NLED Gedankenexperiment for modified ZPE and Planck’s ‘constant’, h, in the beginning of cosmological expansion

Andrew Beckwith 1,*

1 College of Physics, Chongqing University, Huxi Campus, No. 44 Daxuechen Nanlu, Shapinba District, Chongqing 401331, People’s Republic of China, rwill9955b@gmail.com

* Author to whom correspondence should be addressed; Andrew Beckwith, rwill9955b@gmail.com;

Abstract: We initially look at a nonsingular universe representation of Entropy, based in part on what was brought up by Muller and Lousto. This is a gateway to bringing up information and computational steps (as defined by Seth Lloyd) as to what would be available initially due to a modified ZPE formalism. The ZPE formalism is modified as due to Matt Vissers’s alternation k(maximum) ~ 1/(Planck length), with a specific initial density giving rise to initial information content which may permit fixing the initial Planck’s constant, h, which is pivotal to the setting of physical law. This would be in the spirit of Christi Stoica’s removal of initial conditions of non pathological initial starting points in Cosmology.

Keywords: Infinite Quantum Statistics; Gravitons

PACS Codes: 03.50.-z, 89.70.Cf, 98.80.-k, 98.80.Cq

1. Introduction

W First of all we wish to ascertain if there is a way to treat entropy in the universe, initially, by the usual black hole formulas. Our derivation takes advantage of work done by Muller, and Lousto [1] which have a different formulation of entropy cosmology, based upon a modified event horizon, which they call the Cosmological Event Horizon. i.e. it represents the distance a photon emitted at time t can travel. Afterwards, we give an argument, as an extension of what is presented by Muller and Lousto [1], which we claim ties in with Cai [2], as to a bound to entropy, which is stated to be S (entropy) less than or equal to N, with N, in this case, a micro state numerical factor. Then, a connection as to Ng’s infinite quantum statistics[3] is raised. i.e. afterwards, we are then referencing C.S. Camara a way to ascertain a non zero finite, but extremely small bounce and then we use the scaling, as given by Camara [4], that a resulting density, is scaled as by $\rho \sim a^{-4}$. In addition we will set this scaling as a way to set minimum magnetic field values, commensurate to the modified ZPE density value, as given by Visser [5], with $\rho \sim a^{-4}$ paired off with [5]’s $\rho \sim \text{mass(Planck)}/(\text{length(Planck)})^3$, so then the
magnetic fields as given by [4] can in certain cases be estimate. In addition, comparing the results of [4] and [5] permit us to use Waleka’s [6] result of a time step ~ 1/ square root of \(\rho \sim \text{mass(planck)}/(\text{length(Planck)})^3 \) versus a time step ~ 1/ square root of \(\rho \sim a^{-4} \), with equality giving further constraints upon magnetic fields and a cosmological “constant” \(\Lambda \). Doing so, will then permit us to make further use of [7] and its relationship between and a cosmological “constant” \(\Lambda \) and an upper bound to the number of produced gravitons. Isolating \(N \) (the number of gravitons) and if this is commensurate with entropy due to [2] and [3] will allow us to use Seth Lloyd supposition of [8] as to the number of permitted operations in quantum physics may be permitted. This final step will allow us to go to the final supposition, as to what number of operations / information may be needed to set a value of \(\hbar \) (Planck’s constant) in the beginning of the universe with \(\hbar \) invariant over time.

\[
h(\text{initial}) = E(\text{initial}) \cdot t(\text{initial}) = \rho(\text{initial}) \cdot V(\text{initial}) \cdot t(\text{initial})
\]

(1)

2. Calculations as to Entropy, and what it says about bouncing, versus non singular universes

We begin first by putting the results of [1] here and subsequently modifying them. To begin with, we look at what was given as to entropy, and this was actually asked me as to a review of a similar article several weeks ago. By [1], \(a(\text{grid}) \sim \text{Planck’s length} \)

\[
S(\text{universe}) \sim 0.3 r_H^2 / a(\text{grid})^2
\]

(2)

