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Abstract: Based on the combination of single valued neutrosophic sets (SVNSs) and fuzzy numbers, this 

paper proposes the concepts of a neutrosophic number and a trapezoidal neutrosophic number (TNN) as the 

extension of an intuitionistic fuzzy number and an intuitionistic trapezoidal fuzzy number (ITFN), the basic 

operational relations of TNNs and the score function of TNN. Then, we develop a trapezoidal neutrosophic 

weighted arithmetic averaging (TNWAA) operator and a trapezoidal neutrosophic weighted geometric 

averaging (TNWGA) operator to aggregate TNN information and investigate their properties. Furthermore, 

a multiple attribute decision making method based on the proposed TNWAA and TNWGA operators and 

the score function of TNN is established under TNN environment. Finally, an illustrative example of 

investment alternatives is given to demonstrate the application and effectiveness of the developed 

approach. 
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1. Introduction 

Smarandache (1999) originally gave a concept of a neutrosophic set, which is a part of neutrosophy 

and generalizes fuzzy sets (Zadeh, 1965), interval valued fuzzy sets (IVFSs) (Turksen, 1986), intuitionistic 

fuzzy sets (IFSs) (Atanassov, 1986), and interval-valued intuitionistic fuzzy sets (IVIFSs) (Atanassov and 

Gargov, 1989) from philosophical point of view. To obtain the real applications, Wang et al. (2005, 2010) 

presented single valued neutrosophic sets (SVNSs) and interval neutrosophic sets (INSs), which are the 

subclasses of neutrosophic sets. They can independently express the truth-membership degree, 

indeterminacy-membership degree, and false-membership degree. SVNSs and INSs, as the generalization 

of IFSs and IVIFSs, can handle incomplete, indeterminate and inconsistent information which exists 

commonly in real situations, while IFSs and IVIFSs only express truth-membership degree and 

false-membership degree, but cannot deal with indeterminate and inconsistent information. Hence, SVNSs 

and INSs are very suitable for applications in decision making. Ye (2013) developed the correlation 

coefficient of SVNSs as the extension of the correlation coefficient of IFSs and proved that the cosine 

similarity measure of SVNSs is a special case of the correlation coefficient of SVNSs, and then applied it to 

single valued neutrosophic decision-making problems. Chi and Liu (2013) proposed an extended TOPSIS 

method for multiple attribute decision making under interval neutrosophic environment. Moreover, Ye 

(2014a) presented the Hamming and Euclidean distances between INSs and the distances-based similarity 
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measures of INSs, and then a multicriteria decision-making method based on the similarity measures of 

INSs was established in interval neutrosophic setting. Furthermore, Ye (2014b) proposed a cross-entropy 

measure of SVNSs and applied it to multicriteria decision making problems with single valued 

neutrosophic information. Ye (2014c) further introduced a simplified neutrosophic set (SNS) as a subclass 

of a neutrosophic set, which includes SVNS and INS, and developed the simplified neutrosophic weighted 

averaging (SNWA) operator and the simplified neutrosophic weighted geometric (SNWG) operator, and 

their applications in multicriteria decision-making under simplified neutrosophic environment. Liu et al. 

(2014) further proposed some generalized single valued neutrosophic number Hamacher aggregation 

operators and applied them to group decision making. Then, Zhang et al. (2014) defined the score, accuracy, 

and certainty functions for INSs and presented a comparison approach, and then they also developed some 

aggregation operators for INNs and a multicriteria decision making method by means of the aggregation 

operators. On the other hand, Ye (2014d) put forward vector similarity measures, including the Dice, 

Jaccard, and cosine measures of SNSs, and applied them to multicriteria decision making problems in the 

simplified neutrosophic setting. Biswas et al. (2014 established a single valued neutrosophic multiple 

attribute decision-making method with unknown weight information, where optimization models were used 

to determine unknown attribute weights and the grey relational coefficient of each alternative from ideal 

alternative was utilized to rank alternatives. Zhang and Wu (2014) also developed a method for solving 

single valued neutrosophic multicriteria decision making problems with incomplete weight information, in 

which the criterion values are given in the form of single-valued neutrosophic sets (SVNSs), and the 

information about criterion weights is incompletely known or completely unknown.  

