A COMPUTER PROGRAM TO SOLVE WATER JUG POURING
PUZZLES

RICHARD J. MATHAR

ABSTRACT. We provide a C++ program which searches for the smallest num-
ber of pouring steps that convert a set of jugs with fixed (integer) capacities
and some initial known (integer) water contents into another state with some
other prescribed water contents. Each step requires to pour one jug into an-
other without spilling until either the source jug is empty or the drain jug is
full—because the model assumes the jugs have irregular shape and no further
marks.

The program simply places the initial jug configuration at the root of the
tree of state diagrams and deploys the branches (avoiding loops) recursively
by generating all possible states from known states in one pouring step.

1. LiQuiD POURING: THE RULES

1.1. Standard Puzzle. The grand father of the liquid pouring puzzles comes like
this: Supposed there are three water jugs with capacities of 8, 5 and 3—in some
units like liters or gallons. The largest is filled with water to capacity and the other
two are empty. The jugs have irregular shapes and no further volume marks. How
does one get 4 units into one of them by pouring water from one jug to another?
How many of these pouring steps are needed at minimum?

The rules of pouring water from any jug into another derive from the fact that
there are two implicit marks on each jug, the mark of its capacity (full) and the
mark of 0 (empty). Pouring exchanges liquid until either the source jug gets empty
or until the target jug is full, whichever happens first [5]. If we note the liquid
content of the 3 jugs of capacities (8,5,3) in that order as a triple of integers, one
solution of the problem is [8,0,0] — [3,5,0] — [3,2,3] — [6,2,0] — [6,0,2] — [1,5,2]
— [1,4,3]. In plain words: This means 7 steps suffice to get 4 units into the jug of
capacity 5: first fill the jug of capacity 5 to the rim; then pour from the jug with
capacity 5 into the jug of capacity 3 to the rim; then pour all water from the jug
with capacity 3 into the jug of capacity 8; then pour all water from the jug with
capacity 5 into the jug of capacity 3; then fill the jug of capacity 5 to the rim from
the jug of capacity 8 (again); finally pour from the jug of capacity 5 to the jug of
capacity 3 up to the rim. This leaves a state where the middle size jug holds 4
units.

1.2. Volume Exchanged. The rule of pouring liquid from a “source” jug with
capacity ¢; (1 < s < 3, the jug number) containing fs units (0 < fs < ¢;) to a
“destination” jug with capacity ¢q (1 < d < 3, the jug number) containing fy; units
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requires to halt when the jug s is empty or jug d is full. This transfers either fs or
¢q — fq units, which may be written as

(1) te—q = min(fs, cq — fa)

units. In the puzzle such a step makes only sense if that value is positive, t > 0,
because a step that does not actually change the jugs’ contents would be a waste of
steps. In our bracket notation this is a step [..., fo,... fa] = [--+, fs —t,- .. fa+1].

Remark 1. Because the exchanged volume t is a unique function of the capacities
and filling states, one could actually compress the notation of the steps by writing
down only the two indices of the source and destination jug at each step to express
the actions.

The steps are not necessarily reversible, i.e, it may be impossible to undo the
liquid exchange ¢ by swapping the roles (indices s and d) under some circumstances
[16]. Consider for example two jugs with capacities (5,3) initially filled with [1,2],
then pouring all of the bigger jug—1 unit—into the smaller, so they are filled with
[0,3] afterwards. The rules then forbid to pour the 1 unit from the smaller jug back
into the larger jug, because neither the smaller jug nor the larger jug has a mark to
stop after 1 unit. (The states do not have memory, so to speak.) The requirements
for a reversible step can be summarized as follows by equating the two values t of
the pouring and its reverse:

Theorem 1. A pouring is reversible if (and only if) either the source jug is full or
the destination jug is empty (or both).

Remark 2. Because the capacities c; of the jugs do not change while pouring, one
could also rephrase this as an exchange of air volumes

(2) a; = Cj — fj

between pairs of jugs—similar to the introduction of hole states instead of electrons
in semiconductor physics. This rephrasing does not change the nature of the puzzle.

In any case the total capacity

J
(3) C= Z ¢
j=1
of the J jugs, the total water content
J
(4) F=>f
j=1
and the total air content
J
(5) A= Z a;
j=1

stay constant.
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1.3. 2 Jugs Puzzles. The discussion above exchanges water between jugs without
spilling; the total content ), f; of all jugs is constant through all the steps.

There is a variant of the puzzle which states the following problem [17]: given
two jugs of capacity 5 and 3, plus a water tap as an infinite source and a drain which
swallows any amount of water, how can 4 units be put into the jug of capacity 57
We realize that a solution is found by striking the filling state of the jug of capacity
8 from the solution of Section 1.1: [0,0] — [5,0] — [2,3] — [2,0] — [0,2] — [5,2] —
[4,3]. This means: fill the large jug from the tap; then fill the small jug from the
large jug; pour the small jug into the drain; pour all of the large jug into the small
jug; fill the large jug from the tap; finally fill the small jug from the large jug. We
have actually replaced pouring water into our out of the jug of capacity 8 in Section
1.1 by pouring water into the drain or refilling from the tap.

Solving such a puzzle with 2 jugs and infinite source and drain is equivalent to
a puzzle with 3 jugs as follows: Define the initial air content of the third jug to
be the total liquid content of the other jugs, as = Zj<3 fj- Define initial liquid
content of the third jug to be the total air content of the other jugs, f3 = Zj<3 aj.
Necessarily the capacity of the third jug equals the sum of the capacities of the
other jugs, c3 = a3z + f3 = Zj<3 ¢j, and a total liquid volume in all three jugs is
the same, F' = Zj fi=/fs+ Zj<3 fi= Zj<3 a; + Ej<3 fi= Zj<3 Cj-

This ensures that the additional jug can play the roles both as the tap and as
the drain in a sort of recycling buffer of sufficient capacity:

e Whatever was poured into the drain in the 2 jugs puzzle can be poured
into the large jug in the 3 jugs puzzle, because its capacity is large enough
to be refilled with the full content of any of the 2 smaller jugs. (Note that
frequent refilling in the 2 jugs puzzle can be served in the 3 jugs puzzle
from the large jug because everything that is poured into the drain in the
2 jugs puzzle returns to the large jug in the 3 jugs puzzle.)

e Whatever was coming out of the tap in the 2 jugs puzzle can be poured
out of the large jug in the 3 jugs puzzle because its initial content was large
enough to comply with a full filling of the smaller jugs.

e The next concern is whether the third jug adds transitions that have no
counterpart in the 2 jugs puzzle. Is it possible for example that the third jug
is at some time filled with 4 units which are poured into the jug of capacity 5,
which is impossible in the 2 jugs puzzle, which might add artificial solutions
to the problem? This scenario actually cannot occur.