The specifics of what were done with \(r_H \), is what will be discussed in this section, and Eq.(1) has its counter part as given by, if \(R \) is the radius of a sphere inside of which harmonic oscillation occurs, and \(a(\text{grid})_{H.O} \) is in this case is of a different value, i.e. generalized Harmonic Oscillator based lattice spacing.

\[
S(\text{Harmonic.oscillators}) \sim \frac{3}{4\pi} \cdot \left(\frac{4\pi R^2}{a(\text{grid})_{H.O}} \right)^2
\]

(3)

The main import of Eq. (2) is that it defacto leads to a ‘non dimensional’ representation of entropy, but before we do that, it is useful to review what is said about \(r_H \). As defined in [1], \(r_H \) is called the maximal co-ordinate distance a photon can travel in space-time in a given time, \(t \).

FWIW, we will provisionally in the regime of \(z \) (red shift) > 1100 set for inflation from a Planck time interval up to \(10^{-20} \) seconds, when the expansion radii of the universe was about a meter, i.e.

\[
r_H|_{\text{min}} \sim O(l_{\text{Planck}}) < r_H < r_H|_{\text{max}} \sim 1 \text{ meter}
\]

(4)

What we will do in later parts of this paper, to get an approximation as to what the actual value of \(r_H \) is, and to use this to comment upon the development of entropy.

2a. Relevance of Eq. (1) to the concept of dimensionless entropy

Cai, in [2] has an abbreviated version of entropy as part of a generalized information measurement protocol which we will render as having T.F.A.E.
\begin{align*}
S \leq \tilde{N} &\Leftrightarrow \\
\Lambda \sim \tilde{N} &\Leftrightarrow \\
e^S \text{ states} &\Leftrightarrow \\
\text{set of all } \Lambda(\tilde{N}) \text{ of space–times} &\Leftrightarrow \\
\tilde{N} = 3G/\Gamma A &
\end{align*}

We will assume that \(N = \tilde{N} \), and then connect the entropy of Eq.(4) with Ng’s entropy [3] with the result that

\[S \approx \tilde{N} = N \]

(6)

While assuming Eq. (5) we will through [3] be examining the consequences of infinite quantum statistics for which, if the “Horizon” value \(r_h \) as defined above is made roughly commensurate with say graviton wavelength

\[r_h \sim \lambda(\text{wavelength}) \& \\
S \sim N \cdot \left[\log(V(\text{volume})/\lambda(\text{wavelength}))^3 + \frac{5}{2} \right] \\
\propto N \cdot \left[\frac{5}{2} \right] \sim N
\]

(7)

The entropy so mentioned, above, is commensurate with the following identification, namely how to link a measure of distance with scale factor \(a(t) \). We will as a starting point use the following identification, namely start with the radiation dependence of \(a(t) \) [4,6]

\[a(t) \sim (t/t(\text{present}))^{1/2} \]

\[\Leftrightarrow t = \left[\frac{1}{6\pi \cdot G \rho(t)} \right]^{1/2} \\
\rho(t) \sim a(t)^{-4}
\]

(8)

Our starting point for the rest of the article will lie in making sense of the following inputs into the scale factor as the last part of Eq.(7) grouping of mathematical relations, namely we will look at time defined via [5] of time \(t = 1/\sqrt{6\pi G \rho(t)} \). And the following for defining the density, via its scaled relationship to \((1/ \ a^4(t)) \), with the minimum value of \(a(t) \), as given by Camara [4] as, using a frequency \(\omega \), \(B_0 \) an initial E and M field given at the start of creation itself, and of course a cosmological ‘constant’ parameter \(\Lambda \) which will be defined later, with the following linked to a minimum scale factor, i.e. if we look at Camara [4]
\[
\alpha_0 = \frac{4\pi G}{\sqrt{3\mu_0 c}}
\]

\[
\hat{\lambda} \text{(defined)} = \Lambda c^2 / 3
\] (9)

\[
a_{\text{min}} = a_0 \left[\frac{\alpha_0}{2\hat{\lambda} \text{(defined)}} \left(\sqrt{\alpha_0^2 + 32\hat{\lambda} \text{(defined)} \cdot \mu_0 \omega \cdot B_0^2} - \alpha_0 \right) \right]^{1/4}
\]

