝒆𝒌   (x)) )  , Max( (sup µμ𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∧   sup µμ𝐟   𝒆𝒌   (x)) ,  (sup µμ𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) 
∧   sup µμ𝐟   𝒆𝒌   (x)) )] , 
[Min ( (inf ν𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    inf ν𝐟   𝒆𝒌   (x)) ,  (inf ν𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    inf ν𝐟   𝒆𝒌   (x)) )  , 
Min( (sup ν𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨   sup ν𝐟   𝒆𝒌   (x)) ,  (sup ν𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨   sup ν𝐟   𝒆𝒌   (x)) )] , 
 
[Min ( (infω𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    infω𝐟   𝒆𝒌   (x)) ,  (infω𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    infω𝐟   𝒆𝒌   (x)) )  , 
Min( (supω𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨   supω𝐟   𝒆𝒌   (x)) ,  (supω𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨   supω𝐟   𝒆𝒌   (x)) )] :x ∈ 
U} 
Now since  max(inf µμ𝐆   𝒆𝒊  ,𝒆𝒋  ,  inf µμ𝐇   𝒆𝒊  ,𝒆𝒋 (x) ) ≥    inf µμ𝐆   𝒆𝒊  ,𝒆𝒋  (x) and  
max(inf µμ𝐆   𝒆𝒊  ,𝒆𝒋  ,  inf µμ𝐇   𝒆𝒊  ,𝒆𝒋 (x) ) ≥    inf µμ𝐇   𝒆𝒊  ,𝒆𝒋  (x) we have 

(max(inf µμ𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , inf µμ𝐇   𝒆𝒊  ,𝒆𝒋 (x)) ∧    inf µμ𝐟   𝒆𝒌   (x)) ≥ max ( (inf µμ𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) 
∧    inf µμ𝐟   𝒆𝒌   (x)) ,  (inf µμ𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∧    inf µμ𝐟   𝒆𝒌   (x)) ). 
 
Similarly we can get  

(max(sup µμ𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , sup µμ𝐇   𝒆𝒊  ,𝒆𝒋 (x)) ∧   sup µμ𝐟   𝒆𝒌   (x)) ≥ max( (sup µμ𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) 
∧   sup µμ𝐟   𝒆𝒌   (x)) ,  (sup µμ𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∧   sup µμ𝐟   𝒆𝒌   (x)) ). 
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Again as   min(inf ν𝐆   𝒆𝒊  ,𝒆𝒋  ,  inf ν𝐇   𝒆𝒊  ,𝒆𝒋 (x) )≤ inf ν𝐆   𝒆𝒊  ,𝒆𝒋  (x) ,and 
min(inf ν𝐆   𝒆𝒊  ,𝒆𝒋  ,  inf ν𝐇   𝒆𝒊  ,𝒆𝒋 (x) ) ≤    inf ν𝐇   𝒆𝒊  ,𝒆𝒋  (x) 
 
we have 
 

(min(inf ν𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , inf ν𝐇   𝒆𝒊  ,𝒆𝒋 (x)) ∨    inf ν𝐟   𝒆𝒌   (x)) ≤Min ( (inf ν𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) 
∨    inf ν𝐟   𝒆𝒌   (x)) ,  (inf ν𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    inf ν𝐟   𝒆𝒌   (x)) ). 
Similarly we can get  
 

(min(sup ν𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , sup ν𝐇   𝒆𝒊  ,𝒆𝒋 (x)) ∨   sup ν𝐟   𝒆𝒌   (x)) ≤ Min ( (sup ν𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) 
∨   sup ν𝐟   𝒆𝒌   (x)) ,  (sup ν𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨   sup ν𝐟   𝒆𝒌   (x)) ). 
 
 
Again as    min(infω𝐆   𝒆𝒊  ,𝒆𝒋  ,  infω𝐇   𝒆𝒊  ,𝒆𝒋 (x) ) ≤    infω𝐆   𝒆𝒊  ,𝒆𝒋  (x) ,and 
min(infω𝐆   𝒆𝒊  ,𝒆𝒋  ,  infω𝐇   𝒆𝒊  ,𝒆𝒋 (x) )≤    infω𝐇   𝒆𝒊  ,𝒆𝒋  (x) 
 
we have 
 

(min(infω𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , infω𝐇   𝒆𝒊  ,𝒆𝒋 (x)) ∨    infω𝐟   𝒆𝒌   (x)) ≤ Min ( (infω𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) 
∨    infω𝐟   𝒆𝒌   (x)) ,  (infω𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨    infω𝐟   𝒆𝒌   (x)) ). 
Similarly we can get  
 

(min(supω𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 x , supω𝐇   𝒆𝒊  ,𝒆𝒋 (x)) ∨   supω𝐟   𝒆𝒌   (x)) ≤ Min ( (supω𝐆   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) 
∨   supω𝐟   𝒆𝒌   (x)) ,  (supω𝐇   𝒆𝒊  ,𝒆𝒋𝒆𝒋∈𝑨 (x) ∨   supω𝐟   𝒆𝒌   (x)) ). 
 
Consequently  Lwr! (𝑹𝟏)  ∪ Lwr! (𝑹𝟐)  ⊆ Lwrs(𝑹𝟏   ∩ 𝑹𝟐) 
(vii) Proof is similar to (vii). 
 
 
Conclusion 
In the present paper we extend the concept of Lower  and upper soft interval valued 
intuitionstic fuzzy rough approximations of an IVIFSS-relation to the case IVNSS and 
investigated some of their properties. 
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Abstract. In this paper, we define a new cosine similarity 

between two interval valued neutrosophic sets based on 
Bhattacharya’s distance [19]. The notions of interval valued 
neutrosophic sets (IVNS, for short) will be used as vector 
representations in 3D-vector space. Based on the comparative 
analysis of the existing similarity measures for IVNS, we find that 
our proposed similarity measure is better and more robust. An 
illustrative example of the pattern recognition shows that the 
proposed method is simple and effective. 

Keywords: Cosine Similarity Measure; Interval Valued 
Neutrosophic Sets . 

I. INTRODUCTION 
The neutrsophic sets (NS), pioneered by F. Smarandache 

[1],  has been studied and applied in different  fields, including  
decision making problems  [2, 3, 4 , 5, 23], databases [6-7], 
medical diagnosis problems [8] , topology [9], control theory 
[10], Image processing [11,12,13] and so on. The character of 
NSs is that the values of its membership  function,  non-
membership function and indeterminacy function are subsets. 
The concept of neutrosophic sets generalizes the following 
concepts: the classic set, fuzzy set, interval valued fuzzy set, 
Intuitionistic fuzzy set, and interval valued intuitionistic fuzzy 
set and so on, from a philosophical point of view. Therefore, 
Wang et al [14] introduced an instance of neutrosophic sets  
known as single valued neutrosophic sets (SVNS), which were 
motivated from the practical point of view and that can be used 
in real scientific and engineering application,  and provide the 
set theoretic operators and various properties of SVNSs. 
However, in many applications, due to lack of knowledge or 
data about the problem domains, the decision information may 
be provided with intervals, instead of real numbers. Thus, 
interval valued neutrosophic sets (IVNS), as a useful 
generation of NS, was introduced by Wang et al [15], which is 
characterized by a membership function, non-membership 
function and an indeterminacy function, whose values are 
intervals rather than real numbers. Also, the interval valued 
neutrosophic set can represent uncertain, imprecise, incomplete 
and inconsistent information which exist in the real world. As 
an important extension of NS, IVNS has many applications in 
real life [16, 17].  

Many methods have been proposed for measuring the 
degree of similarity between neutrosophic set,  S.Broumi and 
F. Smarandache [22] proposed several definitions of similarity 
measure between NS.  P.Majumdar and S.K.Samanta [21] 

suggested some new methods for measuring the similarity 
between neutrosophic set. However, there is a little 
investigation on the similarity measure of IVNS, although 
some method on measure of similarity between intervals 
valued neutrosophic sets have been presented in [5] recently.  

Pattern recognition has been one of the fastest growing 
areas during the last two decades because of its usefulness and 
fascination. In pattern recognition, on the basis of the 
knowledge of known pattern, our aim is to classify the 
unknown pattern. Because of the complex and uncertain nature 
of the problems. The problem pattern recognition is given in 
the form of interval valued neutrosophic sets. 

In this paper, motivated by the cosine similarity measure 
based on Bhattacharya’s distance [19], we propose a new 
method called “cosine similarity measure for interval valued 
neutrosophic sets. Also the proposed and existing similarity 
measures are compared to show that the proposed similarity 
measure is more reasonable than some similarity measures. 
The proposed similarity measure is applied to pattern 
recognition 

This paper is organized as follow: In section 2 some basic 
definitions of neutrosophic set, single valued neutrosophic set, 
interval valued neutrosophic set and cosine similarity measure 
are presented briefly.  In section 3, cosine similarity measure of 
interval valued neutrosophic sets and their proofs are 
introduced. In section 4, results of the proposed similarity 
measure and existing similarity measures are compared .In 
section 5, the proposed similarity measure is applied to deal 
with the problem related to medical diagnosis. Finally we 
conclude the paper. 

II. PRELIMINARIE 
This section gives a brief overview of the concepts of 

neutrosophic set, single valued neutrosophic set, interval 
valued neutrosophic set and cosine similarity measure. 

A.  Neutrosophic Sets 
1) Definition [1] 

Let U be an universe of discourse then the neutrosophic set 
A is an object having the form  

A = {< x: T! x , I! x , F! x >, x ∈ U}, where the 
functions T, I, F : U→ ]−0, 1+[  define respectively the degree 
of membership (or Truth) , the degree of indeterminacy, and 
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the degree of non-membership (or Falsehood) of the element x 
∈ U to the set A with the condition.  

−0 ≤T! x +I! x +F! x  ≤3+.            (1) 

From philosophical point of view, the neutrosophic set 
takes the value from real standard or non-standard subsets of 
]−0, 1+[. So instead of] −0, 1+[ we need to take the interval [0, 
1] for technical applications, because ]−0, 1+[will be difficult to 
apply in the real applications  such as in scientific and 
engineering problems.  

        For two NS, 𝐴!" = {<x,T! x ,   I! x ,   F! x > | x ∈ X} 

And 𝐵!" = {<x, T! x ,   I! x ,   F! x > | x ∈ X} the two 
relations are defined as follows: 

(1)  𝐴!" ⊆   𝐵!"  If and only if T! x  ≤ T! x ,   I! x  
≥ I! x ,   F! x  ≥ F! x  

(2)  𝐴!" =   𝐵!"    if  and  only  if, T! x =T! x ,   I! x  =I! x , 
  F! x  =F! x  

 

B. Single Valued Neutrosophic Sets  
1) Definition [14] 

Let X be a space of points (objects) with generic elements 
in X denoted by x. An SVNS A in X is characterized by a 
truth-membership function T! x , an indeterminacy-
membership function I! x , and a falsity-membership function 
F! x ,  for each point x in X, T! x , I! x , F! x  ∈  [0, 1].  

