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Abstract:

In this article, we propose a new model of dark matter. According to this new model,
dark matter is a substance, that is a new physical element not constituted of classical particles,
called dark substance and filling the Universe. Assuming some very simple physical
properties to this dark substance, we will theoretically justify the flat rotation curve of
galaxies and the baryonic Tully-Fisher’s law. Then we will give a physical interpretation of
the CMB Rest Frame (CRF). With the new model of dark matter, we will be naturally led to
propose a new geometric model of the Universe, finite and not proposed by the Standard
Cosmological model (SCM). We then will propose a first mathematical model of expansion
of the Universe, based on General Relativity as the SCM, and in which the CMB rest frame
plays an important role. This 1* model leads to the same mathematical predictions as the
SCM. But we will propose also a 2" mathematical model of expansion of the Universe, which
is mathematically much simpler than General Relativity, but with theoretical predictions in
agreement with the experimental data given by astronomical observations. Moreover this o
mathematical model does not need the existence of a dark energy, and consequently brings a
solution to the enigma of dark matter. After this we will study according to the new proposed
theory the different models of distribution of dark matter in galaxies. Then we will study the
velocities of galaxies in clusters according to this distribution of dark matter, the evolution of
the temperature of dark substance in the Universe and we will make appear the existence of a
dark energy, due to our model of dark matter and to the expansion of the Universe.

Key words: Tully-Fisher’s law, dark matter, dark halo, CMB, galaxy clusters, gravitational
lensing, galaxy rotation curve, orbital velocity galaxies.

1.INTRODUCTION

In this article, we propose that a new physical element, called dark substance,
constitutes the dark matter. According to our model, this dark substance fills all the Universe
and has physical properties close to the physical properties of an ideal gas. We then show that
it is possible, using those properties, to justify theoretically the flat rotation curve that is
observed for some galaxies. If moreover we assume simple thermal properties to this dark
substance, we see that we can justify theoretically the baryonic Tully-Fisher’s law, despite the
great specificity of this law. We recall that up to date, neither the flat rotation curve of
galaxies nor the baryonic Tully-Fisher law have been justified theoretically in a satisfying
way. It is true that a simple density of dark matter (in /%) permitting to obtain this flat
rotation curve has already been proposed, but this expression of density (in 1/1%) has not been
theoretically justified. A theory called MOND theory M proposes also a theoretical
justification of the flat rotation curve, but it is contrary to Newton’s attraction law (which is
difficultly acceptable) and moreover it is contradicted by some astronomical observations.

We also know that the CMB (Cosmic Microwave Background) Rest Frame (CRF), has
not physical interpretation, concerning its nature and its main physical properties, in the
Standard Cosmological Model (SCM). In this article, we are going to give a Physical
Interpretation of the CRF, which permits new definitions of Cosmological variables (in
particular the Cosmological time and the different kinds of distances used in Cosmology), that



are in agreement with their definitions in the SCM. Considering the importance of this frame
in Cosmology, we will also call it the local Cosmological frame. This will lead us to propose a
new geometric model of Universe, flat and finite, that is not predicted by the SCM.
Nonetheless, our Physical Interpretation of the CRF is compatible with Special and General
Relativity. This Physical Interpretation of the CRF proposes 2 mathematical models of
expansion of the Universe. The 1* model is as the SCM based on the equations of General
Relativity. We then show that in this 1*' model the observable Universe is identical to the
observable Universe predicted by the SCM (Provided that some conditions be verified).
Indeed in this 1** mathematical model, the different kinds of distances used in Cosmology and
Hubble’s constant , and also the cosmological redshift z have the same mathematical
expression as in the SCM.

The 2™ mathematical model of our Interpretation of the CRF is not based on the
equations of the SCM but is much simpler. Despite of this, its theoretical astrophysical
predictions (In particular Hubble’s law and Cosmological distances) are in agreement with
astronomical observations. Moreover this 2™ model solves the enigma of the dark energy.

We will then study according to our model of dark matter the different models of
distribution of dark matter in galaxies. We will also give a theoretical explanation to
experimental data linked to the dark mass of clusters, in particular the velocities of galaxies
in clusters, and the gravitational lensing that is the deviation of luminous rays, predicted by
General Relativity, by the mass of clusters. Then we will study the density of dark matter in
the Universe, that is at the origin of some anisotropies of the CMB. Finally we will study the
evolution of the temperature of the dark substance in the Universe.

We remind that for many astrophysicists and physicists, the enigmas in the SCM, in
particular the enigmas concerning dark matter and dark energy, make necessary a new
paradigm for the SCM . Our article proposes such a new paradigm.

In this article we will express the main physical properties of the dark substance and
the CRF in some Postulates, divided in points a),b)..

In our model of dark substance and in our Physical Interpretation of the CRF, we will
keep all the points of the SCM, except the points of the SCM that are not compatible with our
Postulates or that become useless because of them.

2. DARK SUBSTANCE-CMB REST FRAME
2.1 Physical properties of the dark substance.

As we have seen in 1.INTRODUCTION, we admit the Postulate 1 expressing the
physical properties of the dark substance:
Postulate 1:

a)A substance, called dark substance, fills all the Universe.

b)This substance does not interact with photons crossing it.

c)This substance has a mass and obeys to the Boyle’s law (called also Mariotte’s law), to the
Charles’law (called also Gay-Lussac’s law), and to the following law that is their synthesis:
An element of dark substance with a mass m, a volume V, a pressure P and a temperature T
verifies, ko being a constant:

PV=komT



The preceding law is valid for a given ideal gas Gy, replacing ko by a constant k(Gy),
and this is a consequence of the universal gas equation, which is also obtained using Boyle
and Charles’laws. For this reason we will call it the Boyle-Charles’law.

We have 2 remarks consequences of this Postulatel:

-Firstly despite of its name, the dark substance is not really dark but transparent. Indeed,
because of the preceding Postulate 1b) it does not interact with photons crossing it.

-Secondly because of the Postulate 1a), what is usually called “vacuum” is not empty in
reality: It is full of dark substance.

2.2 Flat rotation curves of galaxies.

Using the fact that the dark substance behaves as an ideal gas (Postulate 1c), we are
going to show that a spherical concentration of dark substance in thermodynamic and
gravitational equilibrium can constitute the dark matter in a galaxy with a flat rotation curve.

According to Postulate 1c) an element of dark substance with a mass m, a volume V, a
pressure P and a temperature T verifies the law, ko being a constant:

PV=komT (1)
Which means, setting k;=koT :

PV=km 2)
Or equivalently, p being the mass density of the element:

P=kip (3a)

We then emit the natural hypothesis that a galaxy can be modeled as a concentration of
dark substance with a spherical symmetry, at an homogeneous temperature T.

We then consider the spherical surface S(r) (resp. the spherical surface S(r+dr)) that is

the spherical surface with a radius r (resp. r+dr) and whose the center is the center O of the
galaxy. S(O,r) is the sphere full of dark substance with a radius r and the center O.

S(O,r) (full sphere)




S (r+dr)

Figure 1:The spherical concentration of dark substance

The mass M(r) of the sphere S(O,r)is given by:

M(r) = jo' P(0)Amdx (3b)

Using Newton’s law (ZF=0 for a material element in equilibrium, in the case of a spherical
symmetry Fg(r)=mG(r), Fg(r) gravitational force acting on the element, G(r) gravitational
field defined by Newton’s universal law of gravitation) and Gauss theorem in order to obtain
G(r),we obtain the following equation (4) of equilibrium of forces on an element dark
substance with a surface dS, a width dr, situated between the 2 spheres S(O,r) and S(r+dr):

dSP(r+dr)+ Ez (p(r)der)(I p(x)4mc*dx) —dSP(r) =0 4)
r 0
Eliminating dS, we obtain the equation:
dP G t 2
—— === (p(r)(] plx)4c’ dx) 5)
dr r 0

And using the equation (3) obtained using the Boyle-Charles’law assumed in the Postulate 1,
we obtain the equation:

k22— o[ plosman) ©)
dr r "

We then verify that the density of the dark substance p(r) satisfying the preceding equation of
equilibrium is:

K
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p(r)_ 2 ( )



(A density of dark matter expressed as in Equation (7) has already been proposed in
order to explain the flat rotation curve of spiral galaxies, but it has not been justified
theoretically. Here we give a theoretical justification of this expression (7), consequence of
the model of dark substance as an ideal gas, Postulate 1)

The constant k; is given by, G being the Universal attraction gravitational constant:

2k, _ 2k,T

k. =
G G

@)
Using the preceding equation (7), we obtain that the mass M(r) of the sphere S(O,r) is given
by the equation:

M(r)= j47zx2 p(x)dx=k,r (9)
0

We then obtain, neglecting the mass of stars in the galaxy, that the velocity v(r) of a
star of a galaxy situated at a distance r from the center O of the galaxy is given by
v(r)z/r:GM(r)/lr2 and consequently :

v(r)’=Gk,=2k =2k, T (10)

So we obtain in the previous equation (10) that the velocity of a star in a galaxy is
independent of its distance to the center O of the galaxy.

2.3 Baryonic Tully-Fisher’s law.
2.3.1 Recall.

Tully and Fisher realized some observations on spiral galaxies with a flat rotation
curve. They obtained that the luminosity L of such a spiral galaxy is proportional to the 4™
power of the velocity v of stars in this galaxy. So we have the Tully-Fisher’s law for spiral
galaxies, K; being a constant:

L=K,v* (11)

But in the case studied by Tully and Fisher, the baryonic mass M of a spiral galaxy is
usually proportional to its luminosity L. So we have also the law for such a spiral galaxy, K,
being a constant:

M=K,v* (12)
This 2™ form of Tully-Fisher’s law is known as the baryonic Tully-Fisher’s law.

The more recent observations of Mc Gaugh ® show that the baryonic Tully-Fisher’s
law (equation (12)) seems to be true for all galaxies with a flat rotation curve, including the
galaxies with a luminosity not proportional to their baryonic mass.

We are going to show that using the Postulate 1 and a Postulate 2 expressing very
simple thermal properties of the dark substance, (in particular its thermal interaction with



baryonic particles), we can justify this baryonic law of Tully-Fisher despite of its great
specificity.

2.3.2 Theory of quantified loss of calorific energy (by nuclei).

We saw in the previous equation (10) that according to our model of dark substance
the square of the velocity of stars in a galaxy with a flat rotation curve is proportional to the
temperature of the concentration of dark substance constituting this galaxy. So we need to
determinate T:

-A first possible idea is that the temperature T is the temperature of the CMB. But this is
impossible because it would imply that all stars of all galaxies with a flat rotation curve be
driven with the same velocity and we know that it is not the case.

-A second possible idea is that in the considered galaxy, each baryon interacts with the dark
substance constituting the galaxy, transmitting to it a calorific energy. We can expect that this
thermal energy is then very low, but because of the expected very low density of the dark
substance and of the considered times (we remind that the diameter of galaxies is if the order
of 100000 light-years), it can lead to appreciable temperatures of dark substance. A priori we
could expect that this loss of calorific energy for each baryon (transmitted to the dark
substance) depends on the temperature of this baryon and of the temperature T of the dark
substance in which the baryon is immerged, but if it was the case, the total calorific loss for
all baryons would be extremely difficult to calculate and moreover it should be very probable
that we would then be unable to obtain the very simple baryonic Tully-Fisher’s law.

We are then led to make the simplest hypothesis defining the thermal transfer between
dark substance and baryons, expressed in the following Postulate 2a) (Postulate 2 gives the
thermal properties of the dark substance):

Postulate 2a):

-Each nucleus of atom in a galaxy is submitted to a loss of calorific energy, transmitted to the
dark substance in which it is immerged.

-This thermal transfer depends only on the number n of nucleons constituting the nucleus (So
it is independent of the temperature of the nucleus). So if p is the thermal power dissipated by
the nucleus, it exists a constant py (thermal power dissipated by nucleon) such that:

p=npo (13)

According to the equation (13), the total thermal power transmitted by all the atoms of a
galaxy towards the spherical concentration of dark matter constituting the galaxy is
proportional to the total number of nucleons of the galaxy and consequently to the baryonic
mass of this galaxy. So if mg is the mass of one nucleon, M being the baryonic mass of the
galaxy, we obtain according to the equation (13) that the total thermal power P, received by
the spherical concentration of dark substance constituting the galaxy from all the atoms is
given by the following equation, K3 being the constant pp/my:

P=(M/mg)po=Ks:M (14)

Concerning the preceding Postulate 2a):

-It is possible (but not compulsory) that it be true only for atoms whose temperature is
superior to the temperature T of the concentration of dark substance.

-It permits to obtain the very simple Equation (14). We will see that this equation is essential
in order to obtain the baryonic Tully-Fisher’s law.



2.3.3 Obtainment of the baryonic Tully-Fisher’s law.

In agreement with the previous model of galaxy (Section 2.2), we model a galaxy with
a flat rotation curve as a spherical concentration of dark substance, at a temperature T and
surrounded itself by a medium constituted of dark substance (called “intergalactic dark
substance”) at a temperature Ty and with a density po.

In order to obtain the radius R of the concentration of dark substance constituting the
galaxy, it is natural to make the hypothesis of the continuity of p(r): R is the radius for which
the density p(r) of the concentration of dark substance is equal to py. So we have the equation:

p(R)=po (15)
Consequently we have according to the equations (7) and (8):

k,

ATR® Po (16)

2%, 1

——X = 17
G 47Z'R2 pO ( )

So we obtain that the radius R of the concentration of dark substance constituting the
galaxy is given approximately by the equation:

2k, T

47sz )1/2 — K4T1/2 (18)
0

R=(

The constant K4 being given by :

K4 — ( 2’kO )1/ 2
4nGp,
We will call R the dark radius of the galaxy. We can then consider that the sphere
with a radius R of dark substance constituting the galaxy at the temperature T is in thermal
interaction with the medium constituted of intergalactic dark substance at the temperature Ty
surrounding it. The simplest and more natural thermal transfer is the classical convective
transfer. We admit this in the Postulate 2b):

(19)

Postulate 2b):

The thermal interaction between the spherical concentration of dark substance
constituting the galaxy (at the temperature T) and the surrounding intergalactic dark substance
(at the temperature Ty) can be modeled as a classical convective thermal transfer.