The linkage to graviton mass, and heavy gravitons will build upon this structure so built up via \([6]\), and will comprise the capstone as to what to look for in GW research. A topic which the author is involved with. I.e. consequences of working with the following graviton mass will be brought up, namely by \([6]\)

\[
m_{\text{graviton}} = \frac{\hbar}{c} \sqrt{\frac{(2\Lambda)}{3}}
\] (10)

This above formula will de evolve, from a larger value, to having the mass of a graviton approximately as given about \(10^{-62}\) grams in the present era \([9]\). Also, if the above graviton mass is accepted, we will be considering the value of \(N\) defined within the event horizon \(r_H\), with

\[
N = N_{\text{graviton}} \bigg|_{\nu} = \frac{c^3}{G \cdot \hbar} \cdot \frac{1}{\Lambda}
\] (11)

A specified value of \(a_0\) will also be ascertained, in this document. We set it equal to 1, and then calculated the other values from there. From the above, we will specify a variance graviton mass, a minimum time, according to the above, and work out full consequences, with suggestions for finding exact values of the above parameters.

3. Filling in the parameters, what it says about initial cosmological conditions

First, now the treatment of entropy due to early universe Gravitons. In the beginning of this analysis, we start with Ali and Das’s cosmology from Quantum potential article\([10]\), where a derived cosmological “constant is given by, if \(l_{\text{Planck}}^2 \sim 10^{-70}\) meters squared, and \(l_{\text{Radius–Universe}}^2 \sim 10^{-52}\) meters squared, so that

\[
\Lambda_{Einstein–Const.} = \frac{1}{l_{\text{Radius–Universe}}^2}
\] (12)

Eq.(11) should be compared to an expression given by T. Padmanabhan \([11]\), if the \(E_{\text{Planck}} \sim 10^{28}\) eV, and \(m_{\text{graviton}} \sim 10^{-32}\) eV, and \(E \sim N_{\text{graviton}} \cdot m_{\text{graviton}}\)

\[
\Lambda_{Einstein–Const. Padmanabhan} = \frac{1}{l_{\text{Planck}}^2} \cdot \left(\frac{E}{E_{\text{Planck}}} \right)^6
\] (13)
Then the entropy at the end of the electro weak era is, assuming this is commensurate with graviton production, with the value of the Horizon radius at the upper end of Eq. (3) above, namely about 1 meter

\[S_{\text{graviton}} \sim 10^{39} \quad (14) \]

Given this, we can now consider what would be the magnetic field, initially, and the other parameters as given in the end of the last section. Doing so, if so, we can have frequency as high as

\[\omega_{\text{initial}} \mid r \sim \text{meter} \sim 10^{21} \text{Hz} \quad (15) \]

Using inflation, this would be redshifted at a minimum of 11 orders of magnitude, down to about \(10^{10} \text{ Hz today, at the highest end. The nature of the E and B fields, also as fill in would have to be commensurate with what was given in [12]}

Still though, as a rule of thumb, we would have that the MINIMUM value of the magnetic field, in question would have to be [4]. I.e. for high frequencies, the minimum value of the magnetic field would actually be very low!

\[B \geq \frac{1}{2 \cdot \sqrt{10 \mu_0 \cdot \omega}} \quad (16) \]

1. Conclusions; Why we have a non zero initial entropy

Why we pursued this datum of an initial non zero entropy? In a word, to preserve the fidelity of physical law from cosmological cycle to cycle. I.e. the bits we calculated with, came from Seth Lloyd [8], and also from Giovanni [13], with the upper end to graviton frequencies calculated as follows [13]

\[S_{\text{gravitons present era}} = V(volume) \times \int_0^v r(v)dv \]

\[\approx (10^{29})^3 \times \left(\frac{H_r}{M_p} \right)^3 \sim (10^{29})^3 \sim 10^{97} \quad (17) \]

\[\Leftrightarrow v0 \sim 10^{-18} \text{ Hz} \& v1 \sim 10^{11} \text{ Hz} \]