When X is continuous, an SVNS A can be written as 

A= !!! ! ,  !! ! ,  !! ! ,!
!! , x ∈ X.                                 (2) 

When X is discrete, an SVNS A can be written as 

A= !!! !! ,  !! !! ,!! !! ,!
!!

!
! , x! ∈ X                            (3)               

For two SVNS, 𝐴!"#! = {<x,T! x  ,  I! x ,   F! x > | x ∈ X} 

And 𝐵!"#! ={ <x, T! x ,   I! x ,   F! x > | x ∈ X} the two 
relations are defined as follows: 

(1)  𝐴!"#! ⊆   𝐵!"#!  if and only if T! x  ≤ T! x ,  I! x  
≥ I! x ,  F! x  ≥ F! x  

(2)  𝐴!"#! =   𝐵!"#!    if  and  only  if  , T! x  =T! x ,   I! x  
=I! x ,  F! x  =F! x  for any x ∈ X. 

C. Interval Valued Neutrosophic Sets 
1) Definition [15] 

Let X be a space of points (objects) with generic elements in 
X denoted by x. An interval valued neutrosophic set (for short 
IVNS) A in X is characterized by truth-membership function 
T!(x), indeteminacy-membership function I! x  and falsity-
membership function    F!(x). For each point x in X, we have 
thatT!(x), I!(x), F!(x) ∈   [0, 1] . 
For two IVNS, 𝐴!"#$ ={<x, [T!! x , T!! x ] , 
[F!! x , F!! x ]  , [I!! x , I!! x ]  > | x ∈ X} 
And 𝐵!"#$= {<x, 
[T!! x ,T!! x ],  [F!! x , F!! x ],  [I!! x , I!! x ]>| x ∈ X} the two 
relations are defined as follows: 

(1)  𝐴!"#$ ⊆   𝐵!"#$  if and only if T!! x  ≤ T!! x ,T!! x  
≤ T!! x   , I!! x  ≥ I!! x ,  I!! x  ≥ I!! x ,   F!! x  ≥ F!! x  
,  F!! x  ≥ F!! x .  
(2)  𝐴!"#$ = 𝐵!"#$    if  and  only  if  , T!! x =T!! x , T!! x  
=T!! x , I!! x =I!! x , I!! x  =I!! x ,  F!! x =F!! x , F!! x  
=F!! x  for any x ∈ X. 

D. Cosine Similarity 
1) Definition  

Cosine similarity is a fundamental angle-based measure of 
similarity between two vectors of n dimensions using the 
cosine of the angle between them Candan and Sapino [20]. It 
measures the similarity between two vectors based only on the 
direction, ignoring the impact of the distance between them. 
Given two vectors of attributes, X = (x!, x!, … , x!) and Y= 
(y!, y!, … , y!), the cosine similarity, cosθ, is represented 
using a dot product and magnitude as 

Cosθ = 𝐱𝐢  𝐲𝐢
𝒏
𝒊!𝟏

𝐱𝐢
𝟐𝒏

𝒊!𝟏    𝐲𝐢
𝟐𝒏

𝒊!𝟏

                                                     (4) 

In vector space, a cosine similarity measure based on 
Bhattacharya’s distance [19] between two fuzzy set  𝜇! 𝑥!  
and 𝜇! 𝑥!  defined as follows: 

𝐶!(𝐴,𝐵) = !! !!
𝒏
𝒊!𝟏     !! !!

!! !! !𝒏
𝒊!𝟏    !! !! !𝒏

𝒊!𝟏

                           (5) 

The cosine of the angle between the vectors is within the 
values between 0 and 1. 

In 2-D vector space, J. Ye [18] defines cosine similarity 
measure between IFS as follows: 

𝐶!"#(𝐴,𝐵) =   !! !!
𝒏
𝒊!𝟏     !! !! !!! !! !! !!

!! !! !!!! !! !𝒏
𝒊!𝟏    !! !! !!!! !! !𝒏

𝒊!𝟏

  (6)                        

III . COSINE SIMILARITY MEASURE FOR INTERVAL VALUED 
NEUTROSOPHIC SETS. 

The existing cosine similarity measure is defined as the 
inner product of these two vectors divided by the product of 
their lengths. The cosine similarity measure is the cosine of the 
angle between the vector representations of the two fuzzy sets. 
The cosine similarity measure is a classic measure used in 
information retrieval and is the most widely reported measures 
of vector similarity [19]. However, to the best of our 
Knowledge, the existing cosine similarity measures does not 
deal with interval valued neutrosophic sets. Therefore, to 
overcome this limitation in this section, a new cosine similarity 
measure between interval valued neutrosophic sets is proposed 
in 3-D vector space. 

Let A be an  interval valued neutrosophic sets in a universe of 
discourse X ={x}, the interval valued neutrosophic sets is 
characterized by the interval of membership  [T!! x , T!! x ] 
,the interval degree of non-membership [F!! x , F!! x ] and the 
interval degree of indeterminacy [I!! x , I!! x ]  which can be 
considered as a vector representation  with the three elements. 
Therefore, a cosine similarity measure for interval neutrosophic 
sets is proposed in an analogous manner to the cosine similarity 
measure proposed by J. Ye [18]. 
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E. Definition  
Assume that there are two interval neutrosophic sets A and 

B in X  ={ 𝑥!, 𝑥! ,…, 𝑥!} Based on the extension measure for 

fuzzy sets, a cosine similarity measure between interval valued 
neutrosophic sets A and B is proposed as  follows 

𝐶!(    𝐴,𝐵)= !
!
  (!!

!(!!)  !  !!
!(!!))  (!!

! !! !!!
! !! )!(!!

!(!!)  !  !!
!(!!))  (!!

!(!!)  !  !!
!(!!))  !(!!

!(!!)  !  !!
!(!!))  (!!

!(!!)  !  !!
!(!!))  

(!!
!(!!)  !  !!

!(!!))!!(!!
! !! !!!

! !! )!!(!!
!(!!)  !  !!

!(!!))!     (!!
!(!!)  !  !!

!(!!))!!(!!
! !! !!!

! !! )!!(!!
!(!!)  !  !!

!(!!))!  

!
!!!      (7) 

 

F. Proposition  
Let A and B be interval valued neutrosophic sets then  

i. 0 ≤ 𝐶!(𝐴,𝐵) ≤ 1 
ii. 𝐶!(𝐴,𝐵) =  𝐶!(𝐵,𝐴) 

iii. 𝐶!(  𝐴,𝐵) = 1  if A= B i.e  
𝑇!! 𝑥! =   𝑇!! 𝑥! ,      𝑇!! 𝑥! = 𝑇!! 𝑥! , 
𝐼!! 𝑥! =    𝐼!! 𝑥! ,      𝐼!! 𝑥!   =    𝐼!!(𝑥!) and  
𝐹!! 𝑥! =   𝐹!! 𝑥!   , 𝐹!! 𝑥!   =   𝐹!! 𝑥!    for  i=1,2,…., n 
Proof : (i) it is obvious that the proposition is true according 
to the cosine valued 

(ii) it is obvious that the proposition is true. 
(iii) when A =B, there are 
𝑇!! 𝑥! =   𝑇!! 𝑥! ,      𝑇!! 𝑥! = 𝑇!! 𝑥! ,  
𝐼!! 𝑥! =    𝐼!! 𝑥! ,      𝐼!! 𝑥!   =    𝐼!!(𝑥!) and  
𝐹!! 𝑥! =   𝐹!! 𝑥!   ,        𝐹!! 𝑥!   =   𝐹!! 𝑥!    for  i=1,2,…, n , So 
there is 𝐶!(𝐴,𝐵) = 1   
If we consider the weights of each element 𝑥!, a weighted  
cosine similarity measure between IVNSs A and B is given as 
follows: 

𝐶!"(𝐴,𝐵)= !
!
  𝑤!

(!!
!(!!)  !  !!

!(!!))  (!!
! !! !!!

! !! )!(!!
!(!!)  !  !!

!(!!))  (!!
!(!!)  !  !!

!(!!))  !(!!
!(!!)  !  !!

!(!!))  (!!
!(!!)  !  !!

!(!!))  

(!!
!(!!)  !  !!

!(!!))!!(!!
! !! !!!

! !! )!!(!!
!(!!)  !  !!

!(!!))!     (!!
!(!!)  !  !!

!(!!))!!(!!
! !! !!!

! !! )!!(!!
!(!!)  !  !!

!(!!))!  

!
!!!      (8) 

 
Where 𝑤! ∈ [0.1] ,i =1,2,…,n ,and  𝑤!!

!!!  =1. 

If we take 𝑤! = !
!
 , i =1,2,…,n , then there is  𝐶!"(𝐴,𝐵) = 

𝐶!(𝐴,𝐵). 

The weighted cosine similarity measure between two 
IVNSs A and B also satisfies the  following properties: 

i. 0 ≤ 𝐶!"(𝐴,𝐵) ≤ 1 
ii. 𝐶!"(𝐴,𝐵) =  𝐶!"(𝐵,𝐴) 

iii. 𝐶!"(  𝐴,𝐵) = 1  if A= B i.e  
 𝑇!! 𝑥! =   𝑇!! 𝑥! ,      𝑇!! 𝑥! = 𝑇!! 𝑥!  ,  
𝐼!! 𝑥! =    𝐼!! 𝑥! ,      𝐼!! 𝑥!   =    𝐼!!(𝑥!) and 
𝐹!! 𝑥! =   𝐹!! 𝑥!   ,        𝐹!! 𝑥!   =   𝐹!! 𝑥!   for  i=1,2,…, n 

 

G. Proposition  
Let the distance measure of the angle as d(A,B)= arcos 
(𝑪𝑵(𝑨,𝑩)) then it satisfies the following properties. 

i. d(A, B) ≥  0,  if  0 ≤ 𝐶!(𝐴,𝐵) ≤ 1 
ii. d(A, B) = arcos(𝟏) = 0,  if 𝐶!(𝐴,𝐵) = 1 

iii. d(A, B) = d( B, A) if  𝐶!(𝐴,𝐵) =  𝐶!(𝐵,𝐴) 
iv. d(A, C) ≤ d(A, B) + d( B, C)  if  A ⊆ B ⊆ C for any 

interval valued neutrosophic sets C. 
 

Proof : obviously, d(A,B) satisfies the (i) – (iii). In the 
following , d(A,B) will be proved to satisfy the (iv). 

For any  C = { 𝑥!}, A ⊆ B ⊆ C since Eq ( 7) is the sum of 
terms. Let us consider the distance measure of the angle 
between vectors: 

𝑑!(A(𝑥!), B(𝑥!)) = arcos(𝑪𝑵(𝑨(𝑥!),𝑩(𝑥!))), 
𝑑!(B(𝑥!), C(𝑥!)) = arcos(𝑪𝑵(𝑩(𝑥!),𝑪(𝑥!))) and  
𝑑!(A(𝑥!), C(𝑥!)) = arcos(𝑪𝑵(𝑨(𝑥!),𝑪(𝑥!))), for  i=1, 2, .., n, 
where 

𝐶!(𝐴,𝐵)= !
!
  (!!