We know that if ¢ is the thermal flow of thermal energy on the borders of the spherical
concentration of dark substance with a radius R, P being the total power lost by the spherical

concentration of dark substance constituting the galaxy is given by the equation:

P=4nR*¢p (20)



But we know that according to the definition a convective thermal transfer between a
medium at a temperature T and a medium at a temperature T and according to the previous
Postulate 2b) the flow ¢ between the 2 media is given by the expression, h being a constant
depending only on py:

¢=h(T-To) 2D

Consequently the total power lost by the concentration of dark substance is:

Pi=47R*h(T-To) (22)

We can consider that at the equilibrium, the total thermal power P, received by the
spherical concentration of dark substance constituting the galaxy is equal to the thermal power
P, lost by this spherical concentration. Consequently according to the equations (14) and (22),
(M being the baryonic mass of the galaxy), we have:

KsM=47R>h(T-T) (23)

Using then the equation (18) :

KsM=47K,*hT(T-Ty) (24)

Making the approximation To<<T :

K2
M =4 —*hT? (25)
3

Consequently we obtain the expression of T, defining the constant Ks :

K,

1/2M1/2:KM1/2 26
4;:th> ’ 20

T=(

And then according to the equation (10) :

v2=2koT=2koKsM "2 (27)

So:

M= (2 (28a)
2k, K

So we finally obtain :
M=Kv* (28b)
The constant K¢ being defined by:
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So we obtain the baryonic Tully-Fisher’s law (12), with K,=Kg. It is natural to assume
that h depends on pg. The simplest expression of h is h=C,py, C; being a constant. With this
relation, Ks is independent of pg, and we can use the baryonic Tully-Fisher’s law in order to
define candles used to evaluate distances in the Universe.

2.4 Temperature of the intergalactic dark substance.

We introduced the temperature Ty of the intergalactic dark substance. We could make
the hypothesis that this temperature is the temperature of the CMB but we remind that in
order to get the baryonic Tully-Fisher’s law we supposed To<<T (T temperature of the
spherical concentration of dark substance in a galaxy). Consequently the previous hypothesis
would lead to very high temperatures of spherical concentrations of dark substance
constituting galaxies. We will see further that according to the theory of dark matter exposed
here, the temperature T, of the intergalactic dark substance is not equal to the temperature of
the CMB, except for a particular cosmological redshift z.

We could be in the following cases:

a)The temperature Ty of the intergalactic dark substance at the present age of the Universe
(equation (21)) is far less than the temperature of the CMB. (If the temperature of the dark
halos of galaxies corresponding to the 1% model is inferior (approximately) to 300°K.)
b)Baryons can emit thermal power towards dark substance as assumed in the Postulate 2a)
even if their temperature is inferior to the one of dark substance. (If the temperature of the
dark halos of galaxies corresponding to the 1* model is superior to the temperature of gas
whose the mass is used in the baryonic mass M intervening in the baryonic Tully-Fisher’s law
©® M=Kqv* (equation (28b)) . We remind that dark substance being not ordinary baryonic
matter, it can own very special thermal properties.)

We remind that according to the Postulate 1b), the dark substance does not interact
with photons and in particular with the photons of the CMB. Consequently dark substance
does not receive radiated energy.

2.5 Form of the Universe

If the Universe was completely isotropic, we could expect by symmetry that the
thermal flow through a great surface be nil. Consequently the temperature of the dark
substance inside a great sphere S of the Universe (For instance with a radius of 1 billion
years) should increase and probably tend to a uniform temperature of dark substance inside
the sphere S, because the thermal flow on S would be nil. We know that it is not possible in
our model of dark substance because in this model spherical concentrations of dark substance
constituting galaxies have not the same temperature (Because the velocity of stars is not
always the same in all galaxies and we know that the temperature of the spherical
concentration of dark substance is proportional to she squared velocities of stars inside this



concentration (Equation (10)) and moreover because we admitted that the temperature T of
the intergalactic dark substance is by far inferior to the temperature of the spherical
concentrations of dark substance constituting galaxies. So an infinite or finite isotropic
Universe would contradict our model of thermal properties of the dark substance .

Nonetheless with our model of dark substance, it is much easier to define a finite
Universe than in the SCM. Indeed we can consider that the Universe is a sphere (We could
have chosen any other finite convex volume, but the spherical volume is by far the most
attractive) constituted of dark substance surrounded by a medium called “nothingness” that is
not constituted of dark substance. This was not possible in the SCM that admitted the
Cosmological Principle according to which the Universe was isotropic observed from any
point. Moreover the SCM did not assume the existence of the concept of a dark substance
filling all the Universe and it is precisely this concept that permits us to define this new finite
model of Universe with borders.

We can expect that in this new simple geometric model, the Universe appears to be
isotropic not only if it is observed from O the centre of the sphere constituting the Universe,
but also if it is observed from a point sufficiently far from its borders. We also remark that the
existence of the medium that we called “nothingness” is also compatible with the MSC.
Indeed we can consider that it was the medium before the Big-Bang.

In order to obtain the Cosmological redshift z with this new geometric model, we can
apply the same equations as in the SCM. Indeed we keep the assumptions of the SCM
according to which the densities of dark energy, of dark baryonic matter and of dark energy
(if the latter exists) are homogeneous in all the Universe and we keep their values admitted in
the SCM. The new model of Universe is no more isotropic (because of its borders), but
nonetheless we can apply the same equations as in the SCM in any point situated at a distance
sufficiently far from the borders of the Universe. And we will admit that this distance is quasi-
nil or very small relative to the radius of the spherical Universe.

Concerning the CMB, we can admit as in the SCM that it appeared for an expansion
factor 1+z of the order of 1500. The hypothesis according to which at the age of the Universe
corresponding to this factor of expansion the temperature of dark substance and the
temperature of the CMB were equal, is very attractive. Indeed with this hypothesis, assuming
that the dark substance was homogeneous in temperature when the CMB appeared (for z of
the order of 1500), because it is natural to assume that the dark substance in the Universe
before the apparition of galaxies was homogeneous in temperature and density. In fact we
assume that in the early Universe, the Homogenization Effect (concept defined in Section 2.4)
prevailed in all the Universe. So the new theory of dark matter exposed here proposes a
phenomenon different from the phenomenon called inflation in order to explain the quasi-
isotropy of the CMB. But this theory remains sufficiently compatible with the SCM in order
to explain the anisotropies of the CMB the same way as the SCM..

In the case in which Universe is a sphere (or any finite convex volume with a finite
surface) constituted of dark substance, we avoid the previous problem concerning the
temperature of the intergalactic dark substance. Indeed, we can assume, generalizing the
Postulate 2b), that at the borders of the Universe, there is a convective thermal transfer. This
new kind of thermal transfer is modeled as a convective transfer between a medium
constituted of intergalactic dark substance at a temperature Ty and a medium at a temperature
equal to O (The nothingness). Then the thermal flow lost by the Universe is, h, being a
variable or a constant:

¢=hy(To-0)=h,To (28d)
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M being the baryonic mass of the Universe assumed to remain approximately
constant, we obtain from equation (14) that the equation of thermal equilibrium is:

K3M = 4nRg(t)* ¢ =47Rg(t)* hyTo(t) (28¢)

So we see that if the Universe increases from a factor 1+z, according to the equation
(29a), if h, is a constant (independent of the density of the intergalactic dark substance), the
temperature To(t) of the intergalactic dark substance diminishes from a factor (1+2). If we
had supposed that h,=C,py, po being the mass density of the intergalactic dark substance and
C, being a constant, we would have obtained that if the Universe increases from a factor 1+z,
then T also increases by a factor 1+z which is impossible.

We also remark that the hypothesis of an infinite Universe, or a finite Universe
without borders, that are geometric models proposed by the SCM @7 | seems to be
impossible to be conceived by the human mind, which is not the case with the finite spherical
Universe, full of dark substance (or any finite convex volume with a finite surface), proposed
by the theory exposed here.

2.6 Physical Interpretation of the CRF. Local and Universal Cosmological frames.
2.6.1 The 2 models of the Physical Interpretation of the CRF.

We remind that the CMB presents a Doppler effect that is canceled in a frame called
for this reason the CMB Rest Frame (CRF). But this CRF has none physical interpretation in
the SCM. We are going to give here a Physical Interpretation of the CRF, which permits to
obtain a new model of Universe, that is spherical as in the preceding section 2.5. This new
Physical Interpretation of the CRF is in agreement with the SCM in many points, in particular
it admits Special and General Relativity. Also it permits to define Cosmological variables
(Cosmological time, distances used in Cosmology, Hubble Constant) in a more precise way
than in the SCM but nonetheless in a way that is in agreement with their definition in the
SCM. Our Physical Interpretation of the CRF proposes 2 mathematical models of expansion
of the Universe. (Because the Universe is in expansion in our Physical Interpretation of the
CRF as it is in the SCM). The 1% mathematical model is based on General Relativity as the
SCM. We will see that according to this 1* model the mathematical expressions of
Cosmological variables are identical to their expression in the SCM. The 2" mathematical
model is much simpler, but nonetheless its theoretical predictions are in agreement with
observation.

Concerning the physical properties of the CRF:

-Firstly it is natural that in each point of the Universe (and not only on the earth), we can
define a CRF. We then can suppose that all CRF have parallel corresponding axis.

-Secondly we can think that the CRF permits to define very easily the Cosmological time,
identified to the age of the Universe. The simplest definition of the Cosmological time would
be that the time of the CRF (meaning the time given by the clocks at rest in the CRF) be
precisely the Cosmological time. And we will see that this hypothesis is in agreement with
observations. For instance we will see that its validity is illustrated by a very simple
observation concerning the inertial frame linked to the sun. Indeed we recall that according to
Special Relativity, if Hg is a clock linked to the sun and giving the time of the inertial frame
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Rs linked to the sun, if Ric is a local inertial frame giving the Cosmological time Rg being
driven with a velocity Vg relative to Ry ¢, if Ts is a time measured by Hg corresponding to a
Cosmological time T¢ of Ric, then: TS=TC(1—V52/C2)1/ 2, Consequently if Vg<<c, we get
Ts=Tc. Therefore it is completely impossible that locally all the inertial frames (with Lorentz
transformations) give all the Cosmological time.

Consequently if Vg<<c we get Ts~Tc.

-Thirdly we know that according to Special Relativity (We remind that we admit it as in the
SCM) the velocity of a photon relative to the CRF in which it is situated is equal to ¢ in norm.
Moreover according to Special Relativity its velocity considered as a vector ¢ keeps itself in
this CRF. We will call local velocity this velocity ¢. An attractive hypothesis would be that
the local velocity of the photon keeps itself the photon traveling in all the Universe. We will
see that this hypothesis involves theoretical predictions that are in agreement with
observation. In particular we will see that it permits to justify very simply the effect of the
expansion of the Universe on the lengths of wave of photons and on the distances between 2
photons following one another. (This effect is also predicted by the SCM) .
So we express the preceding hypothesis in the following Postulate 3:

Postulate 3:

a)At each point of the Universe, we can define a CRF. We will assume that all CRF have
parallel corresponding axis.

b)The Cosmological time (identified with the age of the Universe) is the time of all the CRF.
c)The local velocity of a photon, meaning measured in the CRF in which it is situated, keeps
itself, the photon traveling in all the Universe.

We could think that the CRF are defined only after the apparition of the CMB,
meaning at a very low Cosmological time but not at a Cosmological time equal to 0. In reality
we will see in the Postulate 4 that in reality the RRC are defined since the beginning of the
Universe. But CMB is presently the only way for detecting the CRF. This can be considered
as a consequence of Special Relativity. We will see that the RRC is also the Referential in
which the intergalactic dark substance is at rest. Considering the importance of this
Referential we will also call it the local Cosmological frame.

Because of the Postulate 3b), and since we know that the inertial frame Rg linked to
the sun is driven with a velocity vs<<c relative to the local CRF, the time of this frame Rg is
very close to the time of the CRF, that is the Cosmological time, which is an agreement with
observation. So the Postulate 3b) justifies that the time of Rs can be identified to the
Cosmological time which was not at all evident. In fact, according with our models and
astronomical observations, all galaxies of the Universe have a local velocity negligible
(relative to c) relative to the local CRF and consequently the time given by the inertial frame
linked to any star of any galaxy is very close to the Cosmological time.

We know need to define all the CRF. Each CRF has an origin and by analogy with the
SCM, we can expect that if A(t) and B(t) are 2 origins of any 2 CRF (t Cosmological time),
then the distance the distance A(t;)B(t;) becomes (1+z)A(t;)B(t,) if the factor of expansion of
the Universe between t1 and t2 is equal to 1+z.

We saw in the previous section 2.5 that we could expect that the Universe had a finite

convex volume with a finite surface, and we will assume in what follows that the Universe is
a sphere (centre O), full of dark substance, surrounded but what we called “nothingness”. We
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remind nonetheless that what follows can be generalized if the Universe is a finite convex
volume with a finite surface filled of dark substance and surrounded by what we called “the
nothingness”. We saw that this medium can be identified with the medium preceding the Big-
Bang:

If we consider that before the Big-Bang, a medium existed we call “nothingness” this
medium and if we consider that before the Big-Bang nothing existed, we identify this
“nothing” to the medium called “nothingness”.