Proof. Supposed we would pour the 4 units from the jug with ¢ = 8 to
the jug with ¢ = 5—which does not change the total liquid volume F'.
Afterwards the jug with ¢ = 8 is empty and the destination jug with ¢ =5
is not full. The total liquid volume F' in all jugs therefore is the liquid
volume only in the two smaller jugs, FF = > j<3 fj. This volume is less
than the total capacity of the two smaller jugs because at least one of the
smaller jugs is not full, F' < > j<3Ci- And this contradicts the construction

shown above which maintains F' =) ._,¢; at all time. O

§<3
e The remaining concern is that the solution with a minimum number of
steps that results with 4 units in any jug ends up with a state where the
4 units are in the largest jug. Apparently these spurious solutions of the 3
jug puzzle which have no counterpart in the 2 jug puzzle cannot be avoided;
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so the puzzle must be formulated with the constraint that the 4 units of
liquid end up in the jug of capacity 5 to have equivalent transitions in both
puzzles.

For the rest of the paper we assume that only “closed” systems—with a fixed
total amount F' of liquid—will be modeled.

2. AVAILABLE LITERATURE

2.1. Barycentric Coordinates. Because the total liquid volume F' is constant
for all pouring steps, one can map the transitions to a type of billiard motions in
barycentric coordinates [2, 21, 1][6, §4.6].

2.2. Modular Divisions. From a number-theoretic point of view, filling a smaller
jug from the content of a larger jug is similar to computing a remainder of an integer
division in the larger jug. In addition we may replace each jug by an infinitely
large one with marks at each multiple of its original capacity. The generates an
algebraic problem in congruences, akin to Euler’s algorithm of computing greatest
common divisors, and helps for example to put the water jugs puzzles in solvable
and unsolvable categories [20] [19, §7.1][18] [10, 9, L1].

3. STATE DIAGRAMS

3.1. Definition. A visual overview of which volume shares can be produced is a
state digram: each set of filling states of a given set of capacities and a given total
amount of liquid F is a node in a labeled digraph (in the mathematical sense)
[13][14, §1.2][12]. As vertex labels we shall use the tuple [f;] of the liquid content
of the jugs sorted along decreasing c¢;, 1 < j < J where J is the number of jugs.
Pairs of states are connected by a directed edge if the state at the head of the edge
can be reached by the state at the tail of the edge in one pouring step. As a visual
aid we paint pairs of edges in green if the two states are reversible in the sense of
Section 1.2.

The maximum outdegree of a vertex is J(J — 1) because this is the number of
pairs of jugs that can exchange liquid.

The example of Figure 1 shows the graph for jugs of capacities 8, 5 and 3 and
total liquid content F' = 4. In this case the three vertices labeled with filling [1,1,2],
[1,2,1] or [2,1,1] have indegree zero, which means they cannot be reached from any
other partition of the 4 (unless they are the initial states).

Also one may move from [0,2,2] to [1,0,3] passing through [2,0,2] or [0,1,3], but
the other direction cannot be done. Actually one can move around within the big
cluster of states with 0+1+3 or 04044 liquid units, and within the smaller cluster
of 0+2+2 units, but one cannot reach any of the smaller cluster states from the big
cluster (and one cannot reach the isolated states at all).

3.2. Double-Edge circuits. We observe that the reversible states always appear
in rings (circuits), which means if a state can reach a second state reversibly in a
single step, it can also reach at least one further state reversibly in a single step:

Theorem 2. The subgraph which contains all the green double edges (collapsed
into single undirected edges) does not contain isolated nodes with degree 1.

Proof. A state reaches another state reversibly if either the source jug s is full or
the destination jug d is empty: Theorem 1.
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FIGURE 1. All states with 3 jugs of capacities (8,5,3) and a total
liquid volume of 4. If pouring between two states is reversible two
green edges connect the two states.

If the destination jug is empty, there are J —2 alternative source jugs which
are compatible with the requirement. So there is at least one alternative
s’ of a reversible step filling s’ into d if there are J > 3 jugs. If this is
impossible because these alternative source jugs are all empty, one may
instead take any of them as an alternative destination jug and pour the
source jug into that one.

If the source jug is full it can be poured reversibly into any other of the
J — 2 destination jugs d’ to fulfill the requirement. If this is impossible
because these alternative destination jugs are all full, one may instead take
any of them as an alternative source jug and pour it into the destination

Jjug.
O
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are labeled with the initial state; the columns are labeled with the
final state. The distance is the minimum number of steps, —1 if

the final state cannot be reached.

Remark 3. Rem and Choo appear to conclude that (at least for the 3 jugs problem)
solutions (albeit not the shortest ones) can always be found by moving only along

the green edges |

.

3.3. Examples. The standard puzzle of having F' = 8 units and generating by any
means 4 units is illustrated in Figure 2. One realizes that the [3,4,1] and [4,2,2]

and [4,3,1] states are unreachable (indegree zero) but a path from [8,0,0] to [4,4,0]

exists via [3,5,0], [3,2,3], [6,2,0], [6,0,2], [1,5,2] and [1,4,3] for example.

The number of steps of reaching a final state for any given initial state is sum-

marized in Table 1.
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FIGURE 3. The 16 states with 3 jugs of capacities (8,5,3) and a
total liquid volume of 8 obtained from Figure 2 by removing all
vertices with zero indegree [3, 2, 7].

If we remove those unreachable states from Figure 2 we obtain figure 3.

If the largest jug is replaced by a jug of 6 units of capacity and also the total
liquid volume reduced to 6 units, the state diagram of Figure 4 arises.

