
On almost sure convergence rates for the kernel estimator of a
covariance operator under negative association

H. Jabbari1 and M. Erfaniyan
Department of Statistics, Ordered and Spatial Data Center of Excellence,

Ferdowsi University of Mashhad, Mashhad, Iran

Abstract

Let {Xn, n ≥ 1} be a strictly stationary sequence of negatively associated random
variables, with common continuous and bounded distribution function F . We consider
the estimation of the two-dimensional distribution function of (X1, Xk+1) based on kernel
type estimators as well as the estimation of the covariance function of the limit empirical
process induced by the sequence {Xn, n ≥ 1} where k ∈ IN0. Then, we derive uniform
strong convergence rates for the kernel estimator of two-dimensional distribution function
of (X1, Xk+1) which were not found already and do not need any conditions on the covari-
ance structure of the variables. Furthermore assuming a convenient decrease rate of the
covariances Cov(X1, Xn+1), n ≥ 1, we prove uniform strong convergence rate for covari-
ance function of the limit empirical process based on kernel type estimators. Finally, we
use a simulation study to compare the estimators of distribution function of (X1, Xk+1).

Key Words: Almost sure convergence rate, Bivariate distribution function, Empirical process,
Kernel estimation.

1 Introduction, definitions and assumption

Estimation of distribution functions of random pairs (two-dimensional distribution functions)
has been always a subject of interest of many statisticians. The case of independent underlying
random variables was studied by [3]. The case of nonindependent random variables had been
studied, too (see for example [1], [2], [6], [7] and [8]).
One of the most applicable concept of negative dependence in multivariate statistical analysis
and reliability theory is negative association. A finite family of random variables {Xi, 1 ≤
i ≤ n} is said to be negatively associated (NA) if for every pair of disjoint subsets A and B of
{1, 2, ..., n},

Cov(f1(Xi, i ∈ A), f2(Xj, j ∈ B)) ≤ 0,

whenever f1 and f2 are coordinatewise increasing and such that the covariance exists. An
infinite family of random variables is NA if every finite subfamily is NA. We refer to [1], [8],
[9], [10], [11], [12], [14], [15], [18], [19], [20], [21], [22], [23], [24] and [25] for knowing some of the
most important studies have been performed on different aspects of NA random variables.
The mentioned comments above motivated the interest on the estimation of the bivariate dis-
tribution function under negative association. A natural (histogram) estimator of Fk(r, s) =
P (X1 ≤ r,Xk+1 ≤ s) with k fixed, is defined by

F̃k(r, s) =
1

n− k

n−k∑
i=1

{1(−∞,r](Xi)1(−∞,s](Xk+i)}. (1)

The asymptotic behavior of this estimator was studied by [6], [7] and [10]. For dependent
sequences, under certain conditions (see [16], Theorem 17 and the first remark of p. 137), the

1E-mail: Jabbarinh@um.ac.ir
1



limit of the uniform empirical process still is a centered Gaussian process, but the covariance
function changes to

Γk(r, s) = ϕk(r, s) +
∞∑
k=1

ϕk(r, s) +
∞∑
k=1

ϕk(s, r), (2)

where ϕk(r, s) = Fk(r, s)−F (r)F (s). [6], [7] and [10] drove a uniform strong convergence rate of
n−1/2 for two-dimensional empirical distribution function of (X1, Xk+1) and covariance function
of the limit empirical process assuming a convenient decrease rate of the covariance. [2] and [8]
considered the kernel estimator of Fk, defined by

F̂k(r, s) =
1

n− k

n−k∑
i=1

U(
r −Xi

hn
,
s−Xk+i

hn
). (3)

where U is a given bivariate distribution function and {hn, n ≥ 1} is a sequence of positive
numbers converging to zero. They found the optimal bandwidth convergence rate of order n−1.
In this paper using F̂k in (3), we define the kernel estimator of ϕk(r, s) and Γ(r, s) as

ϕ̂k(r, s) = F̂k(r, s)− F̂ (r)F̂ (s), Γ̂(r, s) = ϕ̂k(r, s) +
n∑
k=1

(ϕ̂k(r, s) + ϕ̂k(s, r)) (4)

and derive a uniform convergence rate of order h2n−kn
−γ for the above estimators, where