Intuitionistic fuzzy numbers (IFNs) and intuitionistic trapezoidal fuzzy numbers (ITFNs) introduced in 

(Wang and Zhang, 2009) are the extending of IFSs in another way, which extends discrete set to continuous 

set. Then the domains of SVNSs and INSs are discrete sets, but not continuous sets in existing literature. 

The advantage of continuous sets is that they include much information and the fuzziness in multiple 

attribute decision making has the better character because of the proposal of fuzzy number (Wang and 

Zhang, 2009). At present, there are no studies on neutrosophic numbers and trapezoidal neutrosophic 

numbers (TNNs) in above mentioned decision-making problems. Motivated by the reference (Wang and 

Zhang, 2009), we should make the truth-membership, indeterminacy-membership, falsity-membership 

degrees in a SVNS no longer relative to single values, but relative to fuzzy numbers or trapezoidal fuzzy 

numbers. Thus we can introduce the concepts of a neutrosophic number and a TNN, which extends discrete 

set to continuous set, as the extension of IFN and ITFN (Wang and Zhang, 2009). However, TNN is a 

special case of a neutrosophic number and useful in practical applications, and is of importance for 

neutrosophic multiple attribute decision making problems. Therefore, the purposes of this article are: (1) to 

introduce the concepts of a neutrosophic number and a TNN, some basic operational relations of TNNs and 

a score function for TNN, (2) to propose two aggregation operators: a trapezoidal neutrosophic weighted 

arithmetic averaging (TNWAA) operator and a trapezoidal neutrosophic weighted geometric averaging 

(TNWGA) operator, and (3) to establish a decision making approach based on the TNWAA and TNWGA 

operators and the score function of TNN under TNN environment. 

The rest of the article is organized as follows. Section 2 briefly describes some concepts of IFNs, 

ITFNs and operational relations for ITFNs. Section 3 proposes the concepts of a neutrosophic number and a 

TNN and defines some basic operations of TNNs and the score function of TNN. In Section 4, we develop 

TNWAA and TNWGA operators for TNNs and investigate their properties. Section 5 establishes a decision 

making approach based on the TNWAA and TNWGA operators and the score function under TNN 

environment. In Section 6, an illustrative example is provided to illustrate the application of the developed 
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method. Section 7 contains a conclusion and future research. 

 

2. Intuitionistic fuzzy numbers and Intuitionistic trapezoidal fuzzy numbers 

In this section, we briefly describe some concepts of IFNs, ITFNs and operational relations for ITFNs. 

Definition 1 (Wang and Zhang, 2009). Let a~  be an IFN in the set of real numbers R, then its membership 

function is defined as  
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and its nonmembership function is defined as 
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where a~ , a~  [0, 1], 0  a~ + a~   1 and a1, a2, a3, a4, b1, b2, b3, b4  R, and four functions af~ , ag~ , 

ah~ , ak~ : R [0, 1] are called the side of a fuzzy number. The functions af~ , ak~  are increasing continuous 

functions and the functions ag~ , ah~  are decreasing continuous functions. 

Particularly, if the increasing functions af~ , ak~  and decreasing functions ag~ , ah~  are linear, then we 

have ITFNs, which are preferred in practice. 

Definition 2. Let a~  be an ITFN. Then, the membership function and nonmembership function can be 

defined, respectively, as follows (Wang and Zhang, 2009): 
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where a~ , a~  [0, 1], 0  a~ + a~   1 and a1, a2, a3, a4, b1, b2, b3, b4  R. Generally, if [a1, a2, a3, a4] = 
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[b1, b2, b3, b4] in an ITFN a~ , then the ITFN a~  is denoted as a~  = (a1, a2, a3, a4); a~ , a~ . 

ITFNs have the following operational relations (Wang and Zhang, 2009): 

Definition 3 (Wang and Zhang, 2009). Let aaaaaaa ~~4321 ,);,,,(~   and 
bb

bbbbb ~~4321 ,);,,,(
~   

be two ITFNs and   0. Then there are the following operational relations: 

(1) 
babababababababa ~~~~~~44332211 ,);,,,(

~~   ; 

(2) 
babababababababa ~~~~~~44332211 ,);,,,(

~~   ; 

(3)   aaaaaaa ~~4321 ,)1(1);,,,(~  ; 

(4)   )1(1,);,,,(~
~~4321 aaaaaaa  . 