In order to define completely the CRF, we introduce a new kind of frame, called
(Universal) Cosmological frame, having its origin in O, centre of the sphere. This (Universal)
Cosmological frame R¢ will be used in order to define Cosmological variables. In particular
the time of this Referential R¢ is the Cosmological time of the CRF. Moreover we will
assume that the axis of Rc¢ are parallel to the corresponding axis of the CRF and that locally
they give the same distances as the CRF. Nonetheless, the Cosmological frame R¢ permits to
measure distances between any 2 points of the Universe contrary to CRF that permit to
measure only local distances. We will call (primary) Cosmological distance (in Rc) the
distances measured in Rc. We will see that we can express all the classical Cosmological
variables (For instance the comoving distances, the angular distance, the light-travel
distance..) as a function of (primary) Cosmological distances measured in R¢ of the time of
Rc (Cosmological time) and of the expansion redshift z.

So we assume that the Universe is a sphere with a centre O, full of dark substance, and
in expansion. Let Rg(t) be the radius of this sphere , t being the Cosmological time. In analogy
with the SCM, we assume that Rg(t)=Rg(tp)(1+z), 1+z being the factor of expansion of the
Universe between ty and t. We will see further how we can get 1+z.

We are now going to define very important and particular points of the frame Rc,
called comoving points of the swelling sphere.

We assume that P(t) is any point belonging to the border of the swelling sphere, t
being the Cosmological time, with OP(t) (O is the centre of the swelling sphere) remaining in
the same direction u, fixed vector Rc.

A comoving point A(t) of the swelling sphere is defined by :

-A(t) remains on the segment [O,P(t)]
-OA(t)=aOP(t), a being a constant belonging to [0,1]. (28f)

So in particular O and P(t) are comoving points of the swelling sphere. Moreover if
A(t) and B(t) are 2 comoving points of the swelling sphere, belonging both to a radius
[O,P(1)], and if t; and t, are 2 ages of the Universe, if 1+z=0P(t,)/OP(t;)), (Here 1+z is the
factor of expansion between t; and t,) then we have the 2 relations:

A(t)B(t2)=(1+2)A(t)B(t;) (28g)
And :
[A(t2),B(t)I//[A(t),B(t)] (28h)
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(We classically note, P,Q being 2 points of R¢, PQ is the distance between P and Q
measured in R, [P,Q] is the segment with extremities P and Q, (P,Q) is the straight line
containing P and Q)

Using Thales theorem we obtain the 2 previous relation (28g) (28h) A(t) and B(t)
being any comoving points of the swelling sphere (not compulsory belonging both to the
same radius [O,P(t)]). We just use the relation: OA(t2)/OA(t;)=0OB(t,)/OB(t))=f.

So we see that the comoving points of the swelling sphere verify the expected relations
between the origins of the CRF (Meaning that the distance between them increases by the
factor of expansion of the Universe.)

Re(t)=Rg(to)(1+2)

Figure 2:The model of the swelling sphere of the Universe.

Consequently the comoving points of the swelling sphere previously defined permit to
complete the definition of the CREF, in the Postulate 4:

Postulate 4:
The origins of the CRF are the comoving points that we defined previously.

Now we need to express the factor of expansion 14z as a function of the Cosmological
time. We propose 2 models.

According to our 1% model, 1+z is obtained as it is obtained in the SCM: We apply
locally the equations of General Relativity, assuming that the densities of dark substance,
baryonic matter and dark energy own identical values to their values in the SCM and are
homogeneous in all the Universe. A priori, we cannot apply the equations of General
Relativity as in the SCM in a zone close to the borders of the Universe because we have no
more isotropy of density in this zone. But we will assume that the dimensions of this zone are
very small relative to the radius of the swelling sphere. Moreover, we will see that according
to our model, in many cases this zone cannot be observed. And consequently in this 1* model,
if the previous zone is sufficiently small, the factor of expansion 1+z used in the expression of
Rg(t) and to define the comoving points of the swelling sphere remains identical to its
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expression in the SCM. We will see that this equality involves that our 1** model of our
Physical Interpretation of the CRF predicts distances used in Cosmology and a Hubble
Constant that are mathematically equal to those predicted by the SCM.

Nonetheless, a priori, it is possible that the factor of expansion 1+z be not obtained by
the equations of General Relativity. It is possible that as for the (local) velocity of light, the
Cosmological velocity of the borders of the Universe relative to R¢ (defined by
Vi(t)=d(Rg(t))/dt, t Cosmological time) be as simplest as possible, meaning that it is equal to
a constant C. There is no reason for which C should be equal or inferior to the velocity of
light ¢ because C is not the local velocity (defined in Postulate 3) of a photon or of a particle.
So in our 2™ model, we assume that the Cosmological velocity of the borders of the Universe
is equal to a constant C. We will see that we can give an inferior limit to this constant C. And
we will also see that despite of this great simplicity, the predictions of this 2" mathematical
model are in agreement with all astronomical observations. Then if P(t) is a point of the
border of the sphere OP(t)=Ct. And we have a very simple expression of 1+z: Between ty and
t, 1+z=t/ty.

We saw that the SCM needed the existence of a mysterious dark energy, and it is also
the case for our 1* model. But we see that in the 2" model this enigma is solved because it
does not need the existence of a dark energy. And this is a very attractive point of this 2"
model. This 2" model is also clearly the simplest mathematical model of expansion of the
Universe that can exist.

2.6.2 The theoretical consequences of our Physical Interpretation of the CRF.

As a consequence of our Physical Interpretation of the CRF, we can prove that as it
was also the case in the MSC, if 2 photons phl and ph2 move in the same direction on a
straight line towards the point O origin of R¢ (We will see further that this remains true
replacing O by any comoving point O’ of the swelling sphere), then between 2 Cosmological
times t; and t;, the Cosmological distance measured in Rc between the 2 photons and the
length of wave of each photon increase by the factor of expansion 1+z between t; and t; .

Indeed let us consider 2 photons defined as previously. So they have an identical local
velocity ¢ (with a direction being the direction of the straight line). We take the following
notations: At the Cosmological time t phl is in the point ph1(t) of R, and ph2 is in the point
ph2(t). Let us suppose that for a given Cosmological time t, ph1(t) coincides with a comoving
point A;(t) and ph2(t) with a comoving point A,(t). Let 1+dz the factor of expansion of the
swelling sphere between t and t+dt. Then we have according to the property (28g) of
comoving points:

Aj(t+dt) Ax(t+dt)=(1+dz) A1 (t) Ax(t)=(1+dz)ph 1 (t)ph2(t).
Moreover, the local velocity of photons being equal to c:
Aj(t+dt)ph1(t+dt)=A,(t+dt)(ph2(t+dt)=cdt

And consequently :

ph1(t+dt)ph2(t+dt)=A(t+dt) Ax(t+dt)=(1+dz)(ph1(t)ph2(t)

We obtain the same way that because of the expansion of the Universe, the length of
wave of a photon is also increased by the factor of expansion of the Universe 1+z. We
identify a photon with a system between a segment [a(t),b(t)], the length a(t)b(t) being the
length of wave of the photon, a(t) and b(t) being driven with the same local velocity ¢, ¢ being
the velocity of the photon, and the line (a(t),b(t)) being parallel to the velocity of the photon c.
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We can show in an analogous way that if we suppose only that phl and ph2 own the
same local velocity (as a vector), and are not compulsory moving on a straight line towards O,
then the primary Cosmological distance between phl(t) and ph2(t) is increased by the factor
of expansion 1+z and moreover (phl1(t;),ph2(t;))//(ph1(t2),ph2(t,))

We remark that in any commoving point of the swelling sphere O’(t) we can define a
Cosmological frame R¢’ whose the axis are parallel to the corresponding axis of R¢ and
defining the same Cosmological variables as R¢ (primary Cosmological distance at a given
Cosmological time t and Cosmological time). We will call R¢’ secondary Universal
Cosmological frame.

Then if A(t) is any commoving point of the swelling sphere defined previously, t; and
t; being 2 Cosmological times, according to the properties of commoving points (28g)(28h), if
1+z is the factor of expansion of the Universe between t; and t,:

O’ ()A(t)=(1+2)0’ (tDA(t) et (O’(t2), A(t))//(O’ (t1),A(t1)

And consequently (O’(t;),A(t;)) et (O’(t2),A(tp) ) are in the same direction u.

Consequently the properties (28f), replacing Rc by R¢” and O by O’, remain valid, P(t) being
still a point of the border of the sphere. (But here O’(t)P(t) is no more equal to Rg(t)).
Consequently the expressions of distances used in Cosmology and Hubble’s constant are
obtained in R¢’ exactly the same way as in Rc.

We will see that according to our Physical Interpretation of the CRF we cannot
observe all the Universe from O(ty) (or O’(ty), (to present age of the Universe), which was also
the case in the SCM. Moreover the properties of R¢’(t) involve that if O’(ty) is sufficiently far
from the borders of the Universe, then according to our Physical Interpretation of the CRF the
Universe observable from O’(ty) is identical to the Universe observable from O(ty). In
particular in that case the Universe is isotropic observed from O’(tp), as it was observed from
0.

It is possible to elaborate a complete physical theory of the CRF ¥, but the validity of
the models exposed in this article is completely independent of this theory.

The spherical form of the Universe could be confirmed if some celestial bodies
(quasars?) would not own a homogeneous density in the Universe, but a density presenting a
spherical symmetry relative to a point O. According to our models, O would be then the
centre of the spherical Universe.

2.7 Hubble’s law-Distances used in Cosmology.

We keep the preceding model and notations. Let us suppose that a photon is emitted
from a star S at a point Q(tg) of R¢ (Q(t) is a commoving point of the swelling sphere) at a
Cosmological time tg towards O(tg) origin of Rc. We suppose that the photon reaches O(ty) at
the present Cosmological time to. We assume that between tg and t, the factor of expansion of
the Universe is 1+z,.

Between t and t+dt, we know that the photon covers the local distance cdt.
Consequently between tg and t the sum of the local distances covered by the photon will be :

Dr=c(to-tg) (29a)
We will call this distance, which is completely identical to the light- travel distance in

the SCM, by the same name. We can also call it time-back distance because it permits to
obtain the Cosmological time between the emission and the reception of the photon.
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We will see further how in the 1*" mathematical model of expansnsion distances used
in Cosmology and Hubble’s Constant have the same mathematical expressions as their
expressions in the SCM, and are also obtained the same way.

But in the 2" model we obtain very easily the Hubble’s Constant using the light-travel
distance defined previously.

Indeed according to this 2" model:

14+26=(Cto)/(Ctg)=to/(to-D1/c) (29b)

When Dy/cty<<1 we obtain zg=D7/cty and consequently the Hubble’s constant is equal
to 1/ty. The preceding equation (29b) is very simple and can easily be verified. For instance
taking ty=15 billion years, for z,=0.5,we obtain D1=5 billion light years and for z;=9 we
obtain D1=13.5 billion years. These predicted values are in agreement with the usual admitted
experimental values for the light-travel distance Dr.

We took a present Cosmological time (age of the Universe) equal to 15 billion years
corresponding to a Hubble’s constant H=1/ty approximately equal to 65 km/sMpc'1 despite
that it is generally admitted that the Hubble’s constant H is approximately equal to
72km/sMpc’1 corresponding to a time ty=1/H approximately equal to 13,5 billion years.

Nonetheless many astrophysicists disagree with a Hubble’s constant approximately
equal to 72 km/s Mpc’1 and find a Hubble’s constant approximately equal to 65km/sMpc’1, for
instance Tammann and Reindl © in a very recent article (October 2012). There is also a
second possibility: light-travel distance could be superior to present estimations by a factor of
5% to 7%.

So it is very remarkable that according to the 2" model, the value of Hubble’s
constant is very easily obtained and is equal to 1/ty, to present age of the Universe, in
agreement with the observation. In the SCM (and in the 1¥ model), the obtainment of
Hubble’s constant was much more complicated and moreover it was not exactly equal to 1/t,.

We assume that a photon is emitted by a star S (galaxy, star, cluster..) at a commoving
point Q(tg), tg age of the Universe, and reaches the origin O(ty) of the Universal Cosmological
frame at the present age of the Universe top. We will obtain all the distances used in
Cosmology assuming that the local velocity of any star S is small relative to c, meaning that S
is approximately at rest in its local Cosmological frame. The predictions of the theoretical
distances used in Cosmology are then in agreement with astronomical observations, which
confirms the validity of this assumption. We remark that we could expect that the star S
remain close to the commoving point Q(t) because its local velocity is small relative to c.

We then can define in our model of spherical Universe in expansion other kinds of
distances used in Cosmology in a completely analogous way to their definition in the SCM:
We have seen that we can express the light-travel distance as:

t0
D, = [cdt (29¢)
tE

The local distance covered by the photon between t and t+dt is, according to the
Postulate 3 equal to cdt. This local distance, considered as a distance between 2 commoving
points of the swelling sphere, is increased by the factor of expansion of the Universe 1+z=ty/t
between t and t (See equation (28g)).

In complete analogy with the SCM, we will call comoving distance between O and S
the primary Cosmological distance between Q(tg) and O(tp) (Meaning their distance measured
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in the Cosmological frame R¢), which is the sum of all the local distances cdt covered by the
photon, increased by the factor 1+z. Let D¢ be this distance:

D, = j c(1+ 7)dt (29d)

tE

From this expression we define the luminosity-distance Dy, between O and S (at the
Cosmological time ty) and the angular-distance Da between O and S in complete analogy
with their definition in the SCM:

DL:( 1 +Z0)Dc
Da=Dc/(1+20) (29¢)

The distance Da appears to be the primary Cosmological distance (distance in Rc)
between Q(tg) and O(tg). In complete analogy with the SCM it permits to obtain some angles
with a summit O in Rc.

The distance Dy, , in complete analogy with its definition in the SCM, appears to be
obtained measuring the luminous flow of a supernova taking into account the effect of the
expansion of the Universe on the lengths of wave of the photons and on the distances between
2 photons (moving on the same axis). We saw in the section 2.6.2 that this effect, predicted by
the SCM, was also true in the Physical Interpretation of the CRF.