F̂ (r) =
1

n

n∑
i=1

U(
r −Xi

hn
)

and 0 < γ < 1/2. For this convergence rate, we need no condition on the covariance structure
of the variables. The above rate is flexible because of including the term hn which can be op-
tionally chosen. This flexibility makes us able to have a rate that tends to zero (as is necessary
for a convergence rate) and on the other hand, can be a better rate than what was found by
[10] and [8]. It is noted that the proofs are similar to those of [10]

In all sections of this paper suppose that C is a positive constant not depending on n. Also,
we use the following general assumption throughout the article:
(A). {Xn, n ≥ 1} is a NA and strictly stationary sequence of random variables having bounded
density function and

|U(
r −Xi

hn
,
s−Xi+k

hn
)− EU(

r −Xi

hn
,
s−Xi+k

hn
)| ≤ Ch2n, a.s. (5)

for any 1 ≤ i ≤ n and fixed r, s ∈ IR.

Remark 1.1 It can be easily checked that (5) holds for any NA sequence of random variables
mentioned in (A), because

U(
r −Xi

hn
,
s−Xi+k

hn
) =

∫ Y2

−∞

∫ Y1

−∞
u(t1, t2)dt1dt2, a.s.

where Y1 = r−Xi
hn

, Y2 = s−Xi+k
hn

and u is the probability density function associated to U . By
letting z1 = r − hnt1 and z2 = s− hnt2 in the above integral, we have

U(
r −Xi

hn
,
s−Xi+k

hn
) =

∫ Xi+k

−∞

∫ Xi

−∞
u(
r − z1
hn

,
s− z2
hn

)h2ndz1dz2

≤ h2n

∫ ∞
−∞

∫ ∞
−∞

u(
r − z1
hn

,
s− z2
hn

)dz1dz2. a.s.
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By further replacements w1 = r−z1
hn

and w2 = s−z2
hn

, we obtain

U(
r −Xi

hn
,
s−Xi+k

hn
) = O(h2n). a.s. (6)

On the other hand for the expected value of U , we can write

EU(
r −Xi

hn
,
s−Xi+k

hn
) =

∫ ∞
−∞

∫ ∞
−∞

U(
r −Xi

hn
,
s−Xi+k

hn
)dU(xi, xi+k).

By replacing v1 = r−Xi
hn

and v2 = s−Xi+k
hn

, the above integral is equal to

EU(
r −Xi

hn
,
s−Xi+k

hn
) =

∫ ∞
−∞

∫ ∞
−∞

U(v1, v2)u(r − v1hn, s− v2hn)h2ndv1dv2

≤ h2n

∫ ∞
−∞

∫ ∞
−∞

u(r − v1hn, s− v2hn)dv1dv2

= O(1). (7)

The inequality of (7) holds, since 0 ≤ U(v1, v2) ≤ 1,∀v1, v2 ∈ IR and the last equality holds after
some more replacements. Finally, (5) satisfies by considering (6) and (7) together.

In Section 2, we will present some auxiliary results needed to establish the above mentioned
convergence rates. The moment inequality used for the proofs is presented in this section. The
strong uniform convergence rates are proved in Sections 3 and 4. In Section 5, we compare the
histogram and kernel estimators graphically using a simulation study and then conclude the
results.

2 Auxiliary results

In this section, we used the following moment inequality for NA random variables and proved
an important inequality that are needed for proving our convergence rates.

Lemma 2.1 ([13] and [20]) Let (X1, X2, ..., Xn) be an NA random vector with EXj = 0 and
E|Xj|p < ∞ for some p ≥ 2 and all j = 1, ..., n. Then, there exists a constant C = C(p) > 0,
such that

E|
n∑
j=1

Xj|p ≤ C[
n∑
j=1

E|Xj|p + (
n∑
j=1

EX2
j )p/2]. (8)

Lemma 2.2 Let k ∈ IN0 be fixed and εn be a sequence of positive numbers. Suppose (A) is
satisfied. Then, there exists a constant C such that, for r, s ∈ IR and p > 2,

P (|F̂k(r, s)− Fk(r, s)| > εn) ≤
Ch2pn−k

εpn(n− k)p/2
. (9)

Proof. For each n ∈ IN , 1 ≤ i ≤ n and fixed r, s ∈ IR define

Zk,i = U(
r −Xi

hn
,
s−Xi+k

hn
)− Fk(r, s),

and also

Wk,i = Zk,i − E(Zk,i).
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So, we have

F̂k(r, s)− E(F̂k(r, s)) =
1

n− k

n−k∑
i=1

Zk,i + Fk(r, s)− E(F̂k(r, s))

=
1

n− k

n−k∑
i=1

Wk,i +
1

n− k

n−k∑
i=1

E(Zk,i) + Fk(r, s)− E(F̂k(r, s)).