 

3. Neutrosophic numbers and trapezoidal neutrosophic numbers 

In this section, motivated by IFNs and ITFNs, we propose neutrosophic numbers and TNNs based on 

the combination of SVNSs and fuzzy numbers as the generalization of IFNs and ITFNs, which extend 

discrete sets to continuous sets. 

Smarandache (1999) firstly presented a neutrosophic set from philosophical point of view. To easily 

apply the neutrosophic set to practical problems. Wang et al (2010) introduced the concept of a SVNS, 

which is a subclass of the neutrosophic set. 

Definition 4 (Wang et al, 2010). Let X be a space of points (objects) with generic elements in X denoted by 

x. A SVNS N in X is characterized by a truth-membership function TN(x), an indeterminacy-membership 

function IN(x),
 
and a falsity-membership function FN(x). Then, a SVNS N can be denoted by 

 XxxFxIxTxN NNN  |)(),(),(, , 

where the sum of TN(x), IN(x), FN(x)  [0, 1] satisfies 0 ≤ TN(x) + IN(x) + FN(x) ≤ 3 for each point x in X. For 

convenience, we can use the simplified symbol nx = <Tx, Ix, Fx> to represent a basic element in a SVNS N, 

and call it a single valued neutrosophic number (SVNN). 

Different from the definition of SVNS, we make the truth-membership, indeterminacy-membership 

and falsity-membership degrees no longer relative to single values, but relative to fuzzy numbers. Then, we 

can give the following definitions of a neutrosophic number and a TNN. 

Definition 5. Let n~  be a neutrosophic number in the set of real numbers R, then its truth-membership 

function is defined as 
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its indeterminacy-membership function is defined as 
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and its falsity-membership function is defined as 
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where nT~ , nI~ , nF~  [0, 1], 0  nT~ + nI~ + nF~   3 and a1, a2, a3, a4, b1, b2, b3, b4 , c1, c2, c3, c4  R, and six 

functions nf~ , ng~ , nh~ , nk~ , np~ , nq~ : R [0, 1] are called the side of a fuzzy number. The 

functions nf~ , nk~ , nq~  are increasing continuous functions and the functions ng~ , nh~ , np~ are decreasing 

continuous functions.  

Especially, if the increasing functions nf~ , nk~ , nq~  and decreasing functions ng~ , nh~ , np~ are linear, then 

we have a TNN, which is preferred in practice. 

Definition 6. Let n~  be a TNN. Then, the truth-membership function, indeterminacy-membership 

function, and falsity-membership function can be defined, respectively, as follows: 
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where nT~ , nI~ , nF~  [0, 1], 0  nT~ + nI~ + nF~   3 and a1, a2, a3, a4, b1, b2, b3, b4 , c1, c2, c3, c4  R. Then, 

n~  = ([a1, a2, a3, a4]; nT~ ), ([b1, b2, b3, b4]; nI~ ), ([c1, c2, c3, c4]; nF~ ) is called a TNN. Generally, if [a1, a2, 

a3, a4] = [b1, b2, b3, b4] = [c1, c2, c3, c4] in a TNN n~ , then the TNN n~  can be denoted as n~  = (a1, a2, a3, 

a4); nT~ , nI~ , nF~ . 

If a2 = a3 in a TNN n~ , The TNN n~  reduces to the triangular neutrosophic number, which is 

considered as a special case of the TNN n~ . If a1 = a2 = a3 = a4 = 1 in a TNN n~ , then the TNN n~  

reduces to the SVNN. 

If 0  a1  a2  a3  a4, then n~  is called a positive TNN. If a1  a2  a3  a4  0, then n~  is called a 

negative TNN. If 0  a1  a2  a3  a4  1 and nT~ , nI~ , nF~  [0, 1], then n~  is called a normalized TNN, 

which is used for this paper. 