!(!!)  !  !!
!(!!))  (!!

! !! !!!
! !! )!(!!

!(!!)  !  !!
!(!!))  (!!

!(!!)  !  !!
!(!!))  !(!!

!(!!)  !  !!
!(!!))  (!!

!(!!)  !  !!
!(!!))  

(!!
!(!!)  !  !!

!(!!))!!(!!
! !! !!!

! !! )!!(!!
!(!!)  !  !!

!(!!))!     (!!
!(!!)  !  !!

!(!!))!!(!!
! !! !!!

! !! )!!(!!
!(!!)  !  !!

!(!!))!  

!
!!!   (9) 

 

𝐶!(𝐵,𝐶)= !
!
  (!!

!(!!)  !  !!
!(!!))  (!!

! !! !!!
! !! )!(!!

!(!!)  !  !!
!(!!))  (!!

!(!!)  !  !!
!(!!))  !(!!

!(!!)  !  !!
!(!!))  (!!

!(!!)  !  !!
!(!!))  

(!!
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!(!!))!     (!!
!(!!)  !  !!

!(!!))!!(!!
! !! !!!

! !! )!!(!!
!(!!)  !  !!

!(!!))!  

!
!!!   (10) 

𝐶!(𝐴,𝐶)= !
!
  (!!

!(!!)  !  !!
!(!!))  (!!

! !! !!!
! !! )!(!!

!(!!)  !  !!
!(!!))  (!!

!(!!)  !  !!
!(!!))  !(!!

!(!!)  !  !!
!(!!))  (!!

!(!!)  !  !!
!(!!))  

(!!
!(!!)  !  !!

!(!!))!!(!!
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!(!!))!     (!!
!(!!)  !  !!

!(!!))!!(!!
! !! !!!

! !! )!!(!!
!(!!)  !  !!

!(!!))!  

!
!!!    (11) 

 
For three vectors  

A(𝑥!) = <𝑥!, [ 𝑇!!(𝑥!)  , 𝑇!!(𝑥!)], [ 𝐼!!(𝑥!),  𝐼!!(𝑥!)], [𝐹!!(𝑥!)  , 
𝐹!!(𝑥!)] > 

B(𝑥!) = < 𝑥!, [ 𝑇!!(𝑥!)  , 𝑇!!(𝑥!) ],[ 𝐼!!(𝑥!) ,  𝐼!!(𝑥!) ], [𝐹!!(𝑥!)  , 
𝐹!!(𝑥!)] > 

 

C(𝑥!) = <𝑥!, [  𝑇!!(𝑥!)  , 𝑇!!(𝑥!)], [ 𝐼!!(𝑥!) ,  𝐼!!(𝑥!) ] ,  

[𝐹!!(𝑥!)  , 𝐹!!(𝑥!)] >, in a plane , 
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If A (𝑥!) ⊆ B (𝑥!)  ⊆ C (𝑥!) (I =1, 2,…, n), then it is obvious 
that  d(A(𝑥!), C(𝑥!)) ≤ d( A(𝑥!), B(𝑥!)) + d(B(𝑥!), C(𝑥!)), 
According to the triangle inequality. Combining  the inequality 
with Eq (7),  we can obtain  d(A, C) ≤ d(A, B) + d(B, C) 

Thus, d(A,B) satisfies the property (iv). So we have finished 
the proof. 

IV. COMPARISON OF NEW  SIMILARITY MEASURE  WITH 
THE EXISTING MEASURES. 
 Let A and B be two interval  neutrosophic set in the 

universe of discourse X={𝑥!, 𝑥!,.,𝑥!}. For the cosine similarity 
and the existing similarity measures of interval valued 
neutrosophic sets introduced in [5, 21], they are listed as 
follows: 

Pinaki’s similarity I [21] 

S!"= 
{!"# !! !! ,!! !! !!"# !! !! ,!! !! !!"# !! !! ,!! !! }!

!!!
{!"# !! !! ,!! !! !!"# !! !! ,!! !! !!"# !! !! ,!! !! }!

!!!
     (12)                                  

Also ,P. Majumdar [21] proposed weighted similarity measure 
for neutrosophic set  as follows: 

S!"" =  
!!  (

!
!!! !! !! ∙  !! !! !(!! !! ∙  !! !! !(!! !! ∙  !! !!

!"#(!!   !! !! !!!! !! !!!! !! !  ,  !! !! !! !!!! !! !!!! !! !))
    

(13) 
Where, S!",  S!"" denotes Pinaki’s similarity I and Pinaki’s 
similarity II 
                                               
Ye’s similarity [5] is defined as the following:  

𝑆!"(A,  B)  =  1-­‐  
!
!
   w!

!
!!! infT! x! − infT! x! +

supT! x! − supT! x! + infI! x! − infI! x! +
supI! x! − supI! x! + infF! x! − infF! x! +
supF! x! − supF! x!                                                                                                         (14)  

Example 1: 

Let A = {<x, (0.2, 0.2 0.3)>}    and B= {<x, (0.5, 0.2 0.5)>}  

Pinaki similarity I  = 0.58                                         

Pinaki similarity II (with 𝑤! =1) = 0.29 

Ye similarity (with w! =1) = 0.83  

Cosine similarity  𝐂𝐍(𝐀,𝐁) = 0.95 

Example 2: 

Let  A= {<x, ([0.2, 0.3], [0.5, 0.6] ,[ 0.3, 0.5])>} and B{<x, 
([0.5, 0.6], [0.3, 0.6] ,[0.5, 0.6])>}     

Pinaki similarty I = NA 

Pinaki similarty II(With 𝑤! =1) = NA 

Ye similarity (with w! =1) =0.81 

Cosine similarity  𝐂𝐍(𝐀,𝐁) = 0.92 

On the basis of computational study. J.Ye [5] have shown that 
their measure is more effective and reasonable .A similar kind 
of study with the help of the proposed new measure based on 
the cosine similarity, has been done and it is found that the 
obtained results are more refined and accurate. It may be 

observed from the example 1 and 2 that the values of similarity 
measures are more closer to 1 with 𝐂𝐍(𝐀,𝐁) ,the proposed 
similarity measure. This implies that we may be more 
deterministic for correct diagnosis and proper treatment. 

V. APPLICATION OF COSINE SIMILARITY MEASURE FOR 
INTERVAL VALUED NEUTROSOPHIC NUMBERS TO 
PATTERN RECOGNITION 

In order to demonstrate the application of the proposed cosine 
similarity measure for  interval valued  neutrosophic numbers 
to pattern recognition, we discuss the medical diagnosis 
problem as follows: 
For example the patient reported temperature claiming that the 
patient has temperature between 0.5 and 0.7  severity 
/certainty, some how it is between 0.2 and 0.4  indeterminable 
if temperature is cause or the effect of his current  disease. 
And it between 0.1 and 0.2 sure that temperature has no 
relation with his main disease. This piece of information about 
one patient  and one symptom may be written as: 
(patient , Temperature) = <[0.5, 0.7], [0.2 ,0.4], [0.1, 0.2]> 
(patient , Headache) = < [0.2, 0.3], [0.3 ,0.5], [0.3, 0.6]> 
(patient , Cough)   =  <[0.4, 0.5], [0.6 ,0.7], [0.3, 0.4]> 
Then,  P= {< 𝑥!,  [0.5, 0.7], [0.2 ,0.4], [0.1, 0.2] >, < 𝑥!, [0.2, 
0.3], [0.3, 0.5], [0.3, 0.6] > ,<  𝑥!, [0.4, 0.5], [0.6 ,0.7], [0.3, 
0.4]>} 

And each diagnosis 𝐴!   ( i=1, 2, 3)   can  also be represented 
by interval valued neutrosophic numbers with respect to all the 
symptoms as follows: 

𝐴!= {< 𝑥!, [0.5, 0.6], [0.2 ,0.3], [0.4, 0.5] >, < 𝑥! , [0.2 , 0.6 ], 
[0.3 ,0.4 ], [0.6 , 0.7]>,<  𝑥!, [0.1, 0.2 ], [0.3 ,0.6 ], [0.7, 0.8]>} 

𝐴!= {< 𝑥!, [0.4, 0.5], [0.3, 0.4], [0.5, 0.6] >, < 𝑥! , [0.3, 0.5 ], 
[0.4 ,0.6 ], [0.2, 0.4]> ,<   𝑥! , [0.3, 0.6 ], [0.1, 0.2], [0.5, 0.6]>} 

𝐴!= {< 𝑥!, [0.6, 0.8], [0.4 ,0.5], [0.3, 0.4]>, <𝑥! , [0.3, 0.7 ], 
[0.2, 0.3], [0.4, 0.7]> ,<  𝑥!, [0.3, 0.5 ], [0.4, 0.7 ], [0.2, 0.6]>} 

Our aim is to classify the pattern P in one of the classes 𝐴!, 
𝐴!,  𝐴! .According to the recognition principle of maximum 
degree of similarity measure between interval valued 
neutrosophic numbers, the process of diagnosis  𝐴! to patient P 
is derived according to 

 k =  arg Max{ 𝑪𝑵(    𝐴!   ,𝑷))}  

from the previous formula (7) , we can compute the cosine 
similarity between 𝐴! (i=1, 2, 3) and P as follows; 

𝑪𝑵(    𝐴!  ,𝑷)=0.8988, 𝑪𝑵(    𝐴!  ,𝑷)=0.8560,   𝑪𝑵(    𝐴!  ,𝑷) 
=0.9654 

Then, we can assign the patient to diagnosis  𝐴! (Typoid) 
according to recognition of principal. 
 
VI. Conclusions. 
In this paper a cosine  similarity measure between two and 
weighted interval valued neutrosophic sets is proposed. The 
results of the proposed similarity measure and existing 
similarity measure are compared. Finally, the proposed cosine 
similarity measure is applied to pattern recognition. 
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Abstract.	
  In	
  this	
  paper,	
  we	
  introduce	
  for	
  the	
  first	
  time	
  the	
  discounting	
  of	
  a	
  
neutrosophic	
  mass	
   in	
   terms	
  of	
   reliability	
  and	
  respectively	
   the	
   importance	
  
of	
  the	
  source.	
  

We	
   show	
   that	
   reliability	
   and	
   importance	
   discounts	
   commute	
  when	
  
dealing	
  with	
  classical	
  masses.	
  

	
  

1. Introduction.	
  Let	
  Φ = Φ!,Φ!,… ,Φ! 	
  be	
   the	
   frame	
  of	
  discernment,	
  
where	
  𝑛 ≥ 2,	
  and	
  the	
  set	
  of	
  focal	
  elements:	
  

𝐹 = 𝐴!,𝐴!,… ,𝐴! ,	
  for	
  𝑚 ≥ 1,𝐹 ⊂ 𝐺! .	
  (1)	
  

Let	
  𝐺! = 𝛷,∪,∩,𝒞   be	
  the	
  fusion	
  space.	
  