Regarding 1
n−k

∑n−k
i=1 E(Zk,i) = E(F̂k(r, s))− E(Fk(r, s)), we will have

F̂k(r, s)− E(F̂k(r, s)) =
1

n− k

n−k∑
i=1

Wk,i.

Since (A) is hold, it is clear that Wk,n are decreasing functions of the variables Xn. So according
to the properties of NA random variables (see for more information [12]), {Wk,n, n ≥ 1} is NA
and strictly stationary. Also, |Wk,n| ≤ Ch2n and E(Wk,n) = 0 then, E|Wk,n|p < ∞, for each
n ≥ 1 and p > 2 and so we can apply Lemma 2.1 to the sequence {Wk,n, n ≥ 1}. Thus for all
n ≥ 1, we obtain

E|
n∑
i=1

Wk,i|p ≤ C[
n∑
i=1

E|Wk,i|p + (
n∑
i=1

EW 2
k,i)

p/2]

≤ Cnp/2h2pn . (10)

Now for fixed r, s ∈ IR, we can write

P (|F̂k(r, s)− Fk(r, s)| > εn) ≤ P (|F̂k(r, s)− E(F̂k(r, s))| >
εn
2

)

+ P (|Fk(r, s)− E(F̂k(r, s))| >
εn
2

). (11)

Since 0 < Fk(r, s), F̂k(r, s) < 1 for fixed k ∈ IN0 and r, s ∈ IR, we conclude P (|Fk(r, s) −
E(F̂k(r, s))| > εn

2
)→ 0 as n→ +∞. Now regarding this, using the Markov inequality and from

(10) and (11) we find, for all n > k,

P (|F̂k(r, s)− Fk(r, s)| > εn) ≤ 2p

εpn(n− k)p
E|

n−k∑
i=1

Wk,i|p

≤
Ch2pn−k

εpn(n− k)p/2
. (12)

To prove the next results, we should define the following notations as introduced in [10]. Let tn
be a sequence of positive integers such that tn → +∞. For each n ∈ IN and each i = 1, ..., tn,
put xn,i = Q(i/tn), where Q is the quantile function of F . Then for n ∈ IN and k ∈ IN0, define

Dn,k = sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)|,

and

D∗n,k = max
i,j=1,...,tn

|F̂k(xn,i, xn,j)− Fk(xn,i, xn,j)|.

Furthermore, we will need the following result as in Theorem 2 of [6] and Lemma 2.3 of [10].

Lemma 2.3 If the sequence {Xn, n ≥ 1} satisfies (A), then, for each n ∈ IN and each k ∈ IN0,

Dn,k ≤ D∗n,k +
2

tn
a.s. . (13)
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Lemma 2.4 Let εn and tn be two sequences of positive numbers such that tn → +∞ and
εntn → +∞, p > 2 and k ∈ IN0 be fixed. Suppose (A) holds. Then, for any large enough n,

P ( sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)| > εn) ≤ Ct2n
εpn(n− k)p/2

h2pn−k. (14)

Proof. Following the same steps in Lemma 2.4 of [10] and applying Lemma 2.2 and Lemma
2.3 the result is concluded.

3 Uniform strong convergence rates of F̂k

In this section, we summarize the previous results to get uniform strong convergence rates of
F̂k.

Lemma 3.1 Let k ∈ IN0 be fixed and suppose (A) holds. Then under the conditions of Lemma
2.4 and for every 0 < δ < p− 1, we have

sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)| = O(h
2p−2
p+2

n−k n
− p−2−2δ

2(p+2) ) a.s. . (15)

Proof. Put tn = 1
εnhn−k

and let 0 < δ < p−2
2

. Since tn →∞ and tnεn →∞ when n→∞, from

Lemma 2.4 for εn = h
2p−2
p+2

n−k n
− p−2−2δ

2(p+2) and n large enough, we obtain

P ( sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)| > εn) ≤ C

εp+2
n h2−2pn−k (n− k)p/2

≤ Cn−(1+δ). (16)

The proof is complete using the Borel-Cantelli Lemma, because for all δ > 0, the sequence on
the right-hand side above being summable.