If the largest jug is replaced by a larger jug of 12 units of capacity and also the
total liquid volume is 12 units, the state diagram of Figure 5 arises.
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FIGURE 4. The states with 3 jugs of capacities (6,5,3) and a total
liquid volume of 6 after removing all vertices with zero indegree.
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FIGURE 5. The states solving the problem with three jugs of
capacities (12,9,5) and dividing 12 units into half (which can be
done in 8 steps by walking from [12,0,0] to [6,6,0]). Unreachable
vertices (with zero indegree) are not drawn.
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4. OVERVIEW OF THE C++ PROGRAM

4.1. Compilation. The entire program that generates the diagrams and results
presented above is shown in the Appendix. The main executable is compiled with

make

or more explicitly with

gcc -02 -o JugPuzzle JugPuzzle.cxx Jug.cxx JugState.cxx JugGraph.cxx
or with

autoreconf -i
configure --prefix="‘pwd°
make

4.2. Use. The program is called as
JugPuzzle [-a]
to solve puzzles with known input and output states minimizing the number of
steps, or as
JugPuzzle [-a] -1 wunits
to solve puzzles with known input states, but output states more vaguely defined
to have units in at least one jar in the final state, or as
JugPuzzle -D indegree
to generate graphviz source programs for the state diagrams and tables of dis-
tances between them.

(1) In the first format, the initial state is specified by the first line of the
standard input, and the final state is specified by the second line of the
standard input. The states are a list of integers, separated by blanks, which
provide the capacity of the first jug, a blank, the liquid in the first jug, a
blank, the capacity of the second jug, a blank, the liquid in the second jug,
a blank, and so on. So there is an even number of integers in both input
lines, and half the count of integers specifies how many jugs are involved.
Note that the jug capacities in both lines must match and that the total
amount of liquid must be the same in both lines.

(2) In the second format, the input state is specified by the first line of the
standard input as above. The final state is implicitly defined by keeping
the number and capacities of the jars and having units of liquid in any of
them.

(3) In the third format, the program does not solve a single puzzle but plots
the digraph edges for some constant set of jugs and some constant total
amount F' of liquid. The first line of the standard input has the format
as above. The command line option specifies the minimum indegree nodes
must have to be put into the state diagram. To incorporate all nodes, -D
0 should be used for example.

The option -a requests that alternative solutions (with a common minimum number
of steps) are also created. This increases the stack space requirements a lot and
may only be working for small jug numbers and small amounts of liquid.

4.3. Examples.

Example 1. If we wish to investigate of starting with one jug of capacity 8 filled
with 8 units, a second empty jug with capacity 5 and a third empty jug with capacity
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3, and reaching a state with the first jug filled with 4, the second jug filled with 4,
and the third jug still empty, we call the program with

JugPuzzle
885030
845430

Example 2. If we wish to investigate of starting with one full jug of capacity 7, a
second empty jug with capacity 4 and a third empty jug with capacity 3, and reaching
a state with the first jug filled with 2, the second jug filled with 2, and the third jug
filled with 3, we call the program as

JugPuzzle

774030

724233

and the output shows the 6 steps needed: [7,0,0] — [3,4,0] — [3,1,3] — [6,1,0] —
[6,0,1] — [2.4,1] — [2,2,3]

Example 3. If you wish to measure 6 liters using 4 and 9 liter jugs, add an
auziliary full 13 liter jug according to the recipe of Section 1.3 and call

JugPuzzle
13139040
1379640

which solves the problem in 9 steps (actually in 8 because the [3,6,4] state is reached
earlier): [13,0,0] — [4,9,0] = [4,5,4] — [8,5,0] — [8,1,4] — [12,1,0] — [12,0,1] —
[5.9.1] — [3,6,4] — [7,6,0] .

Example 4. There is a full 19 liter jar, an empty 13 liter jar, and a 7 liter jar
with 1 liter in it. Distribute the liquid such that there are 10 liters in the 19 and
13 liter jar each.

JugPuzzle

191913071

19 10 13 10 7 0

solves this in 15 steps: [19,0,1] — [19,1,0] — [12,1,7] — [12,8,0] — [5,8,7] —
[5,18,2] — [18,0,2] — [18,2,0] — [11,2,7] — [11,9,0] — [4,9,7] — [4,18,3] —
[17,0,3] — [17,3,0] — [10,3,7] — [10,10,0] .

Example 5. A milk man has two full 10 liter jars left and is approached by two
costumers with 4 and 5 liter jars who want to have 2 liters milk each [4].

JugPuzzle

10 10 10 10 50 4 0

10 10 10 6 5 2 4 2

solves this with 9 steps: [10,10,0,0] — [5,10,5,0] — [5,10,1,4] — [9,10,1,0] —
[9.10,0,1] — [4,10,5,1] — [4,10,2,4] — [8,10,2,0] = [8,6,2,4] — [10,6,2,2] .

Example 6. I used the program in 2000 in my posting to http: //mathforum.
org/ kb/message. jspa?messageID=260017 to trisect a full container of 36 units
into containers of 23, 18 and 9 units in 31 steps:

JugPuzzle

36 36 23 0 18 0 9 0

36 12 23 12 18 12 9 0


http://mathforum.org/kb/message.jspa?messageID=260017
http://mathforum.org/kb/message.jspa?messageID=260017
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n‘345 6 7 8 9 10 11 12 13 14 16 16 27 18 19

20

steps‘,? 7 8 17 24 43 66 111 176 289 464 755 1218 1975 3192 5169 8360 13531

TABLE 2. The minimum number for the 3 jugs puzzle where the
container size are three consecutive Fibonacci numbers and the
middle one contains in the final state one unit less than its capacity.

Example 7. In a variant we can distribute a full container of 21 ounces given
three more empty containers with 11, 8 and 5 ounces into 3 X 7 ounces with

JugPuzzle

21211108050

2171178750

in 11 steps: [21,0,0,0] — [10,11,0,0] — [10,6,0,5] — [10,0,6,5] — [15,0,6,0] —
[15,0,1,5] — [15,5,1,0] — [15,5,0,1] — [7,5,8,1] — [1,11,2,1] — [1,7,2,5] — [7,7,7,0]

Example 8. Given 5 mugs with capacity 6 (empty), capacity 5 (full), capacity 4
(empty) and capacities 3 and 2 (both full) redistribute such that each mug is filled
with 2.