A	
  neutrosophic	
  mass	
  is	
  defined	
  as	
  follows:	
  

𝑚!:𝐺 → 0, 1 !	
  

for	
  any	
  𝑥 ∈ 𝐺,	
  𝑚! 𝑥 = 𝑡 𝑥 , 𝑖 𝑥 , 𝑓(𝑥) ,	
   (2)	
  

where	
   𝑡 𝑥 =	
  believe	
  that	
  𝑥	
  will	
  occur	
  (truth);	
  

	
   	
   𝑖 𝑥 =	
  indeterminacy	
  about	
  occurence;	
  

and	
  𝑓 𝑥 =	
  believe	
  that	
  𝑥	
  will	
  not	
  occur	
  (falsity).	
  

Simply,	
  we	
  say	
  in	
  neutrosophic	
  logic:	
  

	
   	
   𝑡 𝑥 =	
  believe	
  in	
  𝑥;	
  

	
   	
   𝑖 𝑥 =	
  believe	
  in	
  neut 𝑥 	
  	
  
[the	
  neutral	
  of	
  𝑥,	
  i.e.	
  neither	
  𝑥	
  nor	
  anti(𝑥)];	
  

and	
  𝑓 𝑥 =	
  believe	
  in	
  anti(𝑥)	
  [the	
  opposite	
  of	
  𝑥].	
  

Of	
  course,	
  𝑡 𝑥 , 𝑖 𝑥 , 𝑓 𝑥 ∈ 0, 1 ,	
  and	
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𝑡 𝑥 + 𝑖 𝑥 + 𝑓 𝑥 = 1,!∈! 	
  (3)	
  

while	
  

𝑚! ф = 0, 0, 0 .	
  	
  (4)	
  

It	
  is	
  possible	
  that	
  according	
  to	
  some	
  parameters	
  (or	
  data)	
  a	
  source	
  is	
  
able	
   to	
   predict	
   the	
   believe	
   in	
   a	
   hypothesis	
  𝑥	
   to	
   occur,	
  while	
   according	
   to	
  
other	
  parameters	
  (or	
  other	
  data)	
  the	
  same	
  source	
  may	
  be	
  able	
  to	
  find	
  the	
  
believe	
  in	
  𝑥	
  not	
  occuring,	
  and	
  upon	
  a	
  third	
  category	
  of	
  parameters	
  (or	
  data)	
  
the	
   source	
   may	
   find	
   some	
   indeterminacy	
   (ambiguity)	
   about	
   hypothesis	
  
occurence.	
  

An	
  element	
  𝑥 ∈ 𝐺	
  is	
  called	
  focal	
  if	
  	
  

𝑛! 𝑥 ≠ 0, 0, 0 ,	
  (5)	
  

i.e.	
  𝑡(𝑥) > 0	
  or	
  𝑖(𝑥) > 0	
  or	
  𝑓(𝑥) > 0.	
  	
  	
  

Any	
  classical	
  mass:	
  

𝑚 ∶ 𝐺ф → 0, 1 	
  (6)	
  

can	
  be	
  simply	
  written	
  as	
  a	
  neutrosophic	
  mass	
  as:	
  

𝑚 𝐴 = 𝑚 𝐴 , 0, 0 .	
  (7)	
  

	
  

2. Discounting	
  a	
  Neutrosophic	
  Mass	
  due	
  to	
  Reliability	
  of	
  the	
  
Source.	
  

Let	
   𝛼 = 𝛼!,𝛼!,𝛼! 	
   be	
   the	
   reliability	
   coefficient	
   of	
   the	
   source,	
  
𝛼 ∈ 0,1 !.	
  

Then,	
  for	
  any	
  𝑥 ∈ 𝐺! ∖ 𝜃, 𝐼! ,	
  

where	
  𝜃 =	
  the	
  empty	
  set	
  

and	
  𝐼! =	
  total	
  ignorance,	
  

𝑚!(𝑥)! = 𝛼!𝑡 𝑥 ,𝛼!𝑖 𝑥 ,𝛼!𝑓 𝑥 ,	
  	
  (8)	
  

and	
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𝑚! 𝐼! ! = 𝑡 𝐼! + 1 − 𝛼! 𝑡(𝑥)
!∈!!∖ !,!!

,

𝑖 𝐼! + 1 − 𝛼! 𝑖 𝑥 , 𝑓 𝐼! + 1 − 𝛼! 𝑓(𝑥)
!∈!!∖ !,!!!∈!!∖ !,!!

	
  

(9),	
  

and,	
  of	
  course,	
  

𝑚!(𝜙)! = 0, 0, 0 .	
  

The	
  missing	
  mass	
  of	
  each	
  element	
  𝑥,	
   for	
  𝑥 ≠ 𝜙, 𝑥 ≠ 𝐼! ,	
   is	
  transferred	
  
to	
  the	
  mass	
  of	
  the	
  total	
  ignorance	
  in	
  the	
  following	
  way:	
  

𝑡 𝑥 − 𝛼!𝑡 𝑥 = 1 − 𝛼! ∙ 𝑡 𝑥 	
  is	
  transferred	
  to	
  𝑡 𝐼! ,  	
  (10)	
  

𝑖 𝑥 − 𝛼!𝑖 𝑥 = 1 − 𝛼! ∙ 𝑖 𝑥 	
  is	
  transferred	
  to	
  𝑖 𝐼! ,	
  (11)	
  

and	
  𝑓 𝑥 − 𝛼!𝑓 𝑥 = 1 − 𝛼! ∙ 𝑓 𝑥 	
  is	
  transferred	
  to	
  𝑓 𝐼! .  	
  (12)	
  

	
  

3. Discounting	
   a	
  Neutrosophic	
  Mass	
  due	
   to	
   the	
   Importance	
  of	
   the	
  
Source.	
  

Let	
   𝛽 ∈ 0, 1 	
   be	
   the	
   importance	
   coefficient	
   of	
   the	
   source.	
   This	
  
discounting	
  can	
  be	
  done	
  in	
  several	
  ways.	
  

a. For	
  any	
  𝑥 ∈ 𝐺! ∖ 𝜙 ,	
  

𝑚!(𝑥)!! = 𝛽 ∙ 𝑡 𝑥 , 𝑖 𝑥 , 𝑓 𝑥 + 1 − 𝛽 ∙ 𝑡 𝑥 ,	
  (13)	
  

which	
  means	
   that	
   𝑡 𝑥 ,	
   the	
  believe	
   in	
  𝑥,	
   is	
  diminished	
   to	
  𝛽 ∙ 𝑡 𝑥 ,	
   and	
   the	
  
missing	
  mass,	
  𝑡 𝑥 − 𝛽 ∙ 𝑡 𝑥 = 1 − 𝛽 ∙ 𝑡 𝑥 ,	
   is	
   transferred	
   to	
   the	
  believe	
  
in	
  𝑎𝑛𝑡𝑖(𝑥).	
  

b. Another	
  way:	
  

For	
  any	
  𝑥 ∈ 𝐺! ∖ 𝜙 ,	
  

𝑚!(𝑥)!! = 𝛽 ∙ 𝑡 𝑥 , 𝑖 𝑥 + 1 − 𝛽 ∙ 𝑡 𝑥 , 𝑓 𝑥 ,	
  (14)	
  

which	
  means	
  that	
  𝑡 𝑥 ,	
  the	
  believe	
  in	
  𝑥,	
   is	
  similarly	
  diminished	
  to	
  𝛽 ∙ 𝑡 𝑥 ,	
  
and	
   the	
   missing	
   mass	
   1 − 𝛽 ∙ 𝑡 𝑥 	
   is	
   now	
   transferred	
   to	
   the	
   believe	
   in	
  
𝑛𝑒𝑢𝑡(𝑥).	
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c. The	
   third	
   way	
   is	
   the	
   most	
   general,	
   putting	
   together	
   the	
   first	
   and	
  
second	
  ways.	
  

For	
  any	
  𝑥 ∈ 𝐺! ∖ 𝜙 ,	
  

𝑚!(𝑥)!! = 𝛽 ∙ 𝑡 𝑥 , 𝑖 𝑥 + 1 − 𝛽 ∙ 𝑡 𝑥 ∙ 𝛾, 𝑓 𝑥 + (1 − 𝛽) ∙ 𝑡(𝑥) ∙
1 − 𝛾 ,	
  (15)	
  

where	
  𝛾 ∈ 0, 1 	
  is	
  a	
  parameter	
  that	
  splits	
  the	
  missing	
  mass	
   1 − 𝛽 ∙ 𝑡 𝑥 	
  a	
  
part	
  to	
  	
  𝑖 𝑥 	
  and	
  the	
  other	
  part	
  to	
  𝑓 𝑥 .	
  

For	
  𝛾 = 0,	
  one	
  gets	
  the	
  first	
  way	
  of	
  distribution,	
  and	
  when	
  𝛾 = 1,	
  one	
  
gets	
  the	
  second	
  way	
  of	
  distribution.	
  

	
  

4. Discounting	
  of	
  Reliability	
  and	
  Importance	
  of	
  Sources	
  in	
  General	
  
Do	
  Not	
  Commute.	
  

a. Reliability	
  first,	
  Importance	
  second.	
  

For	
  any	
  𝑥 ∈ 𝐺! ∖ 𝜙, 𝐼! ,	
  one	
  has	
  after	
  reliability	
  α	
  discounting,	
  where	
  

𝛼 = 𝛼!,𝛼!,𝛼! :	
  	
  

𝑚!(𝑥)! = 𝛼! ∙ 𝑡 𝑥 ,𝛼! ∙ 𝑡 𝑥 ,𝛼! ∙ 𝑓 𝑥 ,	
  (16)	
  

and	
  

𝑚! 𝐼! ! = 𝑡 𝐼! + 1 − 𝛼! ∙ 𝑡(𝑥)
!∈!!∖ !,!!

, 𝑖 𝐼! + 1 − 𝛼!

∙ 𝑖(𝑥)
!∈!!∖ !,!!

, 𝑓 𝐼! + 1 − 𝛼! ∙ 𝑓(𝑥)
!∈!!∖ !,!!

≝ 𝑇!! , 𝐼!! ,𝐹!!    .	
  

(17)	
  

Now	
   we	
   do	
   the	
   importance	
   β	
   discounting	
   method,	
   the	
   third	
   importance	
  
discounting	
  way	
  which	
  is	
  the	
  most	
  general:	
  

𝑚! 𝑥 !!! = 𝛽𝛼!𝑡 𝑥 ,𝛼!𝑖 𝑥 + 1 − 𝛽 𝛼!𝑡 𝑥 𝛾,𝛼!𝑓 𝑥
+ 1 − 𝛽 𝛼!𝑡 𝑥 1 − 𝛾 	
  

(18)	
  

and	
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𝑚! 𝐼! !!! = 𝛽 ∙ 𝑇!! , 𝐼!! + 1 − 𝛽 𝑇!! ∙ 𝛾,𝐹!! + 1 − 𝛽 𝑇!! 1 − 𝛾 .	
  (19)	
  

b. Importance	
  first,	
  Reliability	
  second.	
  