If p→∞, εn → h2n−kn
−1/2. Since h2n−k → 0 when n→∞, the convergence rate of Lemma 3.1

remains reasonable for a large p. In the next theorem, we summarize the results of this section.

Theorem 3.1 Under the assumptions of Lemma 3.1 and for every 0 < γ < 1/2, we have

sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)| = O(h2n−kn
−γ) a.s. . (17)

Proof. Using Lemma 3.1 and along the lines of Theorem 3.1 in [10], we get the desired result.

Remark 3.1 Note that Theorem 4 of [8] holds true for F̂k defined in (3) under some regularity
assumptions. So for all x, y ∈ IR, we have

(n− k)MSE[F̂n(x, y)] = F (x, y)− F 2(x, y) + 2
∞∑
j=2

(Fj(x, y, x, y)− F 2(x, y))

+ O(hn + nh2n) + an,

where for each positive integer j, Fj is the distribution function of (X1, Xk+1, Xj, Xk+j) and

an =
1

(n− k)

∞∑
j=2

(j − 1)(Fj(x, y, x, y)− F 2(x, y))− 2
∞∑

j=n−k−1
(Fj(x, y, x, y)− F 2(x, y)).

Then, an optimal convergence rate of the MSE is achieved by choosing hn = Cn−1.
5



If k = 0 and s = r the estimator F̂k(r, s) becomes to the one-dimentional kernel distribution
function F̂ (r). The results of Theorem 3.1 hold true for F̂ . So, we can write

sup
r∈IR
|F̂ (r)− F (r)| = O(h2nn

−γ) a.s. . (18)

Remark 3.2 From the results of Theorem 3.1, we understand that the convergence rate h2n−kn
−γ

for every 0 < γ < 1/2 and hn is very faster than those obtained later by [10] (i.e. n−γ). So,
the kernel estimator of two-dimensional and one-dimentional distribution function Fk and F is
better than empirical one, respectively.

Now, we can obtain the convergence rate of the kernel estimator of ϕk.

Theorem 3.2 Under the assumptions of Theorem 3.1 and for every 0 < γ < 1/2, we have

sup
r,s∈IR

|ϕ̂k(r, s)− ϕk(r, s)| = O(h2n−kn
−γ) a.s. . (19)

Proof. The proof is similar to that of Theorem 3.2 in [10] and then we omit it.

4 Uniform strong convergence rates of Γ̂

As [10], we will introduce uniform strong convergence rates for the kernel estimators of the sum∑∞
k=1 ϕk(r, s) and the covariance function Γ(r, s).

Regarding that the covariance structure of a sequence of NA random variables highly determines
its approximate independence (see [16]), it is common to have assumptions on the covariance
structure of the random variables. For this, we use the same definition of [10] as

v(n) =
∞∑

j=n+1

|Cov(X1, Xj)|1/3. (20)

In the following lemma, we prove the uniform strong convergence rate for the sum
∑∞
k=1 ϕ̂k(r, s)

which is sufficient to obtain the desired result for the kernel estimator of Γ.

Lemma 4.1 Let (A) holds, θ > 0 and suppose that an = n
p−2−2δ

p2+3p for some p > 2 and for each
0 < δ < p−2

2
. If

v(an) ≤ Ch
4θ(p−1)

(p−2)(p+3)

n−k a−θn (21)

for all n ≥ 1, we have

sup
r,s∈IR

|
an∑
k=1

ϕ̂k(r, s)−
∞∑
k=1

ϕk(r, s)| = O(h
2p−2
p+2

n−k n
− (p−2)(p−2−2δ)

2p(p+2) ) a.s. . (22)

Proof. The idea is essentially the same as the proof of Lemma 4.1 of [10]. So, we repeat their
proof using our required notations and definitions.