JugPuzzle
6055403322
6252423222

does this in 5 steps: [0,5,0,5,2] — [5,0,0,3,2] — [6,0,0,2,2] — [2,0,4,2,2] — [2,2,4,2,0]

— [2,2,2,2,2] .

Example 9. Given 4 jar with 24 units (full) and 13, 18 and 5 units (all 3 empty),
measure 12 units in any of the jars:

JugPuzzle -1 12
24 24 13013050

generates a solution with 11 steps (where one of the two 18 units jars is not used at
all): [24,0,0,0] — [19,0,0,5] — [19,5,0,0] — [14,5,0,5] — [14,10,0,0] — [9,10,0,5]
— [9,13,0,2] — [22,0,0,2] — [22,2,0,0] — [17,2,0,5] — [17,7,0,0] — [12,7,0,5].

Example 10. The standard sizes of the containers 8, 5 and 3 discussed in Section
1 are three consecutive Fibonacci numbers F(6), F(5), and F(4), and the final
filling state of the middle (4) one is one less than its capacity. We let the program
compute the number of steps where the three capacities are F(n), F(n + 1) and
F(n+2) where the largest is initially full, the other two initially empty, and where
the final state is F(n+2) — F(n+1) 4+ 1 in the largest, F(n+ 1) — 1 in the middle
and again 0 in the smallest. The minimum numbers of the steps for that setup
are collected in Table 2. It seems if one requires to end up with F(n + 1) — 1
in any of the containers, and no specification of how much liquid remains in the
other two containers, that number of steps can be reduced by one. Two examples
of this heuristics: (i) The 17 steps in the table refer to jug capcities (21,13,8) and
to the steps [21,0,0] —[8,13,0] —[8,5,8] —[16,5,0] —[16,0,5] —[3,13,5] —[3,10,8]
—[11,10,0] —[11,2,8] —[19,2,0] —[19,0,2] —[6,13,2] —[6,7,8] —[14,7,0] = [14,0,7]
—[1,13,7] —[1,12,8] —[9,12,0] to move 12 into the middle jug and to clear the
small jug, but the last step is not needed if the aim is merely to have 12 units in
the middle jar. (ii) The 24 steps in the table refer to the capacities (34,21,13)
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and to the steps [34,0,0] —[21,0,18] —[21,13,0] —[8,13,13] —[8,21,5] —[29,0,5]
—[29,5,0] —[16,5,13] —[16,18,0] —[3,18,13] —[3,21,10] —[24,0,10] —[24,10,0]
—[11,10,13] —[11,21,2] —[32,0,2] —[32,2,0] —[19,2,18] —[19,15,0] —[6,15,13]
—[6,21,7] = [27,0,7] —[27,7,0] — [14,7,13] —[14,20,0] to move 20 into the middle
jug and clear the small jug. But only 23 steps are needed if the 20 units may
appear in any jug: [34,0,0] —[13,21,0] —[13,8,13] —[26,8,0] —[26,0,8] —[5,21,8]
—[5,16,13] —[18,16,0] —[18,3,13] —[31,3,0] —[31,0,3] —[10,21,3] —[10,11,13]
—[23,11,0] —[23,0,11] —[2,21,11] —[2,19,13] —[15,19,0] —[15,6,13] — [28,6,0]
—[28,0,6] —[7,21,6] —[7,14,13] —[20,14,0).

Example 11. To generate the information of Figure 1 call
JugPuzzle -D 0O

845030

Example 12. To generate the information of Figure 3 call
JugPuzzle -D 1

885030

Example 13. To generate the information of Table 1 call

JugPuzzle -D 0O
885030

APPENDIX A. COMPUTER LISTING

A.1. Makefile.

JugPuzzle: JugPuzzle.cxx Jug.h Jug.cxx JugState.h JugState.cxx JugGraph.h JugGraph.cxx
$(CXX) -02 -o $@ JugPuzzle.cxx Jug.cxx JugState.cxx JugGraph.cxx

A.2. Makefile.am.

# $Header:$

AUTOMAKE_OTPIONS =
ACLOCAL_AMFLAGS = ${ACLOCAL_FLAGS}

bin_PROGRAMS = JugPuzzle

JugPuzzle_SOURCES = Jug.cxx Jug.h JugGraph.cxx JugGraph.h JugPuzzle.cxx JugState.cxx JugState.h

A.3. configure.ac.
# —*%— Autoconf -*-
# Process this file with autoconf to produce a configure script.

# $Header:$

AC_PREREQ([2.68])

AC_INIT([JugPuzzle], [1.0], [mathar@mpia.del)
AC_CONFIG_SRCDIR([JugPuzzle.cxx])
AM_INIT_AUTOMAKE([no-define foreign subdir-objects])
AC_CONFIG_HEADERS ([config.h])

AC_PROG_CXX
AC_PROG_INSTALL
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AC_CHECK_HEADERS ([cstdlib unistd.h])
AC_CHECK_FUNCS([atoil)
AC_CONFIG_FILES([Makefilel)
AC_OUTPUT

A.4. Main program JugPuzzle.cxx.

#include <unistd.h>
#include <cstdlib>
#include <iostream>

#include "JugGraph.h"

/* 1 x

* @brief Solve the J jugs puzzle with specified start and end states.

*

* The synposes are:

* JugPuzzle # solve the specific jugs problem

* JugPuzzle -a # solve the specific jugs problem and get all solutions

* JugPuzzle -D <indegree> # generate all states in a dot(l) graph with indegree at least as given
* JugPuzzle -1 <lig> # solve a general problem; only liquid volume but not specific
* @return O if no error occured.

* 1 if the input data are erroneous (inconsistent).