The mathematical expressions of the different kinds of distances used in Cosmology
(29¢)(29d)(29¢e) are in agreement with their mathematical expression in the SCM, in which
they are usually expressed as a function of the variable z.

In the 1* mathematical model of expansion, since 1+z has the same mathematical
expression as in the SCM (as a function of the Cosmological time t) the final expression of
those distances used in Cosmology as a function of z is identical to their final expression in
the SCM. Consequently we also obtain an identical Hubble’s constant.

In the 2" model, the expressions of distances used in Cosmology are much simpler.
Using 1+z=ty/t we obtain:

10 t0
De = [c(l+2)dr = [e(t, 1 )dt

tE tE
So we obtain finally the expression of the comoving distance, using 1+zy=to/tg:
Dc=ctoLog(to/tg)=ctoLog(1+z¢) (291)

Here also this simple expression is in agreement with the usual admitted experimental
values for the comoving distance. We remark that in our 2™ model, according with the
previous equations we have as in the SCM for zp<<1, Dr=Dc=Da=Dj~ctyz.

We obtain easily that according to the 2™ model, the Cosmological velocity of the
borders of the sphere being constant and equal to C (in R¢), then the Cosmological velocity of
any comoving point of the swelling sphere is constant and inferior or equal to C (measured in
Rc, using that with our notations OA(t)=aRg(t) (equation (28f)). Let Vo be the Cosmological
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velocity of Q(t). Then consequently the distance in R¢ between O(ty) and Q(to), that we called
Dc is also equal to Vqty. Consequently because of the previous equation (29f) we have:

Vo=cLog(1+z0)

We can interpret in our model of spherical Universe in expansion the observation of
the explosion of a supernova © the same way as in the SCM, taking into account the effect of
the expansion of the Universe on the lengths of wave of photons and on distances between
photons moving on the same axis. We remind that we obtained this effect, that is also true in
the SCM, in the section 2.6.2.

2.8 Cosmological limits of the observable Universe.

In our model of spherical Universe in expansion we cannot, as it was also the case in
the SCM, observe the Universe (observing the galaxies) before a given time toy. This implies
that observing the Universe from a comoving point O’(ty) (to present Cosmological time)
sufficiently far from the borders of the Universe, the observable Universe is isotropic and also
that in many cases, the borders of the Universe cannot be observed from O’(ty). Here we are
going to see how we can obtain this time toy according to our model of finite Universe in
expansion, and more precisely according to the 2" mathematical model of expansion of the
Universe, that is much simpler than the mathematical model of the SCM.

It is clear that according to our model of spherical Universe in expansion, as in the
SCM, the Universe cannot be observed before the end of the dark age, at a Cosmological time
tp, because we admit as in the SCM that before tp light cannot propagate inside the Universe.
Moreover, galaxies cannot be observed before the Cosmological time tg, that is the time of the
apparitions of the first galaxies. It exist another limit according to our model of spherical
Universe in expansion. This is very clear in our 2™ model:

According to the equation (29g), Vg being compulsory inferior to C, we have:

C>cLog(1+z) (29h)
Consequently, with the notations of the previous section:
to/tg=1+z¢=<exp(C/c) (291)
Which implies that the Universe cannot be observed in O(ty) before the time t;defined by:
ti=toexp(-C/c) (29))

So in our Physical Interpretation of the CRF, toy is the greatest time between ty, tg and
tp. Moreover if toy>t;, we cannot observe the borders of the Universe from O(tp).

We remark that the equation (29h) permits to give an inferior limit to the constant C of
the 2™ model: The fact that we have observed some redshift z equal to 10 implies that
C>2,3c. If we take C=10c, we obtain t; of the order of 1million years.

The previous equations permit to obtain, according to the 2" model, the minimal
distance in R¢’ (Cosmological frame with an origin O’(t) defined in section 2.6.2) between
O’(tp) and the borders of the Universe (at the Cosmological time ty) for which the Universe
appears to be isotropic observed from O’(tp) (Which means that the borders of the Universe
cannot be observed from O’(ty)).
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2.9 The Cosmic Microwave Background.

In complete agreement with the SCM, we admit the apparition of a CMB at a
Cosmological time very close to the Big-Bang (We admit as in the SCM that the Big Bang
occurs at a Cosmological time equal to 0). Proceeding exactly as in the SCM, taking into
account the effect of the expansion of the Universe on the lengths of wave of photons and on
photons moving on the same axis (effect obtained in section 2.6.2) , we obtain in the Physical
Interpretation of the CRF that if the CMB appears at a Cosmological time tjcmp corresponding
to a temperature Ticmp, then at an absolute time t superior to ticms, if the factor of expansion
between ticyp and t is 14z, then the CMB at a Cosmological time t corresponds to a
temperature Tceyp(t)=Ticmp/(1+2). (This is obtained exactly the same way as in SCM, because
we have in both Cosmological models that with the same notations the density of photons is
divided by (1+z)® and the lengths of wave of photons are increased by a factor (1+z)). And
consequently our Physical Interpretation of the CRF is in agreement with the observation of
the CMB corresponding to a great redshift zg D®

We remind that we saw in section 2.5 that with the hypothesis of an initial equality of
the temperature of the CMB and the temperature of the dark substance, taking a thermal
model similar to the thermal model used in order to obtain the baryonic Tully-Fisher’s law,
then at the present age of the Universe the temperature of the intergalactic dark substance
(evolving in 1/(1+z)%) is approximately 1500 times less than the temperature of the CMB
(evolving in 1/(1+z)).

But now we have given a very complete physical interpretation of the CRF that did not
exist in the SCM. In our Physical Interpretation of the CMB we interpret the interpretation of
the anisotropies of the CMB as the SCM.

It is important to know what happens to a photon reaching the borders of the spherical
Universe. It could be absorbed but it is not the only possible hypothesis. The simplest
hypothesis according which the photon is not absorbed, that we will admit in our Physical
Interpretation of the CRF, expresses that the photon is reflected, taking exactly the opposite of
its local velocity (as a vector). With this last hypothesis we could expect to see reflected
images of some galaxies. But there are several explanations to the fact that it is not the case:

We keep the notations of the previous section 2.8, defining the limits of the
Cosmological time before which it cannot be observed:

We obtain easily that if tg>t; or ti<tp then we cannot observe the reflection of images
of galaxies on the borders of the Universe. Indeed in the 1% case the reflected images of
galaxies reach O after to and in the 2™ case the reflected photons are absorbed.

2.10 Dipole contribution of the CMB.

We know that according to the SCM we have the following fluctuations of
temperature of the CMB @,

AT 1
—)=—>I2I+1DC 30
(T) 47[;<+), (30)

In the previous expression 1=1 is the dipole contribution, corresponding to the motion
of the earth relative to the CRF. In our Physical Interpretation of the CRF, we keep the
previous expression, but then we can interpret the dipole contribution of this equation, which
was not the case in the SCM.
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3.COMPLEMENTS

In the Part 2 of this article, we presented a new model of dark matter, called dark
substance, and a Physical Interpretation of the CRF. In this Part 3, we study the consequences
of these models, as for instance the motion of a spherical concentration of dark substance
(constituting some galaxies with a flat rotation curve according to the preceding article), the
thermal effects on the spherical concentration of dark substance due to this motion, and the
effects of this motion on the mass and the velocity of this spherical concentration. We will see
that it exists 2 kinds of radius in a galaxy, the 1* one being the baryonic radius (visible) and
the 2™ one, called dark radius, being the radius of the spherical concentration of dark
substance. We will give the mathematical expression of this dark radius as a function of the
Cosmological time, and we will study a particular case, the case of the Milky Way at a
Cosmological time equal to 5 billion years. We will also study the concentration of dark
substance around stars and planets, and we will make appear the existence of new kinds of
galaxies. Then we will propose a distribution of dark matter in clusters, and different
dynamical models of clusters permitting to obtain the mass of clusters from the observation of
velocities of galaxies in clusters. To end we will study according to our Cosmological theory
the evolution of the temperature of the intergalactic dark substance as a function of the age of
the Universe.

3.1 Motion of a galaxy inside the intergalactic dark substance.

We could think that a spherical concentration of dark substance constituting a galaxy,
moving through the intergalactic dark substance, is submitted to some modifications of its
mass and velocity because of this motion.

In fact, we have the 2 following properties for the concentration of dark substance:

a) The moving spherical concentration keeps its mass.
b) The moving spherical concentration keeps its velocity: It is not slowed down nor
accelerated.

Indeed, let us consider a spherical concentration of dark substance constituting the
dark matter of a galaxy (centre O) driven with a local velocity V relative to the intergalactic
dark substance (In fact we can assume that locally, the dark substance is at rest relative to the
local CRF, and consequently V is also the local velocity (relative to the local CRF) of the
spherical concentration of dark substance). Let us consider the disk whose the center is O, the
radius is the radius of the spherical concentration, and that is perpendicular to the velocity V.
Let S be the surface of the disk. Then in an interval of Cosmological time dt, we have the 2
phenomena:

c) A volume SVdt of dark substance is absorbed by the spherical concentration.(In front of the
sphere).
d) A volume SVdt is emitted by the spherical concentration (to the back of the sphere).

Moreover we remark that according to our model the emitted and the absorbed dark
substance have the same density, that is the one of the intergalactic density. Consequently the
emitted mass and the absorbed mass are equal, which implies that the spherical concentration
keeps its mass (Property a)). Moreover we can assume that the emitted dark substance(in its
final state) and the absorbed dark substance have the same local velocity (velocity of the
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surrounding intergalactic dark substance, which we can assume being equal to 0), and
consequently the velocity of the spherical concentration is not modified (Property b) ).

We have a second possible justification:

Let us suppose that the moving spherical concentration of dark substance lose a little
more dark substance than it absorb. Let us suppose for instance that the total loss be dm. Then
the equation of equilibrium (6) remaining the same, we can assume that the spherical
concentration of dark substance will absorb also the missing mass om, coming back to the
equilibrium. Consequently the mass of the concentration of dark substance remains the same.
Moreover we can assume as previously that lost dark substance (in its final state) and
absorbed dark substance have the same velocity (velocity of the surrounding intergalactic
dark substance). Consequently, this is a second and more general justification that the
spherical concentration of dark substance is not accelerated nor slowed down.

It is also possible that lost dark substance and absorbed dark substance have not
exactly the same local velocity. Then the velocity of the traveling concentration of dark
substance is slightly modified, but it is possible that this effect be completely negligible and
that the velocity of this galaxy in its galaxy cluster as a function of the Cosmological time
remains constant. We remark also that it is very difficult to observe the evolution of the local
velocity of a galaxy as a function of the Cosmological time.

3.2 Baryonic and dark radius of a galaxy.

We know that the galaxy Andromeda is approximately at 2.5 billions year-light of our
galaxy the milky way. We consider for instance the case of the milky way in order to study
the 2 kinds of radius of a galaxy. We suppose that we are in the 2" mathematical model of the
Physical Interpretation of the CRF (Section 2.6.1) because of its great simplicity.

We saw in the Section 2.2 that if r is the distance to the center O of a spherical
concentration of dark substance constituting a galaxy, then the expression of the density of
dark substance p(r) is given by, ks being a constant (See section 2.2, equation (7) ks=k,/4m):
p=5 31)

So we obtain, M(r) being the mass of the sphere having its center in O and a radius r (See
equation (9)):

M(r)=4nksr (32)
Consequently, v being the velocity of a star at a distance r of O (see equation (10)):
v: = M _ 4mc,G  (33)
r
Consequently:
2
v
ky = 34
Salypees (34)

We know also that if py is the local density of the intergalactic dark substance surrounding the
spherical concentration of dark substance constituting the galaxy, then the radius R of this
concentration of dark substance is given by the expression (See equation (15)):

k,
pRI=-5=p, (39

Consequently:
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R= b oy [ 1 (36)
Po 471G p,

In previous sections, we called R the dark radius of the considered galaxy.

So in a galaxy for which it exists a spherical concentration of dark substance with a
density in 1/r2, we have 2 different kinds of radius:

The 1% kind of radius, called dark radius, is the radius of the spherical concentration
of dark substance. The 2™ kind of radius is the radius of the smallest sphere containing all the
stars. We will call baryonic radius this second kind of radius. We remark that at a given time,
the dark radius must be greater than the baryonic radius.

Let po(5) be the density of the intergalactic dark substance when the age of the

universe (Cosmological time) was 5 billion years, and py(15) this density at an age of 15
billion years (meaning presently).
We will see further that po(z) is approximately the mean density of the Universe
corresponding to a Cosmological redshift z. Consequently, if we admit that the total mass of
dark substance keeps itself, we obtain that po(z):po(O)(l+z)3 . Consequently if f=1+z is the
factor of expansion of the universe between 5 and 15 billion years we obtain:

po(15)=po(3)/f’ (37)

Moreover according to the 2" mathematical model of expansion that we exposed
previously, f=15/5=3 (See Section 2.6.1).

We note rg(15) the present baryonic radius of the milky way. We know that rg(15) is
approximately equal to 50000 years light . If R(15) is the present dark radius of the milky
way, let us suppose that R(15) is approximately 10 times greater than rg(15) (meaning
approximately 500000 light-years):

R(15)=10rg(15) (38)

Of course we ignore the real value of R(15),we can only know its minimal value (It
must be superior to the baryonic radius). We are going to see that our hypothesis (38) leads to
coherent results. Let rg(5) be the baryonic radius of the milky way when the age of the
Universe was 5 billion years. Considering that the baryonic radius increases with time, we
have the relation:

1p(15)>1g(5) (39)

We have seen and justified theoretically in the Section 2.3 of this article that according
to the baryonic Tully-Fisher’s law the velocity of stars in a galaxy with a flat rotation curve
depended only on the baryonic mass of this galaxy. Consequently if we suppose that between
5 and 15 billion years, the baryonic mass of the galaxy remains approximately the same, the
velocity v used in the equation (36) remains unchanged between 5 and 15 billion years. Using
this equation (36) and the equation (37), taking f=3 and \(27)~5, we obtain, R(5) being the
dark radius of the milky way at an age of the Universe equal to 5 billion years:

R(5)=R(15)/5=2rg(15) (40)
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Using the equations (39) and (40) we obtain that at an age of the Universe of 5 billion
years, the dark radius was greater than the baryonic radius:

15(5)<rp(15)=R(5)/2<R(5) 1)

We remark that the previous relation (41) would have also be valid for a galaxy with
the same dark radius R’(15)=500000 light-years but with a baryonic radius r’g(15) twice
greater than the radius of the milky way meaning 100000 light-years. (We just take r’g(15) =
100000 years light and replace the equation (38) by the equation: R’(15)=5r’5(15)). Our
model remains obviously valid if the final baryonic radius is reached after 5 billion years.

