Observation on the numbers 4p²+2p+1 where p and 2p-1 are primes

Abstract. In this paper I observe that many numbers of the form $4*p^2 + 2*p + 1$, where p and 2*p - 1 are odd primes, meet one of the following three conditions: (i) they are primes; (ii) they are equal to d*Q, where d is the least prime factor and Q the product of the others, and Q = (n*d - n + m)/m; (iii) they are equal to d*Q, where d is the least prime factor and Q the product of the product of the others, and Q = (n*d - n + m)/m; (iii) they are equal to d*Q, where d is the least prime factor and Q the product of the others, and Q = (n*d + n - m)/m, and I make few related notes.

Observation:

Many numbers of the form $4*p^2 + 2*p + 1$, where p and 2*p - 1 are odd primes, meet one of the following three conditions: (i) they are primes; (