For	
   any	
  𝑥 ∈ 𝐺! ∖ 𝜙, 𝐼! ,	
   one	
  has	
   after	
   importance	
  β	
  discounting	
   (third	
  
way):	
  

𝑚! 𝑥 !! = 𝛽 ∙ 𝑡 𝑥 , 𝑖 𝑥 + 1 − 𝛽 𝑡 𝑥 𝛾, 𝑓 𝑥 + 1 − 𝛽 𝑡 𝑥 1 − 𝛾 	
  	
  (20)	
  

and	
  

𝑚! 𝐼! !! = 𝛽 ∙ 𝑡 𝐼!! , 𝑖(𝐼!!) + 1 − 𝛽 𝑡(𝐼!)𝛾, 𝑓(𝐼!) + 1 − 𝛽 𝑡(𝐼!) 1 − 𝛾 .	
  
(21)	
  

Now	
  we	
  do	
  the	
  reliability	
  𝛼 = 𝛼!,𝛼!,𝛼! 	
  discounting,	
  and	
  one	
  gets:	
  

𝑚! 𝑥 !!! = 𝛼! ∙ 𝛽 ∙ 𝑡 𝑥 ,𝛼! ∙ 𝑖 𝑥 + 𝛼! 1 − 𝛽 𝑡 𝑥 𝛾,𝛼! ∙ 𝑓 𝑥 + 𝛼! ∙
1 − 𝛽 𝑡 𝑥 1 − 𝛾 	
  (22)	
  

and	
  

𝑚! 𝐼! !!! = 𝛼! ∙ 𝛽 ∙ 𝑡 𝐼! ,𝛼! ∙ 𝑖 𝐼! + 𝛼! 1 − 𝛽 𝑡 𝐼! 𝛾,𝛼! ∙ 𝑓 𝐼! +
𝛼! 1 − 𝛽 𝑡(𝐼!) 1 − 𝛾 .	
  (23)	
  

	
  

Remark.	
  	
  

We	
   see	
   that	
   (a)	
   and	
   (b)	
   are	
   in	
   general	
   different,	
   so	
   reliability	
   of	
  
sources	
  does	
  not	
  commute	
  with	
  the	
  importance	
  of	
  sources.	
  

	
  

5. Particular	
  Case	
  when	
  Reliability	
  and	
  Importance	
  Discounting	
  of	
  
Masses	
  Commute.	
  

Let’s	
  consider	
  a	
  classical	
  mass	
  	
  

𝑚:𝐺! → 0, 1 	
  (24)	
  

and	
  the	
  focal	
  set	
  𝐹 ⊂ 𝐺! ,	
  

𝐹 = 𝐴!,𝐴!,… ,𝐴! ,𝑚 ≥ 1,	
  (25)	
  

and	
  of	
  course	
  𝑚 𝐴! > 0,	
  for	
  1 ≤ 𝑖 ≤ 𝑚.	
  	
  

Suppose	
  𝑚 𝐴! = 𝑎! ∈ (0,1].	
  (26)	
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a. Reliability	
  first,	
  Importance	
  second.	
  

Let	
  𝛼 ∈ 0, 1 	
  be	
  the	
  reliability	
  coefficient	
  of	
  𝑚  (∙).	
  

For	
  𝑥 ∈ 𝐺! ∖ 𝜙, 𝐼! ,	
  one	
  has	
  

𝑚(𝑥)! = 𝛼 ∙𝑚 𝑥 ,	
  (27)	
  

and	
  𝑚 𝐼! = 𝛼 ∙𝑚 𝐼! + 1 − 𝛼.	
  (28)	
  

Let	
  𝛽 ∈ 0, 1 	
  be	
  the	
  importance	
  coefficient	
  of	
  𝑚  (∙).	
  

Then,	
  for	
  𝑥 ∈ 𝐺! ∖ 𝜙, 𝐼! ,	
  

𝑚 𝑥 !" = 𝛽𝛼𝑚 𝑥 ,𝛼𝑚 𝑥 − 𝛽𝛼𝑚 𝑥 = 𝛼 ∙𝑚 𝑥 ∙ 𝛽, 1 − 𝛽 ,  (29)	
  

considering	
  only	
   two	
  components:	
  believe	
   that  𝑥	
  occurs	
  and,	
   respectively,	
  
believe	
  that	
  𝑥	
  does	
  not	
  occur.	
  

Further	
  on,	
  

𝑚 𝐼! !" = 𝛽𝛼𝑚 𝐼! + 𝛽 − 𝛽𝛼,𝛼𝑚 𝐼! + 1 − 𝛼 − 𝛽𝛼𝑚 𝐼! − 𝛽 + 𝛽𝛼 =
𝛼𝑚 𝐼! + 1 − 𝛼 ∙ 𝛽, 1 − 𝛽 .	
  (30)	
  

	
  

b. Importance	
  first,	
  Reliability	
  second.	
  

For	
  𝑥 ∈ 𝐺! ∖ 𝜙, 𝐼! ,	
  one	
  has	
  

𝑚(𝑥)! = 𝛽 ∙𝑚 𝑥 ,𝑚 𝑥 − 𝛽 ∙𝑚 𝑥 = 𝑚 𝑥 ∙ 𝛽, 1 − 𝛽 ,	
  (31)	
  

and	
  𝑚(𝐼!)! = 𝛽𝑚 𝐼! ,𝑚 𝐼! − 𝛽𝑚 𝐼! = 𝑚 𝐼! ∙ 𝛽, 1 − 𝛽 .	
  (32)	
  

Then,	
  for	
  the	
  reliability	
  discounting	
  scaler	
  α	
  one	
  has:	
  

𝑚(𝑥)!" = 𝛼𝑚 𝑥 𝛽, 1 − 𝛽 = 𝛼𝑚 𝑥 𝛽,𝛼𝑚 𝑥 − 𝛼𝛽𝑚 𝑚 	
  (33)	
  

and	
  𝑚(𝐼!)!" = 𝛼 ∙𝑚 𝐼! 𝛽, 1 − 𝛽 + 1 − 𝛼 𝛽, 1 − 𝛽 = 𝛼𝑚 𝐼! + 1 − 𝛼 ∙
𝛽, 1 − 𝛽 = 𝛼𝑚 𝐼! 𝛽,𝛼𝑚 𝐼! − 𝛼𝑚(𝐼!)𝛽 + 𝛽 − 𝛼𝛽, 1 − 𝛼 − 𝛽 + 𝛼𝛽 =

𝛼𝛽𝑚 𝐼! + 𝛽 − 𝛼𝛽,𝛼𝑚 𝐼! − 𝛼𝛽𝑚 𝐼! + 1 − 𝛼 − 𝛽 − 𝛼𝛽 .	
  (34)	
  

Hence	
  (a)	
  and	
  (b)	
  are	
  equal	
  in	
  this	
  case.	
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6. Examples.	
  
1. Classical	
  mass.	
  

The	
  following	
  classical	
  is	
  given	
  on	
  𝜃 = 𝐴,𝐵 ∶	
  

	
   A	
   B	
   AUB	
  
m	
   0.4	
   0.5	
   0.1	
  

	
   	
   	
   (35)	
  
	
  

Let	
   𝛼 = 0.8	
   be	
   the	
   reliability	
   coefficient	
   and	
   𝛽 = 0.7	
   be	
   the	
  
importance	
  coefficient.	
  

	
  

a. Reliability	
  first,	
  Importance	
  second.	
  

	
   A	
   B	
   AUB	
  
𝑚! 	
   0.32	
   0.40	
   0.28	
  
𝑚!" 	
   (0.224,	
  0.096)	
   (0.280,	
  0.120)	
   (0.196,	
  0.084)	
  

(36)	
  

We	
  have	
  computed	
  in	
  the	
  following	
  way:	
  

𝑚! 𝐴 = 0.8𝑚 𝐴 = 0.8 0.4 = 0.32,	
  (37)	
  

𝑚! 𝐵 = 0.8𝑚 𝐵 = 0.8 0.5 = 0.40,	
  (38)	
  

𝑚! 𝐴𝑈𝐵 = 0.8 AUB + 1 − 0.8 = 0.8 0.1 + 0.2 = 0.28,	
  (39)	
  

and	
  

𝑚!" 𝐵 = 0.7𝑚! 𝐴 ,𝑚! 𝐴 − 0.7𝑚! 𝐴 =
0.7 0.32 , 0.32 − 0.7 0.32 = 0.224, 0.096 ,	
  (40)	
  

𝑚!" 𝐵 = 0.7𝑚! 𝐵 ,𝑚! 𝐵 − 0.7𝑚! 𝐵 =
0.7 0.40 , 0.40 − 0.7 0.40 = 0.280, 0.120 ,	
  (41)	
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𝑚!" 𝐴𝑈𝐵 = 0.7𝑚! 𝐴𝑈𝐵 ,𝑚! 𝐴𝑈𝐵 − 0.7𝑚! 𝐴𝑈𝐵 =
0.7 0.28 , 0.28 − 0.7 0.28 = 0.196, 0.084 .	
  (42)	
  

	
  

b. Importance	
  first,	
  Reliability	
  second.	
  

	
   A	
   B	
   AUB	
  
m	
   0.4	
   0.5	
   0.1	
  
𝑚! 	
   (0.28,	
  0.12)	
   (0.35,	
  0.15)	
   (0.07,	
  0.03)	
  
𝑚!" 	
   (0.224,	
  0.096	
   (0.280,	
  0.120)	
   (0.196,	
  0.084)	
  

(43)	
  

We	
  computed	
  in	
  the	
  following	
  way:	
  

𝑚! 𝐴 = 𝛽𝑚 𝐴 , 1 − 𝛽 𝑚 𝐴 = 0.7 0.4 , (1 − 0.7) 0.4 =
0.280, 0.120 ,	
  (44)	
  

𝑚! 𝐵 = 𝛽𝑚 𝐵 , 1 − 𝛽 𝑚 𝐵 = 0.7 0.5 , (1 − 0.7) 0.5 =
0.35, 0.15 ,	
  (45)	
  

𝑚! 𝐴𝑈𝐵 = 𝛽𝑚 𝐴𝑈𝐵 , 1 − 𝛽 𝑚 𝐴𝑈𝐵 = 0.7 0.1 , (1 − 0.1) 0.1 =
0.07, 0.03 ,	
  (46)	
  

and	
  𝑚!" 𝐴 = 𝛼𝑚! 𝐴 = 0.8 0.28, 0.12 = 0.8 0.28 , 0.8 0.12 =
0.224, 0.096 ,	
  (47)	
  

𝑚!" 𝐵 = 𝛼𝑚! 𝐵 = 0.8 0.35, 0.15 = 0.8 0.35 , 0.8 0.15 =
0.280, 0.120 ,	
  (48)	
  

𝑚!" 𝐴𝑈𝐵 = 𝛼𝑚 𝐴𝑈𝐵 𝛽, 1 − 𝛽 + 1 − 𝛼 𝛽, 1 − 𝛽 = 0.8 0.1 0.7, 1 −
0.7 + 1 − 0.8 0.7, 1 − 0.7 = 0.08 0.7, 0.3 + 0.2 0.7, 0.3 =
0.056, 0.024 + 0.140, 0.060 = 0.056 + 0.140, 0.024 + 0.060 =

0.196, 0.084 .	
  (49)	
  

Therefore	
  reliability	
  discount	
  commutes	
  with	
  importance	
  discount	
  of	
  
sources	
  when	
  one	
  has	
  classical	
  masses.	
  