3.3.Thermal transfer of a moving galaxy.

We remark that the phenomenon of absorption and of emission of dark substance by a
galaxy that we described in the Section 3.1 modifies the thermal equilibrium that we used in
the Section 2.3 of this article in order to obtain the Tully-Fisher’s law. Indeed the absorbed
dark substance (cold, because it is intergalactic dark substance) is not at the same temperature
than the lost dark substance (hot, because it is the temperature of the spherical concentration
of dark substance).

Nonetheless we can consider that the previous phenomenon leads to a power &(t)
dissipated by the spherical concentration of dark substance. ¢(t) mainly depends on the
radius of the moving spherical concentration, of its velocity relative to the local intergalactic
dark substance, of the density of the intergalactic dark substance, and of the temperature of
the concentration of dark substance.

If we assume that g(t) is negligible compared with the power emitted by the baryons of
a galaxy towards the spherical concentration of dark substance (whose we supposed the
existence in order to obtain the baryonic Tully-Fisher’s law, see Postulate 2a in section 2.3),
then our thermal model used in order to get the Tully-Fisher’s law remains valid. We can a
priori neglect g(t) because in one year, the distance covered by the moving spherical
concentration (the local velocity of the spherical concentration of dark substance is assumed
to be of the order of 300km/s (107¢)), is very low relative to the dark radius of the considered
galaxies (At least of the order of 100000 light-years).

3.4 Other models of distribution of dark matter in galaxies.

We have previously exposed a 1* model of distribution of dark matter in galaxies with
a flat rotation curve. In this 1* model we could neglect the gravitational effect due to the
baryonic mass of the galaxy.

At least 2 more models of distribution of dark matter in galaxies are possible:

In the 2™ model, in order to obtain the density p(r,u) of the dark substance, we also
apply Newton’s laws, but we neglect contrary to the 1* model the gravitational attraction due
to the dark substance and we consider only the gravitational attraction due to the baryonic
matter of the galaxy. This case is most of the time very complex because the density of
baryonic matter usually does not own a spherical symmetry and moreover its is difficult to
obtain it. To begin with, we consider the case in which we have a spherical symmetry for the
density of baryonic matter. If the galaxy is immerged in a medium of dark substance with a
density po and a temperature Ty, (pp and Ty are not compulsory the density and the
temperature of the intergalactic dark substance. For instance in the case of a galaxy Gl
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satellite of another galaxy G2, G2 belonging to the 1** model and G1 being inside the dark
halo of G2. In this case we know the value of p, (equation (8)) we can assume as for the 1*
model that it exists a minimal radius Rg, called dark radius of the galaxy, such that for r>Rg
we have p(r)=po and a temperature of the dark substance equal to Ty. If we know Rg, we
obtain p(r) for r<Rg using Newton’s laws and the condition p(Rs)=po.

A priori we ignore Rg but it is interesting to consider the case in which we have
Rs=Rp, Rp baryonic radius of the galaxy. We will justify further the possibility to consider
this particular case.

Let us now consider an example in which the distribution of baryonic matter is the
simplest possible, with a constant baryonic density pg inside a sphere of radius Rg. It is very
possible that such galaxies do not exist, but this example permits to show how we can get p(r)
and to obtain its order of magnitude. We first consider the case Rg=Rg.

We proceed as in the 1* model:

We assume that we have a spherical concentration of dark substance with a
homogeneous temperature T and a radius Rs=Rg. We consider an element of dark substance
with a surface dS, perpendicular to the radius, a width dr and situated at a distance r from the
center of the galaxy. Applying the Newton’s law, using the Gauss theorem and the Boyle-
Charles’law (Postulate 1), we obtain proceeding as in the 1* model the equation:

1 d(p(r) __4Gap,
p(r) dr 3 kT

(42)

With the condition Rs=Rg and consequently p(Rg)=py, we obtain for r<Rp:

Gap,
k,T
We remark that if the Newton’s laws could be applied for r>Rg then we would have obtained

the differential equation for r>Rgp, Mg being the baryonic mass of the galaxy :

p(r) = p, exp(—% (r—Ry) (43)

I dp(r)  GM, 1
p(r) dr k, T, r’

(44)

And so we would have obtained for r>Rg=Rg, with the condition p(Rgs)=py :

GM,, (l — L
kI, r Ry

We see in this example that if we apply the equations of Newtonian mechanics with
Rs=Rg, then we obtain p(r)<py for r>Rg, and it was also the case in the 1** model. This

justifies the possibility to consider the case Rs=Rg, in this example and more generally in the
2" model when we have a spherical symmetry for the distribution of baryonic matter.

p(r) = p,exp( ) (45)

In this 2" model, assuming a spherical symmetry and Rs=Rp, let Ryp be a value in
[0,Rg] such that p(Ryp) be maximal. We will distinguish the 1* case “Rwp is superior to pg.”
and the 2™ case “Rwmp is inferior to py”. We will also consider the 3" case in which for r in
[0,Rg], we have always p(r)=py.
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In the preceding example (constant baryonic density pg), we have according to the
expression of p(r) Ryp=0, and :

4 GrpyzR,

R,p) = p,exp(——— 46
PRyp) = Py P(3 kT ) (46)
We have p(r)=py if :
4GmosRy 47)
3 kT

We will see that in the case p(Rmp)>po, it is interesting to consider the case Rs=Rwp.
We justify the possibility to consider this case the same way we justified the possibility to
consider the case Rs=Rg, because with p(Ryp)=po, the equations of Newtonian mechanics
give in this case p(r)<po for r>Ryp.

We consider now the case, inside the ond model, in which we have no more a spherical
symmetry of the distribution of baryonic matter. We assume that we know the baryonic
density for any unitary vector u pg(r,u). For any vector u and any radius r, we can obtain
(using div(Gg(r,u)=pp(r,u)/ey)) the gravitational field due to baryonic matter Gg(r,u).
Moreover we can define for any vector u the baryonic radius Rg(u). We proceed then as in the
case with a spherical symmetry defining for any vector u a dark radius Rg(u). We first
consider, in analogy with when we had a spherical symmetry, the case Rs(u)=Rg(u) for any
vector u. Then using the equations of Newton mechanics we can obtain the density p(r,u). But
the calculation could be very difficult, and could need a computer, especially when we have
not always Gg(r,u)//u. We can then define for any vector u Ryp(u) the same way as when we
had a spherical symmetry.

A 3" possible model of distribution of dark substance in a galaxy is the model in
which we have Rs=0, meaning that we have for any radius r p(r)=po, and the temperature of
the dark substance is always equal to Ty, pp and Ty being the density and the temperature of
the dark substance in which the galaxy is immerged. This model is due to an effect, called
Homogenization Effect ,according to which the intergalactic dark substance tends to be
homogeneous in temperature and density. In the 2 preceding models, this effect prevails for
r>Rg, and the laws of Newtonian mechanics prevail for r<Rg. This effect of homogenization is
also the origin of the homogeneity in density and temperature of the intergalactic dark
substance. We can then easily obtain the gravitational field Gg(r) that is due to dark matter.
This field, added to the gravitational field Gg(r) due to baryonic matter, permits to obtain the
velocities of stars in the galaxy, using Newton’s laws. We can expect that usually Gg(r) be
small relative to Gg(r). It should be possible to obtain for some galaxies the experimental
values of Gg(Rg) and Gs(Rp) and to compare Gs(Rg) with its theoretical prediction.

We obtain using Newton’s law:

Gs(Rp)=-G(4/3)nRgpo u; (48)
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It is possible that the 2" model exposed previously do not exist, and that only galaxies
belonging to the 1*" and the 3™ model do exist. Indeed, we remind that in the 1** model, if we
applied the Newton’s law we found p(r)<py for r>Rs. It is possible that we can generalize this
property in the following property HF1, that would be an illustration of the Homogenization
Effect defined previously:

Property HF1: If, in a model A of distribution of dark matter (around a galaxy of any star,
planet..), we find for some r, u p(r,u)<py, then we must replace the model A by a model B in
which we replace always p(r,u)=pyp when we had in the model A p(r,u)<py.

So in the 2™ model of distribution of dark matter in galaxies we have, under the
condition Rs=Rp p(Rmp)<po, then according to the preceding property, Rs=0. If under the
condition Rg=Rp p(Rmp>py, taking a new condition Rg=Ryp and applying the preceding
property, we obtain Rg=0.

It is also possible that we have a 2™ property HF2, that is also an illustration of the
Homogenization Effect :

Property HF2: If, in a model A of distribution of dark matter (around a galaxy of any star,
planet..), we find always p(r)=py, then Rg=0.

It appears that the 2" model is by far the most complicated, but we at not sure that it
really exists. Some astronomical observations should permit to know if it really exists.
Nonetheless, the observation of galaxies shows that some of them could belong to the 2" or to
the 3™ model, for instance .

So further in this article we will assume that only the 1** and the 3 models (around
galaxies) exist because we saw that the 2" model could not exist and moreover we will see
that this assumption leads to theoretical predictions, in particular concerning the distribution
of dark matter in clusters, that are confirmed by astronomical observations.

We remark that the distribution of dark matter around stars and planets should belong
to the 2™ or to the 3" model exposed previously. The 2™ model is nonetheless easier to be
studied because stars and planets present a spherical symmetry. It is possible as for galaxies
that the 2" model does not exist around stars and planets.

3.5 Other observations of dark matter.

We are now going to interpret using the new theory of dark matter experimental data
linked to the velocities of galaxies in clusters obtained by astronomical observations.
According to what precedes, the velocity of a galaxy in a cluster is determined by:

-The baryonic mass inside the cluster (stars, gas..)
-The mass of the dark halos of galaxies.
-The mass of the intergalactic dark substance.

We suppose that only the 1* model and the 3" model of distribution of dark substance
presented in the section 2.4 exist. Consequently all dark halos of galaxies belong to the 1%
model.

We obtain a very interesting result concerning the mean density of galaxies
corresponding to the 1* model (density of dark substance in 1/1%):

Indeed, according to the equation (18), for those galaxies the dark radius is:

Rs=(2koT/4nGpo)'” (49)

According to the equation (8) :
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ko=2kT/G (50)
Consequently :
Rs=(ko/4mpo)"” (51)

So according to the equation (9) the total mass of the dark halo is:

3/2

M(Ry)=—"—+
S( S) (47['00)1/2

Let us now calculate the mass of a sphere with the same radius Rg and a density equal
to the density of the intergalactic dark substance py :

(52)

4 k 1 k"7
M,(R)=p,—m(—2)"=——2 53
1( S) IOO3 (472'/)0) 3(4”p0)1/2 ( )
Consequently :
Mi(Rs)=Ms(Rs)/3 (54)

So the mean density of the halos of galaxies belonging to the 1* model is equal to 3py,
whatever be the radius and the temperature of the considered halo, and consequently whatever
be the orbital velocity of stars in the considered galaxy.

According to the previous equation (54) we can expect that the dark mass of a cluster
be much greater than the baryonic matter in the galaxies of this cluster. Indeed we have seen
that according to the theory of dark matter exposed here, for a galaxy corresponding to the 1%
model, Rp being the baryonic radius of the galaxy, then the mass Mg(Rp) of baryonic matter
contained in the sphere with a radius Rp (centre O, centre of the galaxy) was much smaller
than the mass Mg(Rp) of the dark substance contained in the same sphere. And consequently,
because Rg<Rg, the total mass of the dark halo Mg(Rs) is much greater than the total mass of
baryonic matter contained by the galaxy . But according to the equation (54), the mean
density of the halo is only 3 times of the minimum density of dark matter inside the cluster.
(Because we supposed that only the 1% and the 3™ model did exist for galaxies). Consequently
we can expect that the dark mass of clusters be much greater than the baryonic mass of the
galaxies belonging to this cluster.

So for a cluster A with a mean density pma, We obtain if we neglect the baryonic
density :

P0<PmA<3P0 (55)
Consequently the mean densities of clusters permit to obtain an estimation of the

density pg of the intergalactic dark substance. Moreover if Al and A2 are 2 clusters with mean
densities pma; and ppmar With for instance pmai<pma2, then according to the previous relation :

pmA2<3pmA1 (56)
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We will see that the preceding theoretical prediction is in agreement with astronomical
observations.

It is interesting to introduce the mean volume of dark halo per galaxy Volsg. Then if
clusters contain the same kind of galaxies in the same proportions (which is not always the
case), we can express the mean density of dark substance pya as a function of N the number
of galaxies inside the cluster A, and Volsg. Indeed we immediately obtain, Vol, being the
volume of the cluster and assuming that the cluster contains at least 400 galaxies (in order to
be able to use the mean volume of dark halo per galaxy Volsg).