Take εn = h
2p−2
p+2

n−k n
− (p−2)(p−2−2δ)

2p(p+2) for each 0 < δ < p−2
2

and tn = an
εnhn−k

. Now, we can write

P ( sup
r,s∈IR

|
an∑
k=1

(F̂k(r, s)− Fk(r, s))| > εn) ≤
an∑
k=1

P ( sup
r,s∈IR

|F̂k(r, s)− Fk(r, s)| >
εn
an

). (23)

Since 0 < δ < p−2
2

, (p−2)(p−2−2δ)
2p(p+2)

> 0 and 0 < p−2−2δ
p2+3p

< 1, it is easy to see εn → 0, an → +∞,
tn → +∞, εn

an
tn → +∞ and an

n
→ 0 as n→ +∞.
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Using εn
an

in place of εn in Lemma 2.4, we obtain for all n large enough,

P ( sup
r,s∈IR

|
an∑
k=1

(F̂k(r, s)− Fk(r, s))| > εn) ≤
an∑
k=1

Ct2na
p
n

εpn(n− k)p/2
h2pn−k

≤ Ct2na
p+1
n

εpn(n− an)p/2
h2pn−k

=
Cap+3

n

εp+2
n (n− an)p/2

h2p−2n−k . (24)

By elementary calculations, we may write εn = h
2p−2
p+2

n−k a
p+3
p+2
n n−

p−2−2δ
2p+4 . Inserting this on the right-

hand side of (24) leads to summable upper bound as an
n
→ 0. So, we have by Borel-Cantelli

Lemma

sup
r,s∈IR

|
an∑
k=1

(F̂k(r, s)− Fk(r, s))| = O(h
2p−2
p+2

n−k n
− (p−2)(p−2−2δ)

2p(p+2) ) a.s. . (25)

Now, as [10], we can write

sup
r,s∈IR

|
an∑
k=1

ϕ̂k(r, s)−
∞∑
k=1

ϕk(r, s)| ≤ sup
r,s∈IR

|
an∑
k=1

(F̂k(r, s)− Fk(r, s))|

+ 2an sup
r∈IR
|F̂ (r)− F (r)|

+ sup
r,s∈IR

|
∞∑

k=an+1

ϕk(r, s)|. (26)

For the first term on the right-hand side of (26), we use (25). Since p+3
p+2

> 1 by using Lemma
3.1 for the second term, we have

an sup
r∈IR
|F̂ (r)− F (r)| = O(anh

2p−2
p+2

n−k n
− p−2−2δ

2p+4 )

= O(h
2p−2
p+2

n−k n
− (p−2)(p−2−2δ)

2p(p+2) ) a.s. . (27)

For the third term on the right-hand side of (26), we use Corollary of Theorem 1 in [17] and

relation (21) in [15] as those applied in [10]. So by (21) for θ = (p−2)(p+3)
2p+4

> 0 and an = n
p−2−2δ

p2+3p ,
we obtain

sup
r,s∈IR

|
∞∑

k=an+1

ϕk(r, s)| ≤ C
∞∑

k=an+1

|Cov1/3(X1, Xk+1)|

= Cv(an) ≤ Ch
4(p−1)(p−2)(p+3)
2(p+2)(p−2)(p+3)

n−k a
− (p−2)(p+3)

2(p+2)
n

= Ch
2p−2
p+2

n−k n
− (p−2)(p−2−2δ)

2p(p+2) . (28)

Hence the proof is completed.

We now summarize the above result in the following theorem.

Theorem 4.1 Under the assumptions of Lemma 4.1 and condition (21) for all n ≥ 1, θ > 0
and 0 < γ < 1/2, we have

sup
r,s∈IR

|
an∑
k=1

ϕ̂k(r, s)−
∞∑
k=1

ϕk(r, s)| = O(h2n−kn
−γ) a.s. . (29)

Proof. As in proof of Theorem 4.1 of [10], we apply the lines of proof of Theorem 3.1 and use

Lemma 4.1 instead of Lemma 3.1. So, for δ > 0 and p > 2 we have (p−2)(p−2−2δ)
2p(p+2)

> γ and then
the proof is concluded.

7



Now, applying the lines of proof of Theorem 4.2 in [10] and using Theorems 3.1 and 4.1, we
can state the following theorem which summarizes the results for Γ̂.