The	
  result	
  is	
  interpreted	
  this	
  way:	
  believe	
  in	
  𝐴	
  is	
  0.224	
  and	
  believe	
  in	
  
𝑛𝑜𝑛𝐴	
   is	
   0.096,	
   believe	
   in	
   𝐵	
   is	
   0.280	
   and	
   believe	
   in	
   𝑛𝑜𝑛𝐵	
   is	
   0.120,	
   and	
  
believe	
   in	
   total	
   ignorance	
   𝐴𝑈𝐵  is	
   0.196,	
   and	
   believe	
   in	
   non-­‐ignorance	
   is	
  
0.084.	
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7. Same	
  Example	
  with	
  Different	
  Redistribution	
   of	
  Masses	
  Related	
  
to	
  Importance	
  of	
  Sources.	
  

Let’s	
   consider	
   the	
   third	
   way	
   of	
   redistribution	
   of	
   masses	
   related	
   to	
  
importance	
   coefficient	
   of	
   sources.	
  𝛽 = 0.7,	
   but	
  𝛾 = 0.4,	
  which	
  means	
   that	
  
40%	
  of	
  𝛽	
  is	
  redistributed	
  to	
  𝑖 𝑥 	
  and	
  60%	
  of	
  𝛽	
  is	
  redistributed	
  to	
  𝑓 𝑥 	
  for	
  
each	
  𝑥 ∈ 𝐺! ∖ 𝜙 ;  and	
  𝛼 = 0.8.	
  

	
  

a. Reliability	
  first,	
  Importance	
  second.	
  

	
   A	
   B	
   AUB	
  
m	
   0.4	
   0.5	
   0.1	
  
𝑚! 	
   0.32	
   0.40	
   0.28	
  
𝑚!" 	
   (0.2240,	
  0.0384,	
  

0.0576)	
  
(0.2800,	
  0.0480,	
  

0.0720)	
  
(0.1960,	
  0.0336,	
  

0.0504).	
  
(50)	
  

We	
  computed	
  𝑚! 	
  in	
  the	
  same	
  way.	
  

But:	
  

𝑚!" 𝐴 = 𝛽 ∙𝑚! 𝐴 , 𝑖! 𝐴 + 1 − 𝛽 𝑚! 𝐴 ∙ 𝛾, 𝑓! 𝐴 + 1 −
𝛽 𝑚!(𝐴) 1 − 𝛾 = 0.7 0.32 , 0 + 1 − 0.7 0.32 0.4 , 0 + 1 −

0.7 0.32 1 − 0.4 = 0.2240, 0.0384, 0.0576 .	
  (51)	
  

Similarly	
  for	
  𝑚!"(𝐵)	
  and	
  𝑚!" 𝐴𝑈𝐵 .	
  

	
  

b. Importance	
  first,	
  Reliability	
  second.	
  

	
   A	
   B	
   AUB	
  
m	
   0.4	
   0.5	
   0.1	
  
𝑚! 	
   (0.280,	
  0.048,	
  

0.072)	
  
(0.350,	
  0.060,	
  

0.090)	
  
(0.070,	
  0.012,	
  

0.018)	
  
𝑚!𝛼	
   (0.2240,	
  0.0384,	
  

0.0576)	
  
(0.2800,	
  0.0480,	
  

0.0720)	
  
(0.1960,	
  0.0336,	
  

0.0504).	
  
(52)	
  

We	
  computed	
  𝑚! ∙ 	
  in	
  the	
  following	
  way:	
  

𝑚! 𝐴 = 𝛽 ∙ 𝑡 𝐴 , 𝑖 𝐴 + 1 − 𝛽 𝑡 𝐴 ∙ 𝛾, 𝑓 𝐴 + 1 − 𝛽 𝑡(𝐴) 1 −
𝛾 = 0.7 0.4 , 0 + 1 − 0.7 0.4 0.4 , 0 + 1 − 0.7 0.4 1 − 0.4 =

0.280, 0.048, 0.072 .	
  (53)	
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Similarly	
  for	
  𝑚! 𝐵 	
  and	
  𝑚! 𝐴𝑈𝐵 .	
  

To	
  compute	
  𝑚!" ∙ ,	
  we	
  take	
  𝛼! = 𝛼! = 𝛼! = 0.8,	
  (54)	
  

in	
  formulas	
  (8)	
  and	
  (9).	
  

𝑚!" 𝐴 = 𝛼 ∙𝑚! 𝐴 = 0.8 0.280, 0.048, 0.072
= 0.8 0.280 , 0.8 0.048 , 0.8 0.072
= 0.2240, 0.0384, 0.0576 . 55 	
  

Similarly	
  
𝑚!" 𝐵 = 0.8 0.350, 0.060, 0.090 = 0.2800, 0.0480, 0.0720 .	
  (56)	
  

For	
  𝑚!"(𝐴𝑈𝐵)	
  we	
  use	
  formula	
  (9):	
  

𝑚!" 𝐴𝑈𝐵 = 𝑡! 𝐴𝑈𝐵 + 1 − 𝛼 𝑡! 𝐴 + 𝑡! 𝐵 ,   𝑖! 𝐴𝑈𝐵
+ 1 − 𝛼 𝑖! 𝐴 + 𝑖! 𝐵 ,
  𝑓! 𝐴𝑈𝐵 + 1 − 𝛼 𝑓! 𝐴 + 𝑓! 𝐵
= 0.070 + 1 − 0.8 0.280 + 0.350 , 0.012
+ 1 − 0.8 0.048 + 0.060 , 0.018 + 1 − 0.8 0.072 + 0.090
= 0.1960, 0.0336, 0.0504 .	
  

Again,	
  the	
  reliability	
  discount	
  and	
  importance	
  discount	
  commute.	
  

	
  

8. Conclusion.	
  

In	
   this	
   paper	
  we	
  have	
  defined	
   a	
   new	
  way	
  of	
   discounting	
   a	
   classical	
  
and	
   neutrosophic	
   mass	
   with	
   respect	
   to	
   its	
   importance.	
   We	
   have	
   also	
  
defined	
   the	
   discounting	
   of	
   a	
   neutrosophic	
   source	
   with	
   respect	
   to	
   its	
  
reliability.	
  

In	
   general,	
   the	
   reliability	
   discount	
   and	
   importance	
   discount	
   do	
   not	
  
commute.	
  But	
  if	
  one	
  uses	
  classical	
  masses,	
  they	
  commute	
  (as	
  in	
  Examples	
  1	
  
and	
  2).	
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Abstract :   The idea of neutrosophic code came into my mind at that time when i was reading the literature 
about linear codes and i saw that, if there is data transfremation between a sender and a reciever. They want to send 
11and 00  as codewords. They suppose 11  for true and 00   for false. When the sender sends the these two 
codewords and the error occures. As a result the reciever  recieved 01  or 10  instead of 11  and 00 . This 
story give a way to the neutrosophic codes and thus we introduced neutrosophic codes over finite field in this paper. 

 
Introduction 

   
  Florentin Smarandache for the first time intorduced the concept of neutrosophy in 1995  which  
is basically a new branch of philosophy which actually studies the origion, nature, and scope of  
neutralities. The neutrosophic logic came into being by neutrosophy. In neutrosophic logic each proposition is 
approximated to have the percentage of truth in a subsetT , the percentage of indeterminacy in a subset I , and the 
percentage of falsity in a subset F . Neutrosophic logic is an extension of fuzzy logic. In fact the neutrosophic set 
is the generalization of classical set, fuzzy conventional set, intuitionistic fuzzy set, and interal valued fuzzy set. 
Neutrosophic logic is used to overcome the problems of imperciseness, indeterminate, and inconsistentness of data 
etc. The theory of neutrosophy is so applicable to every field of agebra.W.B Vasantha Kandasamy and Florentin 
Smarandache introduced neutrosophic fields, neutrosophic rings, neutrosophic vectorspaces, neutrosophic groups, 
neutrosophic bigroups and neutrosophic N -groups, neutrosophic semigroups, neutrosophic bisemigroups, and 
neutrsosophic N -semigroups, neutrosophic loops, nuetrosophic biloops, and neutrosophic N -loops, and so on. 
Mumtaz ali  et al . introduced nuetrosophic LA -semigoups. 
  Algebriac codes are used for data compression, cryptography, error correction and and for network coding. The 
theory of codes was first focused by Claude Shanon in 1948 and then gradually developed by time to time. There are 
many types of codes which is important to its algebriac structures such as Linear block codes, Hamming codes, 
BCH codes etc. The most common type of code is a linear code over the field qF . There are also linear codes 
which are define over the finite rings. The linear codes over finite ring are initiated by Blake in a series of papers 
[ ] [ ]2 , 3 , Spiegel [ ] [ ]4 , 5  and Forney et al. [ ]6 . Klaus Huber defined codes over Gaussian integers. 
 In the further section, we intorduced the concept of neutrosophic code and establish the basic results of codes. We 
also developed the decoding procedures for neutrosophic codes and illustrate it with examples. 

 
Basic concepts 
 Definition 1 Let A be a finite set of q  symbols where ( )1q >  and let nV A=  be the set of n -tuples of 

elements of A where n  is some positive integer greater than 1.  In fact V is a vecotr space over A . Now letC
be a non empty subset of V . Then C is called a q -ary code of length n over .A   
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 Definition 2 Let nF be a vector space over the field F , and , nx y F∈  where 1 2... nx x x x= , 

1 2... ny y y y= . The Hamming distance between the vectors x  and y  is denoted by ( ),d x y , and is defined 

as ( ), : i id x y i x y= ≠ . 

Definition 3 The minimum distance of a code C  is the smallest distance between any two distinct codewords in 

C  which is denoted by  ( ) ,d C  that is ( ) ( ){ }min , : , ,d C d x y x y C x y= ∈ ≠ . 

 Definition 4 Let F be a finite field and n  be a positive integer. Let C  be a subspace of the vector space 
nV F= . Then C  is called a linear code over F . 

 Definition 5 The linear code C  is called linear [ ],n k -code if ( )dim C k= . 

 Definition 6 Let C  be a linear [ ],n k -code. Let G  be a k n×  matrix whose rows form basis of C .  

Then G  is called generator matrix of the code C . 
 Definition 7 Let C  be an [ ],n k -code over F . Then the dual code of C  is defined to be 

{ }: 0,nC y F x y x C⊥ = ∈ ⋅ = ∀ ∈  

 
 Definition 8 Let C  be an [ ],n k -code and let H  be the generator matrix of the dual code  C⊥ . Then H  

is called a parity-check matrix of the code C .  
 Definition 9 A code C  is called self-orthogonal code if  C C⊥⊂  . 
 Definition 10 Let C  be a code over the field F  and for every  nx F∈ , the coset of C  is defined to be 

{ }:C x c c C= + ∈  

 Definition 11 Let C  be a linear code over F . The coset leader of a given coset is defined to be the vector with 
least weight in that coset. 
 Definition 12 If a codeword x  is transmitted and the vector y  is received, then e y x= −  is called error 
vector. Therefore a coset leader is the error vector for each vector y  lying in that coset. 