Thus, we can introduce the following operational relations of TNNs: 

Definition 7. Let 
111

~~~43211 ,,);,,,(~
nnn FITaaaan   and 

222
~~~43212 ,,);,,,(~
nnn FITbbbbn   be two TNNs 

and   0. Then there are the following operational relations: 

(1) 
21212121

~~~~~~~~4433221121 ,,);,,,(~~
nnnnnnnn FFIITTTTbabababann  ; 

(2) 
2121212121

~~~~~~~~~~4433221121 ,,);,,,(~~
nnnnnnnnnn FFFFIIIITTbabababann  ; 

(3) 
111

~~~43211 ,,)1(1);,,,(~
nnn FITaaaan  ; 

(4)  )1(1,)1(1,);,,,(~
111

~~~43211 nnn FITaaaan  . 

Based on the expected value of an ITFN (Wang and Zhang, 2009) and the score function of an interval 

neutrosophic value (Zhang et al, 2014), we can give the following definition of a score function for a TNN. 

Definition 8. Let nnn FITaaaan ~~~4321 ,,);,,,(~   be a TNN. Then there is the score function of n~ : 

)2)((
12

1
)~( ~~~4321 aaa FITaaaaaS  , ]1,0[)~( aS .        (11) 

For the comparison between two TNNs, a comparative method based on the score function is defined as 

follows. 

Definition 9. Let 
111

~~~43211 ,,);,,,(~
nnn FITaaaan   and 

222
~~~43212 ,,);,,,(~
nnn FITbbbbn   be two TNNs. 

Then, if S( 1
~n ) > S( 2

~n ), then 1
~n  > 2

~n ; if S( 1
~n ) = S( 2

~n ), then 1
~n  = 2

~n . 
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For example, let two TNNs be 1
~n  = (0.4, 0.5, 0.6, 0.7); 0.4, 0.2, 0.3 and 2

~n  = (0.6, 0.7, 0.8, 0.9); 

0.6, 0.3, 0.4. In this case, we can compare them according to the score values. Since S( 1
~n ) = (0.4 + 0.5 + 

0.6 + 0.7)(2 + 0.4 - 0.2 - 0.3)/12 = 0.3483 and S( 2
~n ) = (0.6 + 0.7 + 0.8 + 0.9)(2 + 0.6 - 0.3 - 0.4)/12 = 0.475, 

by Definition 9, there is 1
~n  < 2

~n . 

 

4. Two weighted aggregation operators of TNNs 

Since aggregation operators are an important tool for aggregated information in decision-making 

process, this section proposes two weighted aggregation operators to aggregate TNNs as a generalization of 

the weighted aggregation operators for ITFNs (Wang and Zhang, 2009), which are usually used in decision 

making. 

4.1. Trapezoidal neutrosophic weighted arithmetic averaging operator 

Definition 10. Let 
jjj nnnjjjjj FITaaaan ~~~4321 ,,);,,,(~   (j = 1, 2, . . . , n) be a collection of TNNs, then a 

TNWAA operator is defined as follows: 

  j
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where wj is the weight of jn~ (j = 1, 2, . . . , n) such that wj > 0 and 1
1

 

n

j jw . Specially, when wj = 1/n 

for j = 1, 2, . . . , n, the TNWAA operator reduces to the trapezoidal neutrosophic arithmetic averaging 

operator. 

According to Definitions 7 and 10, we can introduce the following theorem. 

Theorem 1. Let 
jjj nnnjjjjj FITaaaan ~~~4321 ,,);,,,(~   (j = 1, 2, …, n) be a collection of TNNs, then 

according to Definitions 7 and 10, we can give the following TNWAA operator: 
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where wj is the weight of jn~  (j = 1, 2, . . . , n) such that wj > 0 and 1
1

 

n

j jw .  

Theorem 1 can be proved by means of mathematical induction. 

Proof: 

(1) When n = 2, then, 
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(2) When n = k, by applying Eq. (13), we get 
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(3) When n = k + 1, by applying Eqs. (14) and (15), we can yield 
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Therefore, considering the above results, we have Eq. (13) for any n. This completes the proof. � 

Obviously, the TNWAA operator satisfies the following properties: 

(1) Idempotency: Let jn~  (j = 1, 2, . . . , n) be a collection of TNNs. If jn~  (j = 1, 2, . . . , n) is equal, i.e. 

jn~  = n~  for j = 1, 2, . . . , n, then   nnnnTNWAA n
~~,,~,~

21  . 

