Observation on the numbers $4 p^{\wedge} 2+2 p+1$ where p and $2 p-1$ are primes

Abstract

In this paper I observe that many numbers of the form $4 * p^{\wedge} 2+2 * p+1$, where p and $2 * p-1$ are odd primes, meet one of the following three conditions: (i) they are primes; (ii) they are equal to $d^{*} Q$, where d is the least prime factor and Q the product of the others, and $Q=(n * d-n+m) / m$; (iii) they are equal to $d * Q$, where d is the least prime factor and Q the product of the others, and $Q=(n * d+n-m) / m$, and I make few related notes.

Observation:

Many numbers of the form $4 * p^{\wedge} 2+2 * p+1$, where p and $2 * p$ - 1 are odd primes, meet one of the following three conditions: (i) they are primes; (ii) they are equal to $d^{*} Q$, where d is the least prime factor and Q the product of the others, and $Q=(n * d-n+m) / m$; (iii) they are equal to $d^{*} Q$, where d is the least prime factor and Q the product of the others, and $Q=(n * d+n-m) / m$.

Verifying the observation:

(true for the first 27 odd primes p for which $2 * p$ - 1 is also prime)

Note that if d is equal to 7 is obviously respected condition (i) or condition (ii).
: for $\mathrm{p}=3, \mathrm{~N}=43$, prime;
: for $\mathrm{p}=7, \mathrm{~N}=211$, prime;
: for $\mathrm{p}=19, \mathrm{~N}=1483$, prime;
: for $\mathrm{p}=31, \mathrm{~N}=3907$, prime;
: for $p=37, N=7 * 13 * 61$ so $d=7$;
: for $\mathrm{p}=79, \mathrm{~N}=7 * 37 * 97$ so $\mathrm{d}=7$;
: for $\mathrm{p}=97, \mathrm{~N}=37831$, prime;
: for $\mathrm{p}=139, \mathrm{~N}=77563$, prime;
: for $\mathrm{p}=157, \mathrm{~N}=98911$, prime;
: for $\mathrm{p}=199, \mathrm{~N}=158803$, prime;
: for $\mathrm{p}=211, \mathrm{~N}=7 * 7 * 3643$ so $\mathrm{d}=7$;
: for $\mathrm{p}=229, \mathrm{~N}=13 * 16171$ and $16171=(2695 * 13-2695+$ 2) $/ 2$;
: for $\mathrm{p}=271, \mathrm{~N}=13 * 22639$ and $22639=(3773 * 13-3773+$ 2) / 2 ;
: for $\mathrm{p}=307, \mathrm{~N}=13 * 29047$ and $29047=(4841 * 13-4841+$ 2) / 2 ;
: for $\mathrm{p}=331, \mathrm{~N}=7 * 62701$ so $\mathrm{d}=7$;
: for $\mathrm{p}=337, \mathrm{~N}=7 * 64993$ so $\mathrm{d}=7$;

```
: for p = 367, N = 79*6829 and 6829 = (683*79 + 683 - 8)/8;
for p = 379, N = 7*82189 so d = 7;
: for p = 439, N = 771763, prime;
: for p = 499, N = 7*7*20347 so d = 7;
: for p = 547, N = 7*171133 so d = 7;
: for p = 577, N = 43*30997 and 30997 = (738*43 - 738 +
    1)/1;
    for p = 601, N = 1446007, prime;
: for p = 607, N = 31*47581 and 47581 = (1586*31 - 1586 +
    1)/1;
: for p = 619, N = 13*117991 and 117991 = (19665*13 - 19665
    + 2)/2;
    for p = 661, N = 13*134539 and 134539 = (22423*13 - 22423
    + 2)/2.
```


Note

: Some numbers of this form meet another condition, i.e. they are equal to $d^{*} Q$, where d is the least prime factor and Q the product of the others, and the number $Q-d+1$ is prime or respectively the number $Q+d-1$ is prime. An example: for $p=691, N=43 * 44449$ and $44449+43-1$ = 44491, prime.