*/

int main(int argc, char *argv[])

{

bool solvall(false) ;
bool solliq(false) ;
bool dot(false) ;
int 1liq(-1) ;
int indeg(0) ;
/* option character
*/
char oc ;
while ( (oc=getopt(argc,argv,"aD:1:")) != -1 )
{
switch(oc)
{
case ’a’
solvall = true ;
break ;
case ’D’
dot = true ;
indeg = atoi(optarg) ;
break ;
case ’1’
solliq = true ;
liq = atoi(optarg) ;
break ;
case 7’
std::cerr << "Invalid command line option " << optopt << std::endl ;
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break ;

if ( dot ==false && solliq == false)

{

}

/* read the initial state from one line of the stdin
*/

std::string s;

getline(std::cin,s) ;

JugState src(s) ;

src.thisState =0 ;

std::cout << src<< std::endl ;

/* read the final state from the second line of the stdin
*/

getline(std::cin,s) ;

JugState dest(s) ;

std::cout << dest<< std::endl ;

if ( ! src.compatible(dest) )

{
std::cerr << "Incompatible jug capacities or liquid volumes in " << src<< " and " << dest <
return 1;

JugGraph: :solve(src,&dest,-1,true,solvall) ;

else if ( dot )

{

}

std::string s;
getline(std::cin,s) ;
JugState src(s) ;
src.dotGraph(indeg) ;

std::cout << "/*" << std::endl;
src.distances() ;
std::cout << "x/" << std::endl;

else if ( solliq && liq >= 0)

{

/* read the initial state from one line of the stdin
*/

std::string s;

getline(std::cin,s) ;

JugState src(s) ;

src.thisState =0 ;

std::cout << src<< std::endl ;

JugGraph: :solve(src,0,liq,true,solvall) ;



97
98

0w N 3 O R W N

©

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

© 0 N O A W N =

e e e e
N O ok W N = O

18

WATER JUG POURING PUZZLES

return 0 ;

}
A.5. Jug.h.

#pragma once

#include <iostream>
#include <cstdlib>

class Jug

{
public:
/** maximum liquid capacity
*/
int capac ;
/** current amount of liquid
*/
int fill ;
Jug() ;
Jug(int c, int f) ;
protected:
private:
s

bool operator==(const Jug & left, const Jug & right) ;
bool operator!=(const Jug & left, const Jug & right) ;
bool operator<(const Jug & left, const Jug & right) ;
std::ostream & operator<<(std::ostream & os, const Jug & j) ;

A.6. Jug.cxx.

#include <iostream>
#include "Jug.h"

/** default ctor.

* This creates a Jug with an impossible negative capacity
* since 2015-09-13

*/

Jug::Jug() : capac(-1), £i11(0)

{

}

/** Ctor with given capacity and liquid content.

* @param[in] c Capacity

* @param[in] f liquid content

* since 2015-09-13

*/

Jug::Jug(const int c, const int f) : capac(c), £fill(f)
{

}

17
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/** A sorting operator on two jugs.
* Q@param left The jug on the left hand side of the equal sign.
* Q@param right The jug on the right hand side of the equal sign.
* Q@return True if both jugs have equal capacity and filling.
*/
bool operator==(const Jug & left, const Jug & right)
{
return ( left.capac == right.capac & left.fill == right.fill) ;

/** A sorting operator on two jugs.
* Q@param left The jug on the left hand side of the equal sign.
* @param right The jug on the right hand side of the equal sign.
* Q@return True both jugs have unequal capacity or unequal filling.
*/
bool operator!=(const Jug & left, const Jug & right)
{
return ! ( left == right ) ;

/** A sorting operator on two jugs.
* @param left The jug on the left hand side of the equal sign.
* Q@param right The jug on the right hand side of the equal sign.
* @return True if the left jug has smaller capacity or smaller filling.
*/
bool operator<(const Jug & left, const Jug & right)
{
if ( left.capac < right.capac)
return true;
else if ( left.capac > right.capac)
return false;
else if ( left.fill < right.fill)
return true;
else
/* this here includes the case of equality
*/

return false;

/% Vskokeskskosk ke sk s sk s ke sksk o ok sk sk ok ksl sk ke sk sk ok e ksl sk sk sk sk sk sk ok
* Print the jug’s state as its capacity, an underscore, and the current amount of liquid.
* @param[in,out] os The output stream which receivces the string.
* @param[in] j The jug to be printed.
* Q@return The output stream with the jug’s stated printed.
*/
std::ostream & operator<<(std::ostream & os, const Jug & j)
{
os << " " << j.capac << "_" << j.fill ;
return os ;
} /* operator<< x/

A.7. JugState.h.
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#pragma once

/% Vskokokskoskok ki ok sk sk ok sk sk ok sk sk ke sk sk sk ke ok sk sk ke ok sksk ke sk sk sk ke sk sk sk ke sk sk sk ok sk sk ok
* @file
* The interface definition of the JugState class.

*/

#include <iostream>
#include <vector>
#include "Jug.h"

/% 1 stk sk sk s ok sk ke ksl sk ke ok sk ok ke sk sk s sk sk s sk sk e ksl sk e ksl sk ek sk ok ke sk sk sk ok
* @brief A JugState is a snapshot of a list of jugs in some fixed states of liquid volumes.
*/
class JugState
{
public:
/** The collection of partially filled jugs in the current state
*/
std::vector<Jug> jugs ;

/** If this has been instatiated by a pouring step: the previous state

*/

int prevState ;

/** The index of this state in some larger vector. Compatible with prevState.
*/

int thisState ;

JugState() ;
JugState(const int parent) ;
JugState(const std::string & bsv) ;

int F() comst ;

int J() const ;

void addJug(const Jug & j) ;

bool hasFill(const int f) comnst ;

int inDegree(const std::vector<JugState>& sts) const ;

JugState pour(const int src, const int dest, const int parent) const;

std: :vector<JugState> anyPour() const ;

std: :vector<JugState> allStates() comnst ;
std::vector<JugState> allStates(int remainf, int lowj) const ;
void dotGraph(const int indeg=0) const ;

void distances() const ;

bool reversible(const JugState & oth) const ;
bool compatible(const JugState & oth) const ;
protected:
private:

} s
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std::ostream & operator<<(std::ostream & os, const JugState & j) ;

bool operator==(const JugState & left, const JugState & right) ;
bool operator!=(const JugState & left, const JugState & right) ;
bool operator<(const JugState & left, const JugState & right) ;

A.8. JugState.cxx.

#include <cmath>
#include <iostream>
#include <sstream>

#include "JugGraph.h"

/** Default ctor.