Nuetrosophic code 
 Definition 13 Let C  be a q -ary code of length n  over the field F . Then the neutrosophic code is denoted 

by ( )N C , and is defined to be 

( )N C C nI= ∪  
 
where I  is indeterminacy and called neutrosophic element with the property 22 ,I I I I I+ = = . For an integer  

n ,  n I+ , nI  are neutrosophic elements and  0. 0I =  .  1I − , the inverse of I  is not defined and hence 
does not exist. 
 Example 1 Let { }000,111C =  be a binary code of length 3  over the field 2F Z= . Then the 

corresponding neutrosophic binary code is ( )N C , where 

( ) { }' ' '000,111, ,N C C III III I I I= ∪ =  

 
where ( )' 1I I= +  which is called dual bit or partially determinate bit. In 1 I+ , 1 is determinate bit and I  is 

indeterminate bit or multibit. This multibit is sometimes 0  and sometimes 1 . 
 Theorem 1 A neutrosophic code ( )N C is a neutrosophic vector space over the field F . 

 Definition 14 Let ( )nF I  be a neutrosophic vector space over the field F  and  ( ), nx y F I∈ ,  where 
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1 2... nx x x x= , 1 2... ny y y y= . The Haming neutrosophic distance between the neutrosophic vectors x  and y  

is denoted by ( ),Nd x y , and is defined as  ( ), :N j jd x y j x y= ≠ . 

 Example 2 Let the neutrosophic code ( )N C  be as in above example. Then the Hamming neutrosophic 

distance  ( ), 3Nd x y = , for all  ( ),x y N C∈ . 

 Remark 1 The Hamming neutrosophic distance satisfies the three conditions of a distance function: 
1)  ( ), 0Nd x y =  if and only if  x y= . 

2)  ( ) ( ), ,N Nd x y d y x=  for all  ( ), nx y F I∈ . 

3)  ( ) ( ) ( ), , ,N N Nd x z d x y d y z≤ +  for all  ( ), , nx y z F I∈ . 

 Definition 15 The minimum neutrosophic distance of a neutrosophic code ( )N C  is the smallest distance 

between any two distinct neutrosophic codewords in ( )N C . We denote the minimum neutrosophic distance by  

( )( )Nd N C .  Equivalently  ( )( ) ( ) ( ){ }min , : , ,N Nd N C d x y x y N C x y= ∈ ≠ .  

 Example 3 Let ( )N C  be a neutrosophic code over the field { }2 0,1F Z= = , where 

( ) { }' ' '000,111, ,N C C III III I I I= ∪ =  

 

with ( )' 1I I= + . Then the minimum neutrosophic distance ( )( ) 3.Nd N C =   

 Definition 16 Let C  be a linear code of lenght n  over the field F . Then  ( )N C C nI= ∪  is called 

neutrosophic linear code over F . 
 Example 4 In example ( )3 , { }000,111C =  is a linear binary code over the field  { }2 0,1F Z= = , and 

the required neutrosophic linear code is 

( ) { }' ' '000,111, ,N C C III III I I I= ∪ =  

 
where ( )' 1I I= + . 

 Theorem 2 Let C  be a linear code and ( )N C  be a neutrosohic linear code. If ( )dim C k= , then 

( )( )dim 1.N C k= +   

 Definition 17 The linear neutrosophic code ( )N C  is called linear [ ], 1n k + -neutrosophic code if 

( )( )dim 1.N C k= +  

 Theorem 3 The linear [ ], 1n k + -neutrosophic code ( )N C  contains the linear [ ],n k -code  C . 

 Theorem 4 The linear code C  is a subspace of the neutrosophic code ( )N C  over the field  F . 

 Theorem 5 The linear code C  is a sub-neutrosophic code of the neutrosophic code ( )N C   over the field 

F . 
 Theorem 6 Let B  be a basis of a linear code C  of lenght n  over the field F . Then  B nI∪  is the 

neutrosophic basis of the neutrosophic code ( ) ,N C  where I  is the neutrosophic element. 

 Theorem 7 If the linear code C  has a code rate 
k
n

, then the neutrosophic linear code  ( )N C  has code rate 
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1k
n
+

 . 

 Theorem 8 If the linear code C  has redundancy n k− , then the neureosophic code has redundancy 

( )1n k− + . 

 Definition 18 Let ( )N C  be a linear [ ], 1n k + -neutrosophic code. Let ( )N G  be a  ( )1k n+ ×  matrix 

whose rows form basis of ( ).N C  Then ( )N G  is called neutrosophic generator matrix of the neutrosophic 

code ( )N C . 

 Example 5 Let ( )N C  be the linear neutrosophic code of length 3  over the field F , where 

( ) { }' ' '000,111, ,N C C III III I I I= ∪ =  

 
with  ' 1 .I I= +  
 Let ( )N G  be a ( )1k n+ ×  neutrosophic matrixe where 

( )
2 3

1 1 1
N G

I I I ×

⎡ ⎤= ⎢ ⎥
⎣ ⎦

 

 
Then clearly ( )N G  is a neutrosophic generator matrix of the neutrosophic code ( )N C   because the rows of 

( )N G  generates the linear neutrosophic code ( )N C . In fact the rows of  ( )N G  form a basis of ( ).N G   

 Remark 2 The neutrosophic generator matrix of a neutrosophic code ( )N C  is not unique. 
We take the folowing example to prove the remark. 
 Example 6 Let ( )N C  be a linear neutrosophic code of length 3  over the field F , where 

( ) { }' ' '000,111, ,N C C III III I I I= ∪ =  

 
with ' 1I I= + . Then clearly ( )N C  has three neutrosophic generator matrices which are follows.  

( ) ( )

( )

1 2 ' ' '
2 3 2 3

3 ' ' '

1 1 1 1 1 1
, ,N G N G

I I I I I I

I I I
N G

I I I

× ×

⎡ ⎤ ⎡ ⎤= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦
⎡ ⎤= ⎢ ⎥
⎣ ⎦

 

 
 Theorem 9 Let G  be a generator matrix of a linear code C  and ( )N G  be the neutrosophic generator 

matrix of the neutrosophic linear code ( )N C , then G  is always contained in  ( ).N G   

 Definition 19 Let ( )N C  be an [ ], 1n k + -neutrosophic code over F . Then the neutrosophic dual code of 

the neutrosophic code ( )N C  is defined to be 

( ) ( ) ( ){ }: 0nN C y F I x y x N C
⊥

= ∈ = ∀ ∈g  

 
 Example 7 Let ( )N C  be a linear neutrosophic code of length 2  over the neutrosophic field  2F Z= , 
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where 

( ) { }' '00,11, ,N C II I I=  

 
with ' 1I I= + . 
Since 

( )
' '

2
2 ' ' ' ' ' '

00,01,0 ,0 ,10,11,1 ,1 ,
0, 1, , , 0, 1, ,

I I I I
F I

I I II II I I I I I I

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 

where ' 1I I= + . Then the neutrosophic dual code ( )N C
⊥

 of the neutrosophic code ( )N C  is given as 
follows, 

( ) { }' '00,11, , .N C II I I
⊥

=  

 

 Theorem 10 If the neutrosophic code ( )N C  has dimension 1k + , then the neutrosophic dual code ( )N C
⊥

 

has dimension ( )2 1n k− + . 

 Theorem 11 If C
⊥

 is a dual code of the code C  over F , then ( )N C
⊥

 is the neutrosophic dual code of 

the neutrosophic code ( )N C  over the field F , where ( )N C C nI
⊥ ⊥

= ∪ . 

Definition 20 A neutrosophic code ( )N C  is called self neutrosophic dual code if ( ) ( )N C N C
⊥

= . 

Example 8 In example ( )7 , the neutrosophic code ( )N C  is self neutrosophic dual code because 

( ) ( )N C N C
⊥

= . 

 Definition 21 Let ( )N C  be an [ ], 1n k + -neutrosophic code and let ( )N H  be the neutrosophic generator 

matrix of the neutrosophic dual code ( )N C
⊥

. Then ( )N H  is called a neutrosophic parity-check matrix of the 

neutrosophi code  ( )N C .  

 Example 9 Let ( )N C  be the linear neutrosophic code of length 3  over the field F , where 

( ) { }' ' '000,111, ,N C III I I I=  

 
with ' 1I I= + . The neutrosophic generator matrix is  

( )
2 3

1 1 1
N G

I I I ×

⎡ ⎤= ⎢ ⎥
⎣ ⎦

 

 

The neutrosophic dual code ( )N C
⊥

 of the above neutrosophic code ( )N C  is as following, 

( )

' '

' ' ' '

' ' ' ' ' '

000,011,101,110,1 ,1 ,
0 , 0 , 1 , 0, 0 , 1 ,

1, 0, 1,0

II I I
N C II I I I I II I I I I

I I I I II I I

⊥

⎧ ⎫
⎪ ⎪

= ⎨ ⎬
⎪ ⎪
⎩ ⎭
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The corresponding neutrosophic parity check matrix is given as follows, 

( )
'

'

1 1 0

0
0

I I I
N H

I I
I I

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎣ ⎦

 

 
 Theorem 12 Let ( )N C  be an [ ], 1n k + -neutrosophic code. Let ( )N G  and ( )N H  be neutrosophic 

generator matrix and neutrosophic parity check matrix of ( )N C  respectively. Then 

( ) ( ) ( ) ( )0T TN G N H N H N G= =  
 
 Remark 3 The neutrosophic parity check matrix ( )N H  of a neutrosophic code ( )N C  is not unique. 
To see the proof of this remark, we consider the following example. 
 Example 10 Let the neutrosophic code ( )N C  be as in above example. The neutrosophic parity check 

matrices of ( )N C  are given as follows.  

( ) ( )
' '

1 2

' '

1 1 0 1 0 1
1 1

,
0 0

0 0

I I I I
N H N H

I I I I
I I I I

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= =
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

 

 
and so on. 

 Definition 22 A neutrosophic code ( )N C  is called self-orthogonal neutrosophic code if  ( ) ( )N C N C ⊥⊂ . 

 Example 11 Let ( )N C  be the linear [ ]4,2 -neutrosophic code of length 4  over the neutrosophic field 

2F Z= , where 

( ) { }' ' ' '0000,1111, ,N C IIII I I I I=  

 

with ' 1I I= + . The neutrosophic dual code ( )N C ⊥
 of ( )N C  is following; 

( ) ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '

0000,1100,1010,1001,0110,0101,0011,1111, ,
, 00, 0 0, 00 ,0 0,0 0 ,00 ,...

IIII
N C

I I I I I I I I I I I I I I I I
⊥ ⎧ ⎫

= ⎨ ⎬
⎩ ⎭

 

 

Then clearly ( ) ( )N C N C ⊥⊂ . Hence ( )N C  is self-orthogonal neutrosophic code. 