1
Pus =7 13PN Vol + py(Vol, = N Volsg)] - (5T)
A

So we obtain, pmag being the mean density of the number of galaxies in the cluster,
PmaG=Na/Volx:

Pma=Pmac(2poVolsg)+po (58)

So if we draw the curve pyma(pmac) We obtain a straight line permitting to obtain
precisely po and Volsg. But a 1* particular case is the case in which we have for all clusters,
PmaG 1s approximately the same. Then the prediction is that pya is also approximately
constant. A second particular case is the case in which we have always pmagVolsg<<1. Then
we have always pma=po whatever be pmac. The previous expression is valid for a given z. It is
not true for 2 clusters that do not contain the same kind of galaxies. But, Vols(H) being the
volume of dark halo of galaxies belonging to the 1* model in the cluster A, we have always:

Py = [3p,Vol ,(H)+ p,(Vol, —Vol ,(H)] (59)
Vol ,
Vol ,(H
pnzA:2p0¢+p0 (60)
Vol ,

We remind that we assumed that we could neglect the contribution of baryonic matter
in order to obtain the mean density of the cluster ppa. In what follows we will assume that we
have generally for clusters Vola(H)/Vola<<1 and consequently pma=po. We remind that pg
depends on t, age of the Universe. We will see further that the previous assumption is in
agreement with experimental data given by astronomical observations.

Now we are going to propose different dynamical models of clusters permitting to
obtain some new relations between the mass of clusters and the velocities of galaxies
belonging to clusters, and also to obtain an estimation of the density of intergalactic dark
substance py(z).

According to a 1* dynamical model of clusters, galaxies turn around the centre of a
cluster the same way planets turn around the sun or stars turn around the centre of the milky
way. So we will call the planetary dynamical model of clusters this 1* model.

Ra being the radius of a cluster A, Vya being the orbital velocity of a galaxy at a
distance R4 from the centre O, of A (We will obtain that Vya is also the maximal orbital
velocity of galaxies according to this 1% model), M, being the mass of the cluster A, we
obtain assuming a spherical symmetry of the distribution of the dark substance and neglecting
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the baryonic matter, using as in the previous sections the Newton’s Universal law of
attraction, the Gauss theorem and the classical Newton’s dynamic law Fg=my :

GM, _ V2, 61
R, R,

GM
RAA =V, (62)

pma being the mean density of the cluster A, MA:(4/3)75RA3 pma and therefore :
(4/3)1PpmaGRA™ = VA (63)
Vaa=Ra[(4/3)mpmaG]" (64)

If we assume that inside the cluster A the density is approximately constant and equal
to pma, We obtain that Vi, is indeed the maximal orbital velocity of galaxies inside the cluster
A. Consequently Vs can be easily obtained experimentally measuring the maximal and the
minimal recession velocity of galaxies belonging to the cluster A.

Nonetheless, some astronomical observations that are very important in order to study
the validity of our different dynamical models of clusters have been realized concerning the
Coma cluster that we will name A4 % Using some astronomical observations of the Coma
cluster, some astrophysicists realized a graph giving for some galaxies G belonging to the
Coma cluster the recession velocity v(G) observed from a point Ot linked to the earth as a
function of the angle a(G) between the lines (Or,04) and (O1,0¢), with O4 the centre of the
Coma cluster and Og the centre of the galaxy G.

According to this graph, the gap between the maximal recession velocity and the
minimal recession velocity is maximal for an angle a(G)=0 (5000 km/s). Then it decreases.

And this contradicts the 1* planetary dynamical model of clusters because according
to this model for a galaxy with a(G)=0 the velocity of G (as a vector) is perpendicular to the
line (Or,0¢) and consequently the recession velocity v(G) should be close to 0 for a(G)=0.
And also according to this model the gap between the maximal recession velocity and the
minimal recession velocity should increase with a(G). So the previous astronomical
observations concerning the Coma cluster contradict the 1% planetary dynamical model of
clusters.

A 2" possible dynamical model of clusters is the model generally used in the Standard
Cosmological Model (SCM) based on the Virial’s theorem. So we will name this model the
Virial’s dynamical model of clusters.

According to this model, if o4 is the velocity dispersion inside a cluster A, M, being
the mass of the cluster and R, its radius:

GM
A ~a,00 (65)
RA
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In the previous expression, ay is of the order of the unity and depends on the cluster A.
Some authors © replace in the previous expression Ry by a fixed radius called the Abel
radius.

Nonetheless in order to establish the Virial’s theorem, we consider N objects with
masses my,...,my, and we suppose that they are in equilibrium. But according to our model of
dark matter, we are not in this hypothesis. Indeed, we can consider that we have N galaxies,
but those galaxies interact not only between themselves, but also with the dark substance in
which they are immerged.

Nonetheless, despite that the hypothesis of the Virial’s theorem are not verified, the
Virial’s dynamical model permits theoretical predictions that are in good agreement with
experimental data obtained using astronomical observations. We will justify further the origin
of this good agreement. Let us for instance consider 3 clusters with z<<1 (z<0,01), Al the
Antlia cluster, A2 the Virgo cluster and A3 the Fornax cluster. M; and o; being respectively
the mass and the dispersion velocity of galaxies of the cluster Ai, we have the experimental
data (obtained using Virial’s theorem): M;~3,3 10" s.m, 360km/s<c,<560km/s, M,~1,2 10"
s.m, 6,~700km/s, M3~2 10" s.m, 63~374 + 24km/s We are going to see that according to the
2" Virial’s dynamical model of clusters, these experimental data are compatible with our
model of distribution of dark matter in clusters, and in particular with the fact that according
to this model, not only the mean densities of clusters must verify the equation (56), but also
the ratio of 2 mean densities of 2 different clusters (with the same Cosmological redshift z)
must be close to 1. (We assume that in the equation (60), Vola;(H)<<Voly; for i=1,2,3).

Taking as constant and equal to a in the equation (65), we obtain the same way we
obtained the equation (64):

6A=RA[(4/3)1pmaGa]" (66)

Applying the previous equation to the clusters Al and A2 we obtain :

R _ﬁ(ﬂ)m

2
— (67)
Rl O-l me

Moreover according to the definition of the mean density pp; of the cluster Ai :
M, =(4/3)nR *pimi

M,=(4/3)nR>’pim2 (68)

Consequently according to the previous equalities:

R, M, 15, P 13
M Mo Fm 69
R, (Ml) =) (69)

m?2

Using the 2 previous equations (43) and (45) we obtain :

P _ M0 016
_(Ml) (0_2) (70)

m2

In the hypothesis pml/pmz)” 6:1, we obtain :
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o, _

0-2 M 2

And we obtain the same relation replacing in (71) 6; and M, by o3 and M3. We can
verify that the previous theoretical prediction is in agreement with the previous experimental
data of the o; and M; for the clusters Ai. Indeed according to the relation (47) we should have
o1~ (MI/Mz)“ 3 o, = 480km/s in agreement with the experimental value of o;, and o3~
(M3/M2)1/ 3 03~ 360km/s in agreement with the experimental value of 3.

Let us now consider the theoretical prediction of the Virial’s dynamical model of
clusters concerning the Coma cluster A4 (z=0,03) and the Virgo cluster A2 (z<0,01). The
experimental data are o,~ 700km/s, 5,~1000 km/s and R4~2R,~10 millions Ly

Using the equation (67) with the hypothesis (pmo/pma)’*~1, we obtain (We assume that
in the equation (60), Vola;(H)<<Voly; for i=2,4):

(71)

R, o
2t~ (72)

R, o,

With the previous experimental data the left term of the previous relation is equal to
0,5 and the right term is equal to 0,7. We also obtain according to the equation (67):

Pus _ Oay2 Ry
=( )(R) 0,5 (73)

m2 0-2 4

Even if this result is close to the unity and in agreement with the equation (56) it does
not give the result closer to 1 that we expected. We remind that if N; is the number of galaxies
of the cluster Ai, the experimental data obtained by astronomical observations are N>~1000 et
N4~10000. pg; being the density of galaxies in the cluster Ai we therefore obtain using the
previous experimental data of R, and Ry pg4~1,2pco.

According to the equation (57) we obtain that if py(z) is the density of the intergalactic
dark substance for a Universe corresponding to a Cosmological redshift z, Volgg; being the
mean volume of dark halo per galaxy in the cluster Ai :

Pus _ Po (0,03) 1+2Volss4P04
P> Py (0) 1+2Volg, P,

(74)

With the approximations py(0,03)=~py(0) and Volsgs~Volsg,, we obtain:

Pona _ 1+2,4Volg:, P55 (75a)

P2 1+2Vol;, Pga

So if the previous relation was true, we should obtain pya/pm2 very close to 1, which is
not the case in the relation (73). This gap with the theoretical prediction of pm4/pm2 could be
due to the non validity of some of the numerous approximations that we made, for instance
p0(0,03)=py(0), Volsgs=Volsgs, a4~a, (in the equation (65)). This gap could also be due to
errors on the experimental values of 65, R4 or R, .

But a more attractive possible origin of the gap between the experimental value and
the theoretical prediction can be found analyzing the astronomical observations of the Coma
cluster that we reminded previously and that invalidated the 1* planetary dynamical model of
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clusters . Keeping our notations of v(G) and a(G), we note o4(a) the velocity dispersion
calculated for galaxies G such that a(G)=a. According to the astronomical observations, 64(a)
is maximal for a=0 and then decreases. But the experimental value of o4 that we used has
been obtained considering galaxies corresponding to any angle. It is clear that then the
obtained dispersion velocity o4 depends on the distance between O, centre of the cluster Ay
and Or (observation point) despite that it should be independent of this distance. So it seems
much more logical to calculate the dispersion velocity 64 considering the recession velocities
observed from the centre of the cluster O4. This is equivalent to identify o4 with c64(0)
(corresponding to the maximal dispersion velocity), because we assume a spherical symmetry
for the dispersion velocity. The gap between the maximal recession velocity and the minimal
recession velocity for a=0 being approximately 5000 km/s, it is very probable that c4(0) be
much greater than the value that we used for 64 (1000km/s). And with only 64(0)=~1400 km/s,
we find according to the equation (73) pma/pma~1.

So we see that despite that the hypothesis of the Virial’s theorem are not verified, the
theoretical predictions of the Virial’s dynamical model of clusters are in a relative good
agreement with the experimental data obtained by astronomical observations of clusters. We
will further give an explanation of this relative good agreement.

We are now going to propose a 31 dynamical model of clusters that seems to be the
only one compatible with the experimental data and also with our model of distribution of
dark matter in clusters. According to this model, G, being a galaxy of a cluster A at a point P,
we neglect the gravitational potential generated in P by the moving galaxies, and we consider
only the gravitational potential generated in P by the dark substance. So we will name this
model the dynamical model of the dark potential of clusters.

Then assuming a spherical symmetry in the distribution of dark substance in the
cluster A, U(r) being the gravitational potential at a distance r from the centre Oa of the
cluster, G, being a galaxy situated at a distance r from Oa, m(G,) and V(G4) being the mass
and the velocity of G the total energy Er(G,) is therefore:

Er(Ga)=(1/2)m(GA)V(Ga)*+m(Ga)U(r) (75b)

The total energy of all galaxies keeps itself. Consequently, if the cluster A contains Ny
galaxies Gai,-.,GaNa :

Z (% m(GAi )V(GAi )2 + m(GAi )U(}’i ) = ET (4) (75¢)

With Er(A) total energy of all galaxies of the cluster A being constant. So we see that
the galaxies of the cluster A interact according to the previous equation, and that the energy of
a given galaxy can evolve.

We are now going to give an estimation of the gravitational potential U(r). In order to
get this estimation, we make the approximation that the density of dark substance in the
cluster A is constant and approximately equal to pma, the mean density of the cluster A.
Applying as in the previous sections the Newton’s Universal law of gravitational attraction
and the Gauss theorem, M(r) being the mass of the sphere with the centre O, and the radius r,
the gravitational field G(r) is then:

M()
r2
And consequently :

G(1)=-G

u (76)
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G(r)= —G%mpmAu (77)

By definition G=-Grad(U), so we obtain, Cay being a positive constant at a given age of the
Universe:

U(r)=G(4/6)nr*pma-Cau (78)

This equation can also be written, in the approximation that the density of dark matter in the
cluster is approximately constant an equal to pma, M(r) being the mass of the sphere with the
centre O and aradiusr :

Ur)=GM(r)/2r-Cay (79a)

We cannot obtain Cay using the Newtonian mechanics because of the expansion of the
Universe. Nonetheless let us consider the very interesting following particular model in order
to obtain Cay:

In analogy with Newtonian mechanics, we admit in this particular model U(Ra)=-
GMa/Ra. Consequently we have, Ma=M(R,) being the mass of the cluster:

GM GM
A_C,, =t (79b)
2R, R,

So we finally obtain, with M and R4 depending a priori on t, age of the Universe:

_3GM (1)
2 R,(1)
Moreover in the considered particular model, in order to obtain Ra(t) we make the

hypothesis that Cay is constant, meaning that Ma(t)/Ra(t) is constant, which involves great

simplifications. Then we obtain that Ra(t) evolutes in 1/(pmA(t))1/2, and consequently in

(po(t))"?, because of the equation (60) with Vola(H)/Vola<<l. We remark that this

evolution in 1/(p0(t))1/2 is the same as the evolution of dark radius of galaxies with a flat

rotation curve (Equation (18)). Consequently in this considered particular model

Vola(H)/Voly is constant, and also pma(t)/po(t).