* There are no jugs present here

* @since 2015-09-13

*/

JugState: :JugState() : jugs(), prevState(-1), thisState(-1)
{

} /% ctor */

/**

* There are no jugs present here

* @parent The state that created this state by a pouring step.

* @since 2015-09-13

*/

JugState: :JugState(const int parent) : jugs(), prevState(parent), thisState(-1)
{

} /% ctor */

/** Define a state represented by a vector of integers separated by blanks.
* Q@param bsv The blank separated list of capacities and fillin states.
* The format is
* capac[0] £il1[0] capac[1] £il1l[1] capac[2] £fil[2]
* which indicates an even number of nonnegative values, 0<=fill[i]<=capac[i]
* @since 2015-09-13
*/
JugState: :JugState(const std::string & bsv) : jugs(), prevState(-1), thisState(-1)
{
std::istringstream s(bsv) ;
for(;s;)
{
int cap,f ;
s >> cap >> f ;
/* exit if the inputs are incoherent
*/
if (cap<=0 || £ <0 || £ > cap)
{
std::cerr << "Invalid mix of capacity " << cap << " and liquid volume " << f << std
exit (EXIT_FAILURE) ;

::endl

>
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Jug j(cap,f) ;
jugs.push_back(j) ;
if ( s.eof() )
break;
}
} /* ctor */

/** Join one jug to the set of jugs
* Q@param j The additional jug to be added to the set.
* @since 2015-09-13
*/
void JugState::addJug(const Jug &j)
{
jugs.push_back(j) ;
} /x ctor x/

/** Compute total liquid content.
* @return The sum of all liquid units in all jugs.
* @since 2015-09-14
*/
int JugState::F() const
{

int totf =0 ;

for(int j=0 ; j < jugs.size() ; j++)

totf += jugs[jl.fill ;
return totf ;

} /x F %/

/** Compute number of jugs.
* Q@return The count of jugs in the set.
* @since 2015-09-14
*/
int JugState::J() const
{
return jugs.size() ;

Y /% T %/

/** Detect whether any of the jugs has a given filling state.
* @param[in] f The amount of liquid searched for.
* Q@return true if one of the jugs has liquid content f;
* @since 2015-09-14
*/
bool JugState::hasFill(const int f) const
{

for(int j=0 ; j <jugs.size() ; j++)

if ( jugs([jl.fill == f)
return true;

return false ;

} /* hasFill =/

/**x Check whether pouring into another state is a reversible step
* Q@param oth The destinate state.
* Q@return true if the oth state can be reached and poured back.
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99 */

100 bool JugState::reversible(const JugState & oth) const
101 {

102 if ( JO !'= oth.JO )

103 return false;

104

105 /* determine source and destination jug indices
106 */

107 int s = -1 ;

108 int d = -1 ;

109 for(int j=0 ; j < JO) ; j++)

110 {

111 if ( jugs[j]l.capac != oth.jugs[j].capac)

112 return false;

113 const int t = oth.jugs[j].fill - jugs[jl.fill ;
114 if (t>0)

115 {

116 if (d<0)

117 d=3j;

118 else

119 return false;

120 }

121 else if (t < 0)

122 {

123 if (s <0)

124 s = 3;

125 else

126 return false;

127 }

128 }

129

130 /* we found exactly two jugs that changed their liquid volume
131 * with compatible signs, and either the source jug is full or the
132 * destination jug is empty

133 */

134 if (s >=0 && d >=0 && (jugs[s].fill == jugs[s].capac) || (jugs[d].fill ==0) )
135 return true;

136 else

137 return false;

138} /* reversible */

139

140 /#* Check whether two states are compatible.

141 * @param oth The state this is to be compared with.

142 * Qreturn true if both states have the same jug sizes and the same total liquid volume.
143 * This means that from the outside some path through the state

144 * graph might exist to reach this one from oth or vice versa.

145  */

146 bool JugState::compatible(const JugState & oth) const

147 o

148 /* incompatible if jug numbers or total volume differ
149 */

150 if ( JO !'= oth.JO |l FO !'= oth.FO )

151 return false;
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for(int j=0 ; j < JO) ; j++)

{
/* incompatible if any pair of jug sizes differ
*/
if ( jugs[jl.capac != oth.jugs[j].capac)
return false;
}

return true;
} /* compatible */

/** Pour from this jug to another
* @param src the O-based index of the source jug
* Q@param dest the O-based index of the destination jug
* @return The set of the state after pouring.
* This is a state without jugs if the pouring cannot be done according
*  to the rules.
*/
JugState JugState::pour(const int src, const int dest, const int parent) const
{

//JugState newst(this) ;

JugState newst(parent) ;

/* J is the number of jugs present

*/

const int J = jugs.size() ;

/* ensure that the two indices point to existing jugs

* and that there is no pouring within a single jug

*/

if ( src >=0 &% src < J && dest >=0 &% dest < J && src != dest)

{

/* transferred liquid. Either all of the source jug
* or the residual air in the destination jug.

*/
const int t = std::min( jugs[src].fill, jugsl[dest].capac -jugsl[dest].fill) ;
if (¢t >0 )
{
/* a useful new state: transfer of nonzero amount
*/
for(int j=0 ; j < J ; j++)
{
if ( j == src)
{
Jug newsrc(jugs[j].capac, jugs[j].fill -t) ;
newst.addJug(newsrc) ;
}
else if ( j == dest)
{
Jug newdest(jugs[j]l.capac, jugs[j].fill +t) ;
newst.addJug(newdest) ;
}
else

/* copy jug unchanged
*/
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205 newst.addJug( jugs[jl) ;

206 }

207 }

208 }

209 return newst ;

210 } /* JugState::pour */

211

212 /#*% Collect all possible outcomes of a single pouring step.

213 * Qreturn A list of all subsequence states of pouring once from any of the jugs to any other.
214 * @since 2015-09-13

215  */

216  std::vector<JugState> JugState::anyPour() const

217 o

218 /* the collection of all new states

219 */

220 std::vector<JugState> nextst ;

221 const int J = jugs.size() ;

222 /* any pair of source jug index src and and destination jug index dest.
223 */

224 for(int src =0 ; src < J; src++)

225 {

226 for(int dest =0 ; dest < J; dest++)

227 /* cannot pour a jug into itself */

228 if ( src != dest)

229 {

230 const JugState resul = pour(src,dest,thisState) ;
231 if ( resul.jugs.size() > 0 )

232 /* if this was a valid combination of source and destination index
233 */

234 nextst.push_back(resul) ;

235 }

236 ¥

237 return nextst ;

238 } /* anyPour */

239

240 /*x Determine the indegree amongst a set of other states.