 Theorem 13 If C  is self-orthognal code then ( )N C  is self-orthognal neutrosophic code. 

Pseudo Neutrosophic Code 
 Definition 23 A linear [ ], 1n k + -neutrosophic code ( )N C  is called pseudo linear [ ], 1n k + -neutrosophic 

code if it does not contain a proper subset of S  which is a linear [ ],n k -code. 
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 Example 12 Let ( )N C  be the linear neutrosophic code of length 3  over the field { }2 0,1F Z= = , where 

( ) { }' ' '000,111, ,N C III I I I=  

 
with ' 1I I= + . Then clearly ( )N C  is a pseudo linear [ ]3,2 -neutrosophic code because it does not contain a 

proper subset of C  which is a linear [ ]3,1 -code. 

 Theorem 14 Every pseudo linear [ ], 1n k + -neutrosophic code ( )N C  is a trivially a linear  [ ], 1n k +
-neutrosophic code but the converse is not true. 
We prove the converse by taking the following example. 
 Example 13 Let { }00,01,10,11C =  be a linear [ ]2,2 -code and ( )N C  be the corresponding linear 

[ ]2,3 -neutrosophic code of length 2  over the field { }2 0,1F Z= = , where 

( ) { }' ' ' '00,01,10,11, , , ,N C II II I I I I=  

 
with  ' 1I I= + . 
Then clearly ( )N C  is not a pseudo linear  [ ]2,3 -neutrosophic code because { }00,11  is a proper subspace of 

C  which is a code. 

Strong or Pure Neutrosophic Code 
 Definition 24 A neutrosophic code ( )N C  is called strong or pure neutrosophic code if  0 y≠  is 

neutrosophic codeword for all ( )y N C∈ . 

 Example 14 Let ( )N C  be the linear neutrosophic code of length 3  over the field  { }2 0,1F Z= = , where 

( ) { }000,N C III=  

 
Then clearly ( )N C  is a strong or pure neutrosophic code over the field F . 

 Theorem 15 Every strong or pure neutrosophic code is trivially a neutrosophic code but the converse is not true. 
For converse, let us see the following example. 
 Example 15 Let ( )N C  be a neutrosophic code of length 3over the field  { }2 0,1F Z= = , where 

( ) { }' ' '000,111, ,N C III I I I=  

 
with ' 1I I= + . Then clearly ( )N C  is not a strong or pure neutrosophic code. 

 Theorem 16 There is one to one correspondence between the codes and strong or pure neutrosophic codes. 
 Theorem 17 A neutrosophic vector space have codes, neutrosophic codes, and strong or pure neutrosophic codes. 
Decoding Algorithem 
 Definition 25 Let ( )N C  be a neutrosophic code over the field F and for every  ( )nx F I∈ ,  the 

neutrosophic coset of ( )N C  is defined to be 

( ) ( ){ }:
C

N C x c c N C= + ∈  

 
 Theorem 18 Let ( )N C  be a linear neutrosophic code over the field F  and let  ( )ny F I∈ . Then the 
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neutrosophic codeword x  nearest to y  is given by x y e= − , where e  is the neutosophic vector of the least 
weight in the neutrosophic coset containing y . 
if the neutrosophic coset containing y  has more than one neutrosophic vector of least weight, then there are more 
than one neutosophic codewords nearest to y . 

 Definition 26 Let ( )N C  be a linear neutrosophic code over the field F .  The neutrosophic coset leader of a 

given neutrosophic coset ( )C
N C  is defined to be the neutrosophic vector with least weight in that neutrosophic 

coset. 
 Theorem 19 Let F  be a field and ( )F I  be the corresponding neutrosophic vector space. If  F q= , then  

( ) 2F I q= . 

 Proof It is obvious. 
Algorithem 
   Let ( )N C  be an [ ], 1n k + -neutrosophic code over the field qF  with ( ) 2

qF I q= . As  ( )n
qF I  has 

2nq  elements and so there are 1kq +  elements in the coset of ( )N C . Therefore the number of distinct cosets of 

( )N C  are ( )2 1n kq − + . Let the coset leaders be denoted by  1 2, ,..., Ne e e , where ( )2 1n kN q − += . We also 

consider that the neutrosophic coset leaders are arranged in ascending order of weight; i.e ( ) ( )1i iw e w e +≤  for 

all i  and consequently 1 0e =   is the coset leader of ( ) ( )0N C N C= + . Let ( ) { }1 2, ,..., MN C c c c= , 

where 1kM q +=  and  1 0c = . The 2nq  vectors can be arranged in an N M×  table, which is given below. 

In this table the ( ),i j -entry is the neutrosophic vector i je c+ . The elements of the coset  ( )ie N C+  are in  

ith  row with the coset leader ie  as the first entry. The neutrosophic code ( )N C  will be placed on the top row. 

The corresponding table is termed as the standard neutrosophic array for the neutrosophic code ( )N C . 
 

1 10e c= =  2c  K  
jc  K  

Mc  

2e  2 2e c+  K  
2 je c+  K  

2 Me c+  

M M  M  M 

ie  2ie c+  K  
i je c+  K  

i Me c+  

M M  M  M 

Ne  2Ne c+  K  
N Je c+  K  

N Me c+  

      
 

Table 1. 
 
 For decoding, the standard neutrosophic array can be used as following: 
Let us suppose that a neutrosophic vector ( )n

qy F I∈  is recieved and then look at the position of  y  in the 

table. In the table if y  is the ( ),i j -entry, then i jy e c= +  and also ie  is the neutrosophic vector of least 

weight in the neutrosophic coset and by theoem it follows that  i jx y e c= − = . Hence the recieved neutrosophic 
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vector y  is decoded as the neutrosophic codeword at the top of the column in which y  appears. 
 Definition 27 If a neutrosophic codeword x  is transmitted and the neutosophic vector y  is received, then 
e y x= −  is called neutrosophic error vector. Therefore a neutrosophic coset leader is the neutrosophic error 
vector for each neutrosophic vector y  lying in that neutrosophic coset. 

 Example 16 Let ( )2
2F I  be a neutrosophic vector space over the field { }2 0,1F Z= = , where 

( )
' '

2
2 ' ' ' ' ' '

00,01,0 ,0 ,10,1 ,1 ,
0, 1, , , 0, 1, ,

I I I I
F I

I I II II I I I I I I

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 

with ' 1I I= + . Let ( )N C  be a neutrosophic code over the field { }2 0,1F Z= = , where 

( ) { }' '00,11, ,N C II I I=  

The following are the neutrosophic cosets of  ( ) :N C   

( ) ( )
( ) { } ( )
( ) { } ( )
( ) { } ( )

' '

' '

' ' ' '

00 ,

01 01,10, , 10 ,

0 0 ,1 , 0, 1 0 ,

0 0 ,1 , 1, 0 0

N C N C

N C II I I N C

I N C I I I I I N C

I N C I I I I I N C

+ =

+ = = +

+ = = +

+ = = +

 

 
The standard neutrosophic array table is given as under; 
 

00 11 II 'I 'I  

01 10 I 'I  'I I 

0I 1 'I  I0 'I 1 

0 'I  1I I1 'I 0 

 
Table 2. 

 
We want to decode the neutrosophic vector '1I . Since '1I  occures in the second coloumn and the top entry in 
that column is 11 . Hence '1I  is decoded as the neutrosophic codeword 11 . 
Sydrome Decoding 
 Definition 28 Let ( )N C  be an [ ], 1n k + -neutrosophic code over the field F  with neutrosophic 

parity-check matrix ( )N H . For any neutrosophic vector ( )n
qy F I∈ , the syndrome of y  is denoted by 

( )S y  and is defined to be 

( ) ( )TS y yN H=  
 

52



 Definition 29 A table with two columns showing the coset leaders ie  and the corresponding syndromes ( )iS e  
is called syndrome table. 
To decode a recieved neutrosophic vector ,y  compute the syndrome ( )S y  and then find the neutrosophic coset 

leader e  in the table for which ( ) ( )S e S y= . Then y  is decoded as  x y e= − . This algorithem is known 
as syndrome decoding. 
 Example 17 Let ( )2

2F I  be a neutrosophic vector space over the field { }2 0,1F Z= = , where 

( )
' '

2
2 ' ' ' ' ' '

00,01,0 ,0 ,10,1 ,1 ,
0, 1, , , 0, 1, ,

I I I I
F I

I I II II I I I I I I

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

 

with ' 1I I= + .  
Let ( )N C  be a neutrosophic code over the field { }2 0,1F Z= = , where 

( ) { }' '00,11, ,N C II I I=  

 
The neutosophic parity-check matrix of ( )N C  is 

( ) 1 1
N H

I I
⎡ ⎤= ⎢ ⎥
⎣ ⎦

 

 
First we find the neutrosophic cosets of  ( ) :N C   

( ) ( )
( ) { } ( )
( ) { } ( )
( ) { } ( )

' '

' '

' ' ' '

00 ,

01 01,10, , 10 ,

0 0 ,1 , 0, 1 0 ,

0 0 ,1 , 1, 0 0

N C N C

N C II I I N C

I N C I I I I I N C

I N C I I I I I N C

+ =

+ = = +

+ = = +

+ = = +

 

 

These are the neutrosophic cosets of  ( )N C .  After computing the syndrome ( )TeN H  for every coset leader, 
we get the following syndrome table. 
 

Coset leaders Syndrome 

00  00  

01  1I  

0I  II  

'0I  '0I  

Table 3. 
 
Let 10y = , and we want do decode it. So 
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( ) ( ) [ ]

[ ]

1
1 0

1

1

T I
S y yN H

I
I

⎡ ⎤= = ⎢ ⎥
⎣ ⎦

=
 

 
Hence ( ) ( )10 01S S=  and thus y  is decoded as the neutrosophic codeword 

10 01
11

x y e
x

= − = −
=

 

 
Thus we can find all the decoding neutrosophic codewords by this way. 
Advantages and Betterness of Neutrosophic code 

1) The code rate of a neutrosophic code is better than the ordinary code. Since the code rate of a 

neutrosophic code is 
1k

n
+

, while the code rate of ordinary code is 
k
n

. 

2) The redundancy is decrease in neutrosophic code as compared to ordinary codes. The redundancy of 
neutrosophic code is ( )1n k− + , while the redundancy of ordinary code is n k− . 

3) The number of neutrosophic codewords in neutrosophic code is more than the number of codewords in 
ordinary code. 

4) The minimum distance remains same for both of neutrosophic codes as well as ordinary codes. 
Conclusion 
 In this paper we initiated the concept of neutrosophic codes which are better codes than other type of codes. We 
first construct linear neutrosophic codes and gave illustrative examples. This neutrosophic algebriac structure is 
more rich for codes and also we found the containement of corresponding code in neutrosophic code. We also found 
new types of codes and these are pseudo neutrosophic codes and strong or pure neutrosophic codes. By the help of 
examples, we illustrated in a simple way. We established the basic results for neutosophic codes. At the end, we 
developed the decoding proceedures for neutrosophic codes. 
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