We will consider further galaxies G with a radial velocity meaning that their velocity
in vector is parallel to the line (Oa,Oga) , Oa centre of the cluster and Oga centre of Ga. We
will see that such a galaxy G, situated at r=R, owns a nil velocity V(Gp,) and therefore its
energy Er(Gpa) is, according to the equation (74):

(79¢)

AU

GM,
ET (GLA) - _m(GLA) R

(79d)
A
Therefore in the considered particular model, for a galaxy Gpa the ratio
Er(Gra)/m(GL,) is constant because in this particular model we have M(t)/Ra(t) is constant.
Therefore the considered particular model is very interesting because we have as in
Newtonian mechanics U(Rp)=-GMa/Rs, and moreover Cay is constant and the ratio
Er(GLa)/m(Gpa) of a galaxy with a radial velocity in r=R4 is constant.
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We can modify this particular model replacing Ra by a radius Rya>R4, keeping the
hypothesis that Cay is constant in order to obtain the evolution of Rya(t). We then obtain a
2" model very close to the 1% particular model. Both previous models are justified if we
admit that because of the physical properties of the expanding Universe it exists a radius Ry
such that for r>Rma we must not take into account the mass of dark substance situated
between Ryva and r in order to calculate the gravitational field G(r) and the gravitational
potential U(r). Rma must depend only on the distribution of dark substance and the simplest
hypothesis in order to obtain Rya is that Rya is the minimal radius for which we have strictly
for r>Rya(t) a density equal to po(t) (po(t) density of the intergalactic dark substance at the age
of the Universe t).

The preceding hypothesis, due to the physical properties of the Universe in expansion,
can be expressed formally in the following law:

If we have an isolated celestial body S presenting a spherical symmetry immerged in
the intergalactic dark substance (S can be a galaxy with or without dark halo, a star, a
cluster..), we will define the Newtonian radius of S as being the minimal radius Rn(S) such
that for r>Rn(S) we have the intergalactic dark substance with a density strictly equal to po(t).

Then according to this law and in order to obtain the gravitational field G(r) and the
potential U(r), we can proceed as in Newton’s mechanics but without taking into account the
mass of dark substance situated in r>Ry(S).

We obtain with the previous law that for a cluster A, Rn(A) is equal to Ry, baryonic
radius of the cluster and consequently Ry is equal to Rs. So we obtain exactly the particular
model exposed previously. The previous law permits to determine the gravitational field G(r)
and gravitational potential U(r) for any galaxy immerged in the intergalactic dark substance
and at any point P the Universe, which would be not possible or would have led to incoherent
results if we had kept Newton’s mechanics.

For instance we obtain using the previous law that in a point P far from any cluster,
galaxy, star, then the gravitational field and the gravitational potential are nil despite that in P
the density is equal to py(t) and is very close to the mean density of clusters. In order to obtain
this property we identify P with an isolated celestial body S with Rn(S)=0, and we apply the
previous law.

In what follows we will assume that we are in the hypothesis of the particular model
exposed previously, with Cay constant. Nonetheless we can generalize what follows even in
the case in which Cay depends on the age of the Universe t.

Therefore, using the equation (74) :

1 , M
MGG, +Gm(G,) 2(:) =C,(G,) (80a)

Ca(Gy) being equal to Er(Ga)+m(Ga)Cau.

u being a given unitary vector, we consider all the galaxies G4 whose the velocity is parallel
to u (in vector) and with moreover the line (Oa,0g,) is parallel to u, Oga being the centre of
the galaxy Ga. If we assume that at any age t of the Universe, the maximal ratio
E1(Ga)/m(G,) is approximately the same for any distance r between Ga and Oa, then a galaxy
situated at the limit of the cluster meaning in r=R, owns this maximal ratio, its velocity
V(GLy) is nil and consequently because of the previous equation:

35



C,(G,,)=GCm(G,,) M(R,)

(80b)
A

So if moreover we assume that the energy Er(Ga) of most galaxies Ga keeps itself,
then we obtain reciprocally that Cay is constant (independent of t, age of the Universe)
because of the equation (79c).

Let us now suppose that we can neglect the interactions between any galaxy G4 and
the other galaxies, and that consequently any galaxy G keeps its energy and also the ratio
E1(Ga)/m(Ga). Then we have moreover for any galaxy Gg, in the case with Cay constant,
Ca(Ga) constant. We still consider the galaxies G, whose the velocity is parallel to u (in
vector) and with moreover the line (Oa,0g4) is parallel to u. Such a galaxy Ga remains on the
same straight line (O4,u), because the gravitational field G(r) is parallel to u (Equation (76))
and we neglect the interactions between G, and the other galaxies. We obtain according to the
equation (80b) that the maximal radius ry(Ga) reached by G, before coming back towards Ox
is given by the equation:

M(r, (G,))

r (Gy)
Nonetheless even in the case with Ca(Gy) constant, ry(Gya) is not always the same for
a given galaxy Gy because M(ryvi(G,a)) depends on pia that depends on py(t).

Gm(G,) =C,(G,)  (80c)

In the same way the maximal velocity of G vm(Ga) is obtained for r=0 and is given
by the equation :

%m(GA)vM(GAf:CA(GA) (81a)

Therefore, the maximal velocity of the considered galaxies is reached for galaxies with a
maximal ratio Ep(Ga)/m(G,). Moreover we have always the equality, according to the
equations (80c) and (81a), in the case with C,y constant:

M(r,(G,))

vy (G, =G ' (G)

(81b)

Moreover assuming that at any age of the Universe, for any radius r the maximal value
of Ca(Ga)/m(Gy,) is the same, meaning equal to Ca(Gar)/m(Gar) (Equation (80b)), we obtain
that at any age of the Universe, Vya being the maximal velocity of galaxies in Oa (r=0),
according to equations (80b) and (81a):

Vi, = (81c)

In order to obtain the previous relation, we did not use that Cay was constant.
Consequently it remains valid even in the case in which Cay depends on t, age of the
Universe.

So it is remarkable that the previous equation be exactly the same form as the
equations (61) and (65) despite that we obtained it using a completely different way.
Nonetheless it owns only an approximate validity because in order to obtain this equation we
neglected all the interactions between galaxies and moreover we assumed that for any radius r
the maximal value of Ca(Ga)/m(G,) was the same. And in reality such interactions exist
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expressed by the equation (75). But the approximate validity of this equation explains why the
2 dynamical models of clusters (planetary model and Virial’s model) exposed previously give
some theoretical predictions that are in relative good agreement with experimental data
despite that those 2 dynamical models are wrong. In order to take into account those
interactions between galaxies and also of the fact that for any radius r the maximal value of
Ca(Ga)/m(G,) is not compulsory exactly the same, we introduce a constant 5 depending on
the cluster, of the order of the unity, such that, Vs being the maximal recession velocity
observed from Oax.

GM,
RA

Via = B, (81d)

We have seen that the experimental data for the Virgo cluster A2 and the Coma cluster
A4 were R4~R,=10 millions l.y and we have the maximal recession velocity Vyn and Vg
observed from O, and O, (obtained taking the half of the gap between the maximal and the
minimal recession velocities observed from Or) are Vyp~=1000 km/s et Vy4~2500 km/s.

If the equation (81c) was true, we would obtain, the same way we obtained the
equation (67) :

Pt _ Vuay R o (81e)
VM2 R4

m2

We find with this equation (81e) and the experimental data given previously the
experimental value pna/pm2=1,5. And this experimental value, despite that it is acceptable, (of
the order of the unity) is not satisfying. This means, in the hypothesis of the validity of the 3"
dynamical model of the dark potential, that we cannot neglect the interactions between
galaxies and that we must use the equation (81d) with B,#PB4.

We did not take into account the fact that py(0,03)#p(0) (We remind that for the Virgo
cluster z,<0,01 and for the Coma cluster, z4~0,03). And we will see further, that according to
our model of dark matter, po(0,03)=1,1po(0). So taking into account this correction, we should
obtain pma/pmp=1,1. Moreover some astronomical observations give R4~12,5 millions Ly.
With this experimental data and keeping the other experimental data (Ry=5 millions l.y), we
obtain pma/pma=1.

It is remarkable that we always find, in agreement with the theoretical predictions of
this 3" dynamical model of clusters and with our model of distribution of dark matter in
clusters, that pyi/pm;j 1s always of the order of the unity for all the clusters Ai and Aj despite
that we consider clusters with very different sizes.

The density of the intergalactic dark substance depends on the age of the Universe. We
will use the symbol po(0) in order to represent the density of dark matter at the present age of
the Universe (z=0) and po(z) in order to represent the density of the intergalactic dark
substance at the age of the Universe corresponding to a cosmological redshift z. The
estimation of the intergalactic density po(0) obtained using the previous dynamical models of
clusters permit other theoretical predictions.

37



Indeed, according to the equation (18), for a galaxy corresponding to the 1% model
immerged in the intergalactic dark substance, the radius Rg of this galaxy is given by, at the
present age of the Universe:

2k, T

RS — ( 0 )1/ 2
47Gp, (0)

Therefore, v being the orbital velocity of stars in this galaxy, according to the equation

(82a)

(10):
1%

S — (82b)
(47Gp,(0))

R;

But it is possible to determine a minimal experimental value of Rg: Rg is superior to
the baryonic radius of the galaxy, but also to the distance between the centre of the galaxy and
the galaxies satellites driven with the same orbital velocity of the stars belonging to this
galaxy. For instance in the Milky Way it is the case of the Small and of the Large Magellanic
Clouds. Let Rys be the minimal experimental value of the dark radius of the galaxy. Then if
the equation (82b) is true, we have, using the obtained estimation of py(0):

1%

— 2R 82c)
dnGp,(0)'"* ™ (

And it is easy to compare the preceding relation with astronomical observations. Let
us for instance consider the case of the Milky Way. In order to get py(0), we apply the 3™
dynamical model of the dark potential to the Virgo cluster (z<0,01). According to the
equation (62) we obtain, pya being the mean density of the cluster A:

S Visg (83a)
Pus = 413)aG R:

Identifying pma (mean density of the Virgo cluster or of a cluster with z<<1) with
po(0) (We assume that in the equation (60), Volax(H)<<Vola, and consequently pma2=po(0))
we obtain:

v R,

R, =———4 (83b)
’ \/§VMA

Taking as cluster A the Virgo cluster A2, with the experimental data R,=5 millions l.y,
Vm2=1000 km/s and v=210 km/s, we find the dark radius of the Milky Way Rgm w=600000
l.y. This result is not only coherent, but it gives also a dark radius of the Milky Way superior
to the distance between the centre of the Milky Way and the Magellanic clouds
(approximately 250000 Ly). It is also in agreement with the value of Rgyw used in Section 3.2
(500000 Ly)).

We know that we observe an effect called gravitational lensing, predicted by General
Relativity, that consists in a deviation of luminous rays due to the mass of clusters. If we
analyze this effect, we obtain that the mass of a cluster is mainly constituted of dark mass.
Moreover, we obtain that the mass of a cluster calculated using the gravitational lensing is
precisely equal to the mass of the cluster obtained using the previously exposed dynamical
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models of clusters. Therefore, the previous dynamical models of clusters and model of
distribution of dark matter in clusters permit to justify theoretically the gravitational lensing
observed for clusters.

Moreover we know that the study of the CMB shows the existence of anisotropies due
to the density of dark substance in the Universe.

If pmu(z) is the mean density of dark substance in an Universe corresponding to a
Cosmological redshift z, we obtain as in the case of clusters:

Po(0)<pmu(0)<3po(0) (84a)

As for clusters, it is interesting to introduce a density of dark halos in the Universe pyy
such that if Voly(z) is the volume of the Universe corresponding to a cosmological redshift z
and Voly(H)(z) the volume of dark halos in the Universe, then Voly(H)(z)=pyy Voluy(z). Then
we obtain as for clusters the equality:

Pmu(0)=po(0)(1+2pun(0)) (84b)

Using the dynamical models of clusters exposed previously we obtain an estimation of
po(0). We also remark that if we assume that the dark mass of the Universe keeps itself, 1+z
being the factor of expansion of the Universe between the age of the Universe corresponding
to the redshift z and the present age of the Universe:

Pmu(2)=pmu(0)(1+2)° (85)

We can expect pnu(0)<<1. Then according to equation (84b) pyu(0)=po(0) and using
the previous equation we obtain pmu(z)~po(z)~po(0)(1+z)* . Using the dynamical models of
clusters exposed previously we obtain an estimation of pg(0) and it should be possible to
verify the previous approximation of pny(z) and po(z), observing some galaxies or clusters
situated far from us (z>3).

Moreover using the previous dynamical models of clusters in order to obtain an
estimation of py(0), we could compare this value with the value obtained from the anisotropies
of the CMB.

3.6 Link between the CMB and the temperature of the intergalactic dark substance.

In the Sections 2.5 and 2.6 , we have seen that according to our Physical Interpretation
of the CRF, the Universe was a sphere filled of dark substance, surrounded by a medium
called “nothingness”. We saw in the Section 2.5 that we could model a convective thermal
transfer between this spherical Universe and the nothingness. The convective flow F was then
in agreement with the expression F=h,Ty(t), To(t) being the temperature of the intergalactic
dark substance at a Cosmological time t. It is easy to verify that it is impossible that we have a
constant C, such than h,=C,po(t) contrary to the case in which we had also a convective
transfer but between 2 mediums constituted of dark substance in section 2.3. (Indeed in this
case we would obtain that Ty(t) increases). We saw in Section 2.5 that it is nonetheless
possible that h, be constant, independent of the density of the intergalactic dark substance.
Indeed in this case, because of the Postulate 2a) we have the equation of thermal equilibrium
K3M:4nRE(t)2(hnTo(t)), with K3 constant (Equation (14)) , M baryonic mass of the Universe,
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Rg(t) radius of the Universe at a Cosmological time t. We obtain that Ty(t) evolutes in
l/(l+z)2, (1+z) factor of expansion of the Universe. We admit as in the SCM that the
apparition of the CMB in the Universe corresponds to a redshift z approximately equal to
1500. If we admit that for this value of z, the temperature of the intergalactic dark substance
was equal to the temperature of the CMB, we obtain that presently (with an age of the
Universe of 15 billion years), the temperature of the intergalactic dark substance is 1500 times
lower than the temperature of the CMB, which is an acceptable value, justifying our
approximation in Section 2.3 expressing that the temperature of the intergalactic dark
substance can be neglected in comparison with the temperature of spherical concentrations of
dark substance (corresponding to galaxies with flat rotation curve, see Section 2.).