241 * Q@param[in] sts The collection of states.

242 * Qreturn The integer number, >=0, of how many of the sts states can reach this in one step.
243 * @since 2015-09-16

244 %/

245 int JugState::inDegree(const std::vector<JugState> & sts) const
246 {

247 int deg =0 ;

248 for(int s = 0 ; s < sts.size() ;s++)

249 {

250 const std::vector<JugState> stsres = sts[s].anyPour() ;
251 for(int j=0 ; j < stsres.size() ; j++)

252 {

253 if ( stsres[j] == *this)

254 {

255 degt++ ;

256 break;

257 }
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258 }

259 ¥

260 return deg ;
261 } /* inDegree */
262

263 /** Collect all possible states which have the sam jug sizes and same amount of liquid.
264 * Qreturn A list of all states compatible with the current one.
265 * @since 2015-09-14

266 */

267 std::vector<JugState> JugState::allStates() const
268 {

269 /* the available total liquid

270 */

271 const int totf = F() ;

272 return allStates(totf,0) ;

273} /* allStates */

274

275 /** Collect all possible states which have the sam jug sizes and same amount of liquid.

276 * @param[in] remainf The total amount of liquid to be distributed in the jugs of higher index.
277 * @param[in] lowq The lowest index of the jugs yet to be filled.

278  * Q@return A list of all states compatible with the current one.

279 * @since 2015-09-14

280  */

281  std::vector<JugState> JugState::allStates(int remainf, int lowq) const

282 {

283 /* empty number of states at start

284 */

285 std::vector<JugState> sts;

286 /* copy the characteristics (size and filling) of the jugs already fixed in content
287 * into a pivotal jug

288 */

289 JugState piv = *this ;

290 piv.prevState = -1 ;

291

292 if ( lowq == JO)-1)

293 {

294 /* last jug to be filled; which means all liquid must fit in there
295 */

296 if ( remainf <= jugs[lowq].capac)

297 {

208 piv.jugs[lowq] .£fill = remainf ;

299 sts.push_back(piv) ;

300 }

301 }

302 else if ( lowg < JO-1)

303 {

304 /* more jugs to be filled. Recursive approach by filling number lowq
305 * and the higher ones with the residual liquid.

306 */

307 for(int £=0; f <= piv.jugs[lowq].capac && f <= remainf ; f++)

308 {

309 piv.jugs[lowq] .£fill = £ ;

310 const std::vector<JugState> recv = piv.allStates(remainf-f, lowq+l) ;
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for(int j=0 ; j < recv.size() ; j++)
sts.push_back(recv[j]l) ;

return sts;
} /* allStates */

/** Generate all compatible states in the dot(1) graphviz format
* @param[in] indeg The minimum indegree of states to be incorporated
*/
void JugState::dotGraph(const int indeg) const
{
/* generate the states with the same amount of liquid
*/
const std::vector<JugState> sts = allStates() ;
std::cout << "/* " << sts.size() << " states, indegree " << indeg << " */ \n" ;
std::cout << "digraph L {\n" ;
/* generate for each state all reachable states with one step
*/

for(int s=0 ; s < sts.size() ; s++)

{
const int degS = sts[s].inDegree(sts) ;
if ( degS >= indeg)
{
const std::vector<JugState> dest = sts[s].anyPour() ;
for(int d=0 ; d < dest.size() ; d++)
{
const int degD = dest[d].inDegree(sts) ;
if ( degD >= indeg)
{
std::cout << "\"" << sts[s] << "\" -> \"" << dest[d] << "\""
if (sts[s].reversible(dest[d]) )
std::cout << " [color = \"green\" dir=\"none\" 1"
std::cout << " ; /% " << degS << " " << degD << " */\n" ;
}
}
}
}

std::cout << "}\n"
} /* dotGraph */

/** Generate a Table of the distances (shortest steps) in the compatible states.
* The table is printed in LaTex style to stdout.
*/
void JugState::distances() const
{
/* generate the states with the same amount of liquid
*/
const std::vector<JugState> sts = allStates() ;
std::cout << "\\begin{tabular}{"
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for(int s=0 ; s <= sts.size() ; s++)
std::cout << "r"
std::cout << "}\n" ;

for(int s=0 ; s < sts.size() ; s++)
std::cout << " & \\rotatebox{90}{$" << sts[s] << "$}"
std::cout << "\\\\\n" ;

std::cout << "\\\\\n\\hline\n"
/* generate for each state all reachable states with one step
*/

for(int s=0 ; s < sts.size() ; s++)

{
std::cout << "$" << sts[s] << "g"
for(int d=0 ; d < sts.size() ; d++)
{
if ( s==d)
std::cout << " & 0 " ;
else
{
int stps = JugGraph::solve(sts([s], & sts[d], -1, false, false) ;
std::cout << " & " << stps ;
}
}
std::cout << "\\\\\n" ;
}

} /* distances */

/*x Print the filling levels into an ASCII Stream

The jugs are represented as a bracketed and comma-seperated list of integers,
which denote their individual liquid contents.

@param os The stream to add the state

Oparam jst The jug set to be printed.

@return The stream after printing.

@since 2015-09-13

L I I

*/
std::ostream & operator<<(std::ostream & os, const JugState & jst)
{
os << "["
for(int j=0 ; j < (int) jst.jugs.size() ; j++)
{
if (j>0)
os <<"," ;
os << jst.jugs[jl.fill ;
}
os << "]"
return os ;
} /* operator<< */

/** A sorting operator on two jug sets.
* Q@param left The jug set on the left hand side of the equal sign.
* @param right The jug set on the right hand side of the equal sign.
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417 * Q@return True If all jugs have equal capacity and equal filling.
418 * @since 2015-09-13

419 */

420 bool operator==(const JugState & left, const JugState & right)
421 {

422 if ( left.jugs.size() != right.jugs.size() )
423 return false;

424

425 for(int j=0 ; j < left.jugs.size() ; j++)
426 if ( left.jugs[jl !'= right.jugs[jl)

427 return false ;

428

429 return true;

430 }

431

432 /** A sorting operator on two jug sets.