(2) Boundedness: Let jn~  (j = 1, 2, . . . , n) be a collection of TNNs and let 
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Then     nnnnTNWAAn n
~~,,~,~~

21  . 

(3) Monotonity: Let jn~  (j = 1, 2, . . . , n) be a collection of TNNs. If jn~   *~
jn  for j = 1, 2, . . . , n, then 

   **
2

*
121

~,,~,~~,,~,~
nn nnnTNWAAnnnTNWAA   . 

Proof: 

(1) Since jn~  = n~  for j = 1, 2, . . . , n, we have 
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 (2) Since minimum TNN is n~  and maximum TNN is n~ , there is n~   jn~   n~ . Thus, there is 
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21  . 

(3) Since jn~   *~
jn  for j = 1, 2, . . . , n, there is 
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Thus, we complete the proofs of these properties. � 

4.2. Trapezoidal neutrosophic weighted geometric averaging operator 

Definition 11. Let 
jjj nnnjjjjj FITaaaan ~~~4321 ,,);,,,(~   (j = 1, 2, . . . , n) be a collection of TNNs, then a 

TNWGA operator is defined as follows: 

  



n

j

w
jn

jnnnnTNWGA
1

21
~~,,~,~  ,                      (17) 

where wj is the weight of jn~ (j = 1, 2, . . . , n) such that wj > 0 and 1
1

 

n

j jw . Specially, when wj = 1/n 

for j = 1, 2, . . . , n, the TNWGA operator reduces to the trapezoidal neutrosophic geometric averaging 

operator. 

According to Definitions 7 and 11, we introduce the following theorem. 

Theorem 2. Let 
jjj nnnjjjjj FITaaaan ~~~4321 ,,);,,,(~   (j = 1, 2, …, n) be a collection of TNNs, then 

according to Definitions 7 and 11, the following TNWGA operator is given by 
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where wj is the weight of jn~ (j = 1, 2, . . . , n) such that wj > 0 and 1
1

 

n

j jw . 
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By a similar proof manner of Theorem 1, we can prove Theorem 2, which is not repeated here. 

Obviously, the TNWGA operator satisfies the following properties: 

(1) Idempotency: Let jn~  (j = 1, 2, . . . , n) be a collection of TNNs. If jn~  (j = 1, 2, . . . , n) is equal, i.e. 

jn~  = n~  for j = 1, 2, . . . , n, then   nnnnTNWGA n
~~,,~,~

21  . 

(2) Boundedness: Let jn~  (j = 1, 2, . . . , n) be a collection of TNNs and let 
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Then     nnnnTNWGAn n
~~,,~,~~

21  . 

(3) Monotonity: Let jn~  (j = 1, 2, . . . , n) be a collection of TNNs. If jn~   *~
jn  for j = 1, 2, . . . , n, then 

   **
2

*
121

~,,~,~~,,~,~
nn nnnTNWGAnnnTNWGA   . 

By a similar proof manner of the above properties, we can prove these properties (omitted). 

 

5. Decision making method with TNNs 

In this section, we apply the TNWAA and TNWGA operators and the score function to multiple 

attribute decision making problems under the TNN environment. 

For a multiple attribute decision making problem, assume that there are a set of alternatives A = {A1, 

A2, …, Am} based on a set of attributes C = {C1, C2, …, Cn}. The weigh vector of the attributes is W = (w1, 

w2, . . . , wn)
T, which is given by the decision maker. Then, the decision maker can evaluate the alternatives 

on the attributes by the linguistic values of TNNs from the linguistic term set L = {Very poor, poor, Fairly 

poor, Medium, Fairly good, Good, Very good}, which are shown in Table 1. In the evaluation process, the 

decision maker can easily assign the linguistic values of TNNs to the attributes according to the linguistic 

terms, hence the evaluation information of the alternative Ai on the attributes is represented by the form of a 

TNN ijn~  = (aij1, aij2, aij3, aij4); Tij, Iij, Fij (i = 1, 2, …, m; j = 1, 2, …, n). Thus, we can establish a 

trapezoidal neutrosophic decision matrix D = ( ijn~ )mn. 