Moreover the hypothesis of the initial temperature of the CMB and the temperature of
the intergalactic dark substance implies, because we assumed that the latter was homogeneous
in all the Universe (see the homogenization effect in the previous section) , that the initial
temperature of the CMB was also homogeneous in all the Universe. And so this hypothesis
justifies the isotropy of the CMB observed from the CRF, without needing to introduce the
phenomenon of inflation, as it was the case in the SCM.

3.7 Evolution of the temperature of the dark substance.

We saw in section 3.6 that the hypothesis of an initial equality of the temperature of
the CMB and the temperature of the dark substance (For z=1500) and a thermal model similar
to the thermal model used in order to get the baryonic Tully-Fisher’s law, led to obtain that at
the present age of the Universe the temperature of the intergalactic dark substance (evolving
in 1/(1+z)* ) was approximately 1500 times less than the temperature of the CMB (evolving in
1/(14z)). This is in agreement with our hypothesis used in order to obtain the baryonic Tully-
Fisher’s law according to which we could neglect the temperature of the intergalactic dark
substance relative to the temperatures of dark halos of galaxies with a flat rotation curve.

Nonetheless in order to obtain the evolution in 1/(1+z)* of the temperature of the
intergalactic dark substance, we used in the section 3.6 the equation, Mg baryonic mass of the
Universe and Ry(t) radius of the Universe for the age of the Universe t:

KsMp=4aRy(t)*h, To(t) (86)

With K3 constant defined in the equation (14), and we did not take into account the evolution
of the internal energy of the dark substance nor the energy lost because of the dilatation of the
volume of the intergalactic dark substance. We will call 1% model of the evolution of the
temperature of the intergalactic dark substance the preceding model. We remark that we
assumed its validity only for z<1500.

Let us consider a 2" model in which on the contrary we neglect (i) the thermal energy
transferred from the baryons towards the dark substance (energy that is obviously nil before
the apparition of baryons) and also (ii) the energy lost by the intergalactic dark substance
through the convective transfer between intergalactic dark substance and the medium that we
called nothingness and we consider only (iii) the variation of the internal energy of the
intergalactic dark substance and also relative to (iv) the energy lost because of the variation of
the volume of the intergalactic dark substance. We suppose that in this model, the dark
substance is homogeneous in all the Universe, because we consider its validity only for
7>1500, and for this cosmological redshift z the galaxies did not exist. Consequently the dark
substance obeys to the Boyle-Charles law (Postulate 1) and moreover we assume that it also
obeys to Joule’s law for ideal gas: It exists a constant Kgs such that T(t) being the temperature
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of the dark substance, Mg being the total mass of the dark substance and U(T(t)) being the
total internal energy of the dark substance for an age of the Universe t:

U(T(t))=KesMsT(t) 87).

Moreover the energy lost that is the work corresponding to a variation of the volume of the
dark substance dV under the pressure P is equal to:

W=-PdV (88)

We assume in this 2" model of the evolution of the temperature of the dark substance that the
transformation is adiabatic reversible. Consequently we can apply the Laplace’s law: It exists
a constant y such that, V being the volume of the Universe for a temperature T at an age of the
Universe t, and V| its volume for a temperature T; at an age t;:

V=T,V ,"! (89)

Consequently if 1+z is the factor of expansion of the Universe between t; and t,
V()=V(t;)(1+z)’ and:

TO)=T(t,)/(1+z)*Y" (90)

In a 3" model of evolution of the temperature of the (intergalactic) dark substance we
take into account every kind of energy received or lost by the dark substance. Nonetheless, we
consider in this model that the dark substance is homogeneous in density and temperature in
all the Universe, without taking into account the dark halos of galaxies with a flat rotation
curve, and we have seen that this was justified because the total volume of those dark halos
was very small relative to the total volume of the Universe. We will take the following
notations:
dW(t,t+dt) is the energy received by the dark substance as a work (negative) due to the
variation of volume of the dark substance between the ages of the Universe t and t+dt.

dErg(t,t+dt) is the energy received by the dark substance (negative) due to the thermal transfer
between the dark substance and the medium that we called “nothingness” between t and t+dt.

Ruy(t) being the radius of the Universe at the age of the Universe t, we have seen (equation

(860)):

dE1r(t,t+dt)=(-h, T(t))(4nRy(t)?)dt 91)

dErp(t,t+dt) is the energy transferred by the baryons to the dark substance (positive),
(Equation (14)) between t and t+dt, Mg(t) being the mass of the baryons at the age t of the
Universe we have:

dErg(t,t+dt)=K;Mg(t)dt (92)

Then the equation of equilibrium of the energy received and lost by the dark substance is:

dU(t,t+dt)=dW(t,t+dt) + dErg(t,t+dt) + dE7g(t,t+dt) (93)
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We remind that according to the Boyle-Charles law, Mg being the total mass of the dark
substance (assumed to be constant):

Pt)V(t)=koMsT(t) (94)

And, Ry(t) being the radius of the Universe, V(t)=(4/3)nRy(t)’ and d(Ry(t))=dzRuy(t) (1+dz
being the factor of expansion of the Universe between t and t+dt),
dV(t)=4nRy(t)*dRy(t)=4nRy(t)*dz and consequently dV(t)/V(t)=3dz. So we have:
dW(t,t+dt)=-PdV (t)=-koMsT(t)(dV (t)/V (1))

dW(t,t+dt)=-3koM;sT(t)dz (95)

So we obtain the following differential equation in T(t), because dz and Ry(t) can be
expressed as a function of t:

d(KesMgT(t))=-3kT(t)dz-h, T(t)(4nRy(t)*)dt+KsMp(t)dt
KesMs(dT(t)/dt)=-3koMsT(t)(dz/dt)-h,(4nRu(H)) T(t)+KsMp(t)  (96)

We remark that with the previous notations, the parameter y used in Laplace’s equation (89)
can be expressed by:

Y= 1 +k0/ Kgs

Consequently ko should be of the order of Kgs. Using the previous equation (96) we can
express the conditions of validity of the 1* model, in which we neglected the variation of
internal energy and the work received by the dark matter due to the variation of its volume.
Those conditions are:

~KesMs(dT(t)/dt)<< KsMg(t)
~KesMs(dT(t)/dt)<< hy(4mRy(t)) T(t)
3koM;T(t)(dz/dt)<< K3Mp(t)
3koM;sT(t)(dz/dt)<< hy(4nRu(H)>T(1) 97)

The conditions for which the 2™ model of the evolution of the temperature of dark substance
be valid are the inverse conditions (replacing “<<” by “>>")

3.8 Evolution of the temperature of dark substance- 2" model of expansion.

We are going to consider the application of the preceding section 3.7 in the case of the
2" model of expansion of the Universe, meaning with Ry(t)=Ct, (C constant), and
consequently between t and t+dt, 1+dz=(t+dt)/t, so dz=dt/t.

We remark that in the 1% model of evolution of the temperature T(t) evolves in
1/(1+z)*, consequently for this 2™ model of expansion in 1/t%. In the 2™ model of the
evolution of the temperature, T(t) evolves in 1/(1+z)*™" with y>1, consequently in this 2™
model of expansion in 1/£7" . So in both cases T(t) evolves in 1/t°, with p>0. For such a
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function T(t), we obtain that for t tending towards the infinite both functions T(t) and
(dT(t)/dt)/T(t) tend towards 0. So for t sufficiently great the equations (97) are valid and the
1* model of evolution of the temperature of dark substance is also valid.

On the contrary for t tending towards 0, the functions (dT(t)/dt)/T(t) and T(t) tend towards the
infinite and consequently for t sufficiently small (for instance just after the Big-Bang), the
inverse of the relations (97) are valid and consequently the 2™ model of evolution of the
temperature of dark substance is also valid.

3.9 Dark energy in the Universe.

We defined in the Postulate 1 the Boyle-Charles’law for an element of dark substance
with a pressure P, a volume V, a temperature T and a mass m, k, being a constant:

PV=komT (98)

Using the previous law and the Newton’s Universal law of gravitation, we obtained
the equation (10), valid for all galaxies with a flat rotation curve. For instance for the Milky
Way, Tmw being the temperature of the dark halo of the Milky Way and vyw being the orbital
velocity of stars in Milky Way, we have the equation:

VszzszTMW 99)

Consequently taking vyw~2. 10°m/s we obtain ko Taw=2. 10°U.S.I.

Let us compare the equation (98) with the analogous equation valid for hydrogen modeled as
an ideal gas. We know that it exists a constant ky such that for a hydrogen element with a
mass my, a volume V, at a temperature T and a pressure P:

PV=kymuT (100)

We know that for a mole of hydrogen, for T=Tx=273°K, V=20. 10'3, P=10° Pa, mH:IO'3 kg,
we have:

knTk=PV/my=10"x20. 10°x10°= 2. 10° U.S.I (101)

If we assume that dark substance and hydrogen obeys to Joule’s law, we therefore
obtain that the internal energy of a kg of hydrogen at the temperature Tk is of the order of
kyTk meaning 2. 10° Joules despite that the internal energy of a kg of dark substance
belonging to the halo of the Milky Way is of the order of koTyw meaning 2. 10" Joules, and
therefore the latter energy is by far superior to the former. Considering this important
difference of energy, we must consider a n possible model of energetic transfer from
baryons towards the dark substance, permitting a transmitted power much greater than a
power corresponding to a diminution quasi imperceptible of the temperature of the baryonic
matter. In this 2" model, the transferred energy is dark energy. In this 2" model, baryonic
particles contain a very important quantity of dark energy, but this dark energy must not be
taken into account in the mass appearing in the classical equations E=mc’ or Ep=mU.
Consequently we cannot detect this dark energy using classical experiments. The power of
dark energy transmitted from baryons towards dark substance has the same expression as in
the 1* model of power (calorific power):
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P=K3sM (102)

With M the mass of the considered baryonic particles and K35 constant. pps being the power
of dark energy lost by nucleus and my being the mass of a nucleus we obtain Kss=pos/my.
Moreover if we consider that baryonic particles have been created just after the Big-Bang
with a total dark energy per nucleus equal to Ey, we get with the previous 2™ model that the
dark energy of a mass M at an age of the Universe t is:

Es(M,H)=(M/my) (Eo-post)  (103)

It is very possible that Ey be of the order of mgc®. We ignore what happens in this 2™ model
when baryonic particles have lost all their dark energy.

4.CONCLUSION

So in this article we proposed the existence of a dark substance whose physical
properties are in agreement with observations connected to dark matter. In particular those
physical properties, despite of their simplicity, permitted to us to justify theoretically the flat
rotation curve observed for many galaxies and the baryonic Tully-Fisher’s law. In order to
obtain those laws, we interpreted galaxies with a flat rotation curve as spherical
concentrations of dark substance in thermal equilibrium.

We have also exposed a Physical Interpretation of the CMB Rest Frame (CRF) that we
also called the local Cosmological frame. This Interpretation permitted to us to define in a
simple and new way the Cosmological time, in agreement with all astronomical observations
and with the definition of Cosmological time in the SCM. This Interpretation has also
permitted to us to introduce a new kind of frame, called (Universal) Cosmological frame, that
is fundamental for the description of the Universe. Then using these new concepts, we
proposed a new model of Universe, flat and finite, not proposed by the SCM. Despite of this
difference we have seen that according to a 1* mathematical model of expansion of the
Universe ,based as the SCM on General Relativity, the observable Universe was identical to
the one predicted by the SCM (in particular it is isotropic), provided that it be observed from a
point sufficiently far from the borders of the Universe. We also have proposed a 2™
mathematical model of expansion, much simpler than the mathematical model of the SCM,
and we have seen that the theoretical predictions of this 2" were nonetheless in agreement
with astrophysical observations. Moreover this 2" mathematical model did not need a dark
energy, contrary to the SCM, and consequently brings a solution to the enigma of dark
energy.

In section 3 we studied the effects of the motion of a spherical concentration of dark
substance on its velocity and its mass. We also studied the 2 kinds of radius for a galaxy, the
dark radius and the baryonic radius. We also studied the different possible models of
distribution of dark matter in galaxies. Then we exposed the theoretical predictions
concerning the velocities of galaxies in clusters and we saw that those predictions were in
agreement with experimental data of some clusters having a cosmological redshift inferior to
0,03. We saw that the new theory permitted to predict the value of the dark radius of all
galaxies (In particular galaxies with a flat rotation curve), and to obtain the mean density of
the Universe, and also the value of the density of the intergalactic dark substance. Finally we
studied the evolution of the temperature of the dark substance, just after the Big-Bang up to
the present age of the Universe. And we have then seen the existence of a dark energy that is
identified with the internal energy of the dark substance.
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Concerning the Physical Interpretation of the CRF, finding some observations
permitting to compare our 1* model and the SCM will be a greater challenge because we have
seen that they both predicted the same observable Universe. It should be nonetheless possible
to find astronomical observations permitting to compare the phenomenon used in our Physical
Interpretation of the RRC to justify the isotropy of the CMB in our 1* model (equality of the
initial (Cosmological time tjcmp) temperature of the CMB and the temperature of intergalactic
dark substance (also Cosmological time ticmp), Section 3.5) and the corresponding
phenomenon in the SCM (inflation) permitting to justify the observed isotropy of the CMB.

It should be easier to find astronomical observations permitting to compare the
predictions of our 2" model with the predictions of the SCM because they are
mathematically different. For instance we have seen that in our pnd model, the Hubble’s
constant is precisely equal to 1/ty, ty age of the Universe. In the same way distances used in
Cosmology have not the same mathematical expression in our 2™ model as in the SCM (See
Section 2.7).

But a very attractive element in favor of the model of the Universe proposed by our
Physical Interpretation of the CRF is that this geometric model of Universe can be conceived
by the human mind, which was not the case for models of Universe proposed by the SCM that
were either infinite or finite but without borders. It is our model of dark substance that
permitted to us to define easily such a Universe, flat and finite.
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