433 * Qparam left The jug set on the left hand side of the unequal sign.

434  * Qparam right The jug set on the right hand side of the unequal sign.
435 * Q@return True If some jugs have different capacity or different filling.
436  * @since 2015-09-13

437 %/

438  bool operator!=(const JugState & left, const JugState & right)
439 {

440 return ! (left == right) ;

441 %

A.9. JugGraph.h.

1 #pragma once

2

3 #include <iostream>

4

5 #include <vector>

6

7 #include "JugState.h"

8

9 class JugGraph

0 {

11 public:

12 /** A basically unordered list of vertices in the state diagram
13 */

14 std::vector<JugState> vertices ;

15

16 /*x A marker in the vertices which separates the parent states
17 * and the current generation

18 */

19 int Nparent ;

20

21 JugGraph() ;

22 JugGraph (JugState root) ;

23 void addState(const JugState & st) ;

24

25 void newGenerat (const bool multiRoute) ;

26 static int solve(const JugState & src, const JugState * destin, const int destfil, const bool verb



WATER JUG POURING PUZZLES 29

27

28 protected:

29 private:

30}

31

32 // std::ostream & operator<<(std::ostream & os, const JugState & j) ;

A.10. JugGraph.cxx.

#include <cmath>
#include "JugGraph.h"

/** Default ctor.

* There are no jugs present here

* @since 2015-09-13

*/

JugGraph: : JugGraph() : vertices(), Nparent(0)
{

} /* ctor */

© 0 N O A W N =

e =
w N o= O

/** ctor which pushes one JugState at the tree top.
* Q@param st The state at the top of the tree of pouring liquid.
15 * @since 2015-09-14

-
=

16 */

17 JugGraph: : JugGraph(JugState root) : vertices(), Nparent(0)
18 o

19 // root.prevState = 0 ;

20 root.prevState = -1 ;

21 vertices.push_back(root) ;

22} /* ctor x/

23

24 /** Joint one jug to the set of jugs

25 * Q@param j The additional jug to be added to the set.
26 * @since 2015-09-13

27 */

28 void JugGraph::addState(const JugState &st)
29 o

30 vertices.push_back(st) ;

31} /* addState */

32

33 /** add a new generation of states to the existing ones.

34 * Oparam multiRoute If true generate paths where states with different parents are considered different
35 * @since 2015-09-13

36 */

37 void JugGraph: :newGenerat(const bool multiRoute)

38 o

39 /* we add the states that can be generted from the current generation,
40 * which includes the vertices above the generation marker

41 */

42 const int oldNvertic = vertices.size() ;

43 for(int v=Nparent ; v < oldNvertic ; v++)

44 {

45 /* create any new states arising from the v’th state
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*/

std: :vector<JugState> vs = vertices[v].anyPour() ;

/* add all of those not yet present in older generations

* At this point there is some loss of information because we

* do not log states that are equal but arrive through different parents.

*/
for(int s =0 ; s < (int) vs.size() ; s++)
{
/* candidate state
*/
JugState & candi = vs[s] ;
candi.thisState = vertices.size() ;
/* candidate known in older generations?
*/
bool known =false ;
for(int 0=0 ; o < Nparent && 'known ;o++)
if ( vertices[o] == candi)
known =true ;
if ( ! known)
{
if ( multiRoute)
addState(candi) ;
else
{
/* put only a single candidate into the new
* generation. I.e., search also the current generation for siblings
*/
known = false;
for(int o=Nparent ; o < (int) vertices.size() && !known ;o++)
if ( vertices[o] == candi)
known =true ;
if ( ! known)
addState(candi) ;
}
¥
}

}

/* update generation marker
*/
Nparent = oldNvertic ;

/* newGenerat */

*
*
*
*
*
*
*

Solve a puzzle given the start state and either the fully qualified or general final state.
@param[in] src The state at the start of the pouring steps.
@param[in] destin The state at the end of the pouring steps.
This should be set to O if the target state is characterized by the destfil
value and not by a precise set of filling state of all jugs.
@param[in] destfil The amount of liquid in at least one of the jugs at the end of the steps.
This should be set to a negative value to indicate that this type of generalized
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* search should not be attempted.

* @param[in] verb Print the pouring steps if a solution is found.

* @param[in] multiRoute Print more than one way of obtaining the destin state if possible.
* Q@return The number of steps needed. -1 if the destin state cannot be reached.

*/

int JugGraph::solve(const JugState & src, const JugState * destin, const int destfil,
const bool verb, const bool multiRoute)
{
int steps(0) ;
bool solved(false);
JugGraph gens(src) ;

if ( destin == || src !'= * destin)
{
/* start a loop which at each round adds the
* reachable states from the previous loops to the gens graph.
*/
do {
steps++
/* add all the nodes that are reachable from the
* nodes that were generated by the previous loop, but not
* those that are already in graph (i.e., avoiding walking
* around loops in the graph.
*/

gens.newGenerat (multiRoute) ;

/* no new elements generated: unreachable final state.

*/
if ( gens.Nparent == gens.vertices.size() )
{
if (verb)
std::cout << "no solution" << std::endl ;
return -1 ;
}

/* check if any of the new elements are equal to destin
*/

solved = false;

for(int s = gens.Nparent ; s < gens.vertices.size() ; s++)

{
if ( destfil >=0 && gens.vertices[s].hasFill(destfil)
|| destin && gens.vertices[s] == *destin)
{
solved =true ;
if (verb)
{

/* print the stack of JugStates tracking backwards
* through the history of the generatiomns

*/

std::cout << steps << " steps " << std::endl ;

int histo = s ;
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for(;;)
{
std::cout << gens.verticeslhisto] << std::endl ;
histo = gens.vertices[histo].prevState ;
if ( histo<0 )
break;

}

if ( 'multiRoute)
return steps ;

}

} while (!solved) ;

return steps ;

} /* solve *x/
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