Then, we apply the TNWAA or TNWGA operator and the score function to the multiple attribute 

decision-making problems with trapezoidal neutrosophic information to rank the alternatives and to select 

the best one. The steps of the decision-making process are described as follows: 

Step 1: Utilize the TNWAA operator of Eq. (13) to obtain the collective overall number in~  for Ai (i = 

1, 2, …, m) with respect to the weight vector W = (w1, w2, . . . , wn)
T for Cj (j = 1, 2, …, n) or the TNWGA 

operator of Eq. (18) to obtain the collective overall value in~  for Ai (i = 1, 2, …, m) with respect to the 

weight vector W = (w1, w2, . . . , wn)
T for Cj (j = 1, 2, …, n). 

Step 2: Calculate the score function S( in~ ) (i = 1, 2,…, m) of the collective overall number in~  (i = 1, 
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2, …, m). 

Step 3: Rank the alternatives according to the score values, and then select the best alternative. 

Step 4: End. 

 

6. An illustrative example 

In order to demonstrate the application of the proposed method, an example about the investment 

selection of a company is adapted from (Ye, 2014c). There is a company, which wants to invest a sum of 

money to an industry. A panel considers four alternatives: (1) A1 is a car company; (2) A2 is a food 

company; (3) A3 is a computer company; (4) A4 is an arms company. The evaluation on the alternatives is 

based on three attributes: (1) C1 is the risk; (2) C2 is the growth; (3) C3 is the environmental impact. The 

weigh vector of the three attributes is W = (0.35, 0.25, 0.4)T. When the four possible alternatives with 

respect to the above three attributes are evaluated by the expert or decision maker according to the 

linguistic values of TNNs for the linguistic term set in Table 1.  

 

Table 1. Linguistic values of TNNs for the linguistic term set 

Linguistic term Linguistic value of TNNs 

Very poor (0.1, 0.1, 0.1, 0.1); 0.5, 0.3, 0.3
Poor (0.2, 0.3, 0.4, 0.5); 0.6, 0.2, 0.2

Fairly poor (0.3, 0.4, 0.5, 0.6); 0.7, 0.1, 0.1
Medium (0.4, 0.5, 0.6, 0.7); 0.8, 0.0, 0.1

Fairly good (0.5, 0.6, 0.7, 0.8); 0.7, 0.3, 0.3
Good (0.7, 0.8, 0.9, 1.0); 0.8, 0.2, 0.2

Very good (1.0, 1.0, 1.0, 1.0); 0.9, 0.1, 0.1

 

Thus, we can establish the following trapezoidal neutrosophic decision matrix D: 























1.0,1.0,7.0);6.0,5.0,4.0,3.0(3.0,3.0,7.0);8.0,7.0,6.0,5.0(2.0,2.0,8.0);0.1,9.0,8.0,7.0(

1.0,1.0,7.0);6.0,5.0,4.0,3.0(1.0,1.0,7.0);6.0,5.0,4.0,3.0(2.0,2.0,6.0);5.0,4.0,3.0,2.0(

1.0,1.0,7.0);6.0,5.0,4.0,3.0(3.0,3.0,7.0);8.0,7.0,6.0,5.0(1.0,0.0,8.0);7.0,6.0,5.0,4.0(

2.0,2.0,6.0);5.0,4.0,3.0,2.0(1.0,1.0,7.0);6.0,5.0,4.0,3.0(2.0,2.0,6.0);5.0,4.0,3.0,2.0(

D . 

Hence, the proposed method can be applied to this decision making problem according to the 

following computational process: 

Step 1: Utilize the TNWAA operator of Eq. (13) to obtain the collective overall value in~  for Ai (i =1, 2, 3, 

4) as follows: 

1
~n  = (0.2250, 0.3250, 0.4250, 0.5250); 0.6278, 0.1682, 0.1682, 2

~n  = (0.3850, 0.4850, 0.5850, 

0.6850); 0.7397, 0, 0.1316, 3
~n  = (0.2650, 0.3650, 0.4650, 0.5650); 0.6682, 0.1275, 0.1275, and 

4
~n  = (0.4900, 0.5900, 0.6900, 0.7900); 0.7397, 0.1677, 0.1677. 