S.Lloyd, sets, in [13]

\[I(\text{number - bits}) \sim (\#)^{3/4} \sim 10^{90} (\text{present - era}) \]

\[\Leftrightarrow \# \leq (1/2\pi) \cdot (r/l_p) \cdot (t/l_p) \sim 10^{122} (\text{present - era}) \quad (18) \]

The first part of Eq.(17) in terms of ‘bits’ is approximately similar to Eq.(18), and more tellingly,

\[I(\text{number - bits}) \sim (\#)^{3/4} \sim 10^{37} (\text{EW - era}) \]

\[\Leftrightarrow \# \leq (1/2\pi) \cdot (r/l_p) \cdot (t/l_p) \sim 10^{49} (\text{EW - era}) \quad (19) \]
The upper part of Eq.(17) overlaps, a bit with Eq.(3) and Eq. (18), whereas Eq.(17) is only a few orders of magnitude higher than the formal numerical count for the number of operations, # of Eq. (18), i.e. the number of bits, given in Eq.(18) is similar to the graviton entropy count given in Eq. (17). However, most tellingly, the initial non zero graviton count, given when the universe is 1 meter in diameter, or so, is initiated by negative pressure, which we recount, below.

We state, first of all, that with we use Lloyd [8], and also Corda, et.al [14]

\[
\# \text{operations} \sim \rho_{\text{crit}} \times t^4 \sim \left(\frac{t}{t_p}\right)^2
\]

\[
\Leftrightarrow \rho_{\text{crit}} \sim \frac{1}{t^2} \propto \rho_g = \frac{16}{3} c_s B^4
\]

\[
\Leftrightarrow \# \text{operations} \sim \left(\frac{t}{t_p}\right)^2 / B^8
\]

\[
\sim 1/\left(\frac{t}{t_p} B^4\right) \sim 1/ B^4
\]

(20)

The upshot is that the entropy, at the close of the Inflationary era, would be dominated by Graviton production as of about the electroweak era, and this would have consequences as far as information, as can be seen by the approximation given by Seth Lloyd [8] on page 14 of the article, as to the number of operations # being roughly about

\[
\# \leq (1/2\pi) \cdot (r/I_p) \cdot \left(\frac{t}{t_p}\right)
\]

(21)

In the electro-weak era, we would be having Eq. (21) as giving a number of ‘computational steps’ many times larger (10 orders of magnitude) than the entropy of the Electro-weak,

\[
\#(\text{Electro-weak}) \sim 10^{49}
\]

(22)

In addition, making use of the above calculations, if we do so, we obtained that the minimum time step would be of the order of Planck time, i.e. of about 10^{-44} seconds , using [5] and Eq. (7) above, which is very small, but not zero, whereas, again, assuming a 1 meter radii, which we obtain at the end of inflation, with a time step the, at the end of inflation of 10^{-20} seconds. This is significant, when the universe had a radii of 1 meter, is about when we would expect to have the value of Eq.(21). This set of number of operations would be about when we would expect Planck’s constant to be set, with the values as given in [15]. In addition, there is no way that the initial entropy would be zero, largely on account of Eq. (5) and Eq. (10) above. As to Stoica’s work, [16] we will say that the removal of a chance for a non zero pathological singularity, as he mentioned, would be altered to cover a non zero bounce, but one which was nearly zero. I.e. the initial graviton count would be immeasurably lower than the present day era value, as given in Eq. (17) above.

Acknowledgments

This work is supported in part by National Nature Science Foundation of China grant No. 11375279

References and Notes

Y. Jack Ng, Article: Spacetime Foam: From Entropy and Holography to Infinite Statistics and Nonlocality” Entropy 2008, 10(4), 441-461; DOI: 10.3390/e10040441

11. T. Padmanabhan, http://ned.ipac.caltech.edu/level5/Sept02/Padmanabhan/Pad1_2.html