Theorem 4.2 Suppose (A) holds. Under condition (21) for all n ≥ 1, θ > 0, p > 2 and
0 < γ < 1/2, we have

sup
r,s∈IR

|Γ̂(r, s)− Γ(r, s)| = O(h2n−kn
−γ) a.s. . (30)

Remark 4.1 As stated in Remark 3.2, our convergence rate h2n−kn
−γ for every 0 < γ < 1/2

and hn in Theorem 4.2 is very faster than those obtained later by [10] (i.e. n−γ). So, the kernel
estimator of Γ is better than empirical one.

5 Simulation study

In this section, we intend to compare the behavior of our estimator with those of [10] via a
simulation study. As noted in [4], [5] and [12] a number of well known multivariate distributions
such as multivariate normal distribution with negative correlations possess the NA property.
So for generating the NA random variables, suppose that X1, . . . , Xn have multivariate normal
joint distribution with zero mean vector and the following covariance matrix

Σ =
1

1− ρ2


1 −ρ −ρ2 · · · −ρn−1
−ρ 1 −ρ · · · −ρn−2
...

...
...

. . .
...

−ρn−1 −ρn−2 −ρn−3 · · · 1


where ρ > 0. For n = 20, 100, we generate one sample from n-dimensional multivariate normal
distribution with zero mean vector and covariance matrix Σ assuming ρ = 0.1, 0.36. Then for
k = 0, 1, 2, we compute the histogram estimator F̃k in (1) and the kernel estimator F̂k in (3)
using hn = n−1 and hn = log−1(n) and U(., .) as bivariate normal distribution with zero mean
vector and covariance matrix

1

1− ρ2

[
1 −ρ
−ρ 1

]
. (31)

Results for k = 0, 1, 2 and different values of n, ρ and hn are presented in Figures 1-3, re-
spectively. Also for simplicity of comparing, we compute the following mean square distances
(MSDs) between Fk(r, s) and F̂k(r, s) (or F̃k(r, s)) for all r, s:

MSD1 =
1

N

∑
r,s

(F̂k(r, s)− Fk(r, s))2

MSD2 =
1

N

∑
r,s

(F̃k(r, s)− Fk(r, s))2 (32)

where N is the product of all numbers r and s. The results are also reported in Figures 1-3.

Figure 1 shows that for k = 0 (one-dimensional distribution function):
a) When n is small (n = 20) and large (n = 100), kernel estimator (green) of F (r) is better
than histogram estimator (black) for all values of ρ and bandwidth rates hn.
b) When n becomes large, the kernel estimator has a good fit.
c) When n is small, the bandwidth rates hn = log−1(n) is better than hn = n−1.
d) When n is large, the bandwidth rates hn = n−1 and hn = log−1(n) have the same behaviors.
e) Since the kernel estimator is smooth, the best estimator of F (r) is the kernel estimator.
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f) In all graphs, MSD of kernel estimator is less than histogram estimator.
g) In all cases, the histogram estimator has an over estimate.

Figure 2 shows that for k = 1 (two-dimensional distribution function with lag one):
a) When n is small (n = 20), we have over estimate for weak dependence (ρ = 0.1) and
hn = log−1(n). Also, this wrong fit holds true when n is small (n = 20), ρ = 0.1 and hn = n−1

for some values of r and s (that is r, s ∈ [−2, 4], approximately).
b) MSD of kernel estimator is less than histogram estimator for all cases.
c) When n is large (n = 100), the difference between kernel and histogram estimators is very
small.
d) When n is small (n = 20) or large (n = 100), the bandwidth rate hn = n−1 has a better role
than hn = log−1(n) for estimating F1(r, s) in weak (ρ = 0.1) dependence case and in strong
(ρ = 0.36) dependence case, the bandwidth rate hn = log−1(n) is almost better than hn = n−1

for estimating F1(r, s).

Figure 3 shows that for k = 2 (two-dimensional distribution function with lag two):
a) When n is small (n = 20) and ρ = 0.1, we have over estimate for large values of r and s
(that is r, s ∈ [0, 4], approximately).
b) MSD of kernel estimator is less than histogram estimator for all cases.
c) When n is large (n = 100), the difference between kernel and histogram estimators is very
small.
d) When n is small (n = 20) or large (n = 100), the bandwidth rate hn = log−1(n) has a better
role than hn = n−1 for estimating F2(r, s), approximately.
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