Step 2: Calculate the score values of S( in~ ) (i =1, 2, 3, 4) of the collective overall value in~  (i =1, 2, 3, 4) 

by Eq. (11), we can obtain: 
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S( 1
~n ) = 0.2864, S( 2

~n ) = 0.4651, S( 3
~n ) = 0.3338, and S( 4

~n ) = 0.5129. 

Step 3: Ranking order of the four alternatives is A4  A2  A3  A1 according to the score values. Thus, the 

alternative A4 is the best choice among the four alternatives.  

On the other hand, we can also utilize the TNWGA operator to give the following computational 

procedure: 

Step 1’: By utilizing the TNWAA operator of Eq. (18) for Ai (i = 1, 2, 3, 4), then each collective overall 

value in~  (i =1, 2, 3, 4) is obtained as follows: 

1
~n  = (0.2213, 0.3224, 0.4229, 0.5233); 0.6236, 0.1761, 0.1761, 2

~n  = (0.3770, 0.4786, 0.5797,    

0.6805); 0.7335, 0.1231, 0.1548, 3
~n  = (0.2603, 0.3617, 0.4624, 0.5629); 0.6632, 0.1363, 

0.1363, and 4
~n  = (0.4585, 0.5642, 0.6681, 0.7710); 0.7335, 0.1889, 0.1889. 

Step 2’: By using Eq. (11), we calculate the score values of S( in~ ) (i =1, 2, 3, 4) of the collective overall 

value in~  (i =1, 2, 3, 4) as follows:  

S( 1
~n ) = 0.2820, S( 2

~n ) = 0.4330, S( 3
~n ) = 0.3282, and S( 4

~n ) = 0.4833. 

Step 3’: Hence, the ranking order of the four alternatives is A4  A2  A3  A1. Thus, the alternative A4 is 

still the best choice among the four alternatives. 

Obviously, above two kinds of ranking orders and the best alternative are the same, which are in 

agreement with Ye’s results (Ye, 2014c). 

Compared with the relevant paper (Wang and Zhang, 2009) which proposed the intuitionistic 

trapezoidal fuzzy decision-making approach, the decision information used in (Wang and Zhang, 2009) is 

ITFNs, whereas the decision information in this paper is TNNs. As mentioned above, the TNN is a further 

generalization of the ITFN. So the decision-making method proposed in this paper is more typical and more 

general in applications since the decision-making method proposed in (Wang and Zhang, 2009) is a special 

case of the decision-making method proposed in this paper. Furthermore, compared with the relevant 

papers (Wang and Zhang, 2009; Ye, 2013; Chi and Liu, 2013; Ye, 2014a, 2014b, 2014c, 2014d; Liu et al, 

2014; Zhang et al, 2014; Biswas et al, 2014; Zhang and Wu, 2014), the decision-making approach proposed 

in this paper can be used to solve decision-making problems with triangular and trapezoidal neutrosophic 

information, whereas the decision-making methods in (Wang and Zhang, 2009; Ye, 2013; Chi and Liu, 

2013; Ye, 2014a, 2014b, 2014c, 2014d; Liu et al, 2014; Zhang et al, 2014; Biswas et al, 2014; Zhang and 

Wu, 2014) are not suitable for the decision-making problems in this paper. Therefore, the method proposed 

in the paper is a generalization of existing methods since existing methods cannot represent and handle 

TNN information in decision making. 

 

7. Conclusion 

This paper proposed neutrosophic numbers and TNNs and the operational relations of TNNs as the 

extension of IFNs and ITFNs and the score function of TNN. Then we developed the TNWAA and 

TNWGA operators to aggregate TNNs and investigated their properties. Further, we established a decision 
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making method based on the TNWAA or TNWGA operator and the score function to solve multiple 

attribute decision-making problems with TNN information. Finally, an illustrative example was given to 

show the application of the developed decision making method. An efficient method is provided to solve 

fuzzy multiple attribute decision making problems based on TNNs．In the future research, it is necessary to 

investigate the applications of these aggregation operators to the other domains such as pattern recognition 

and medical diagnosis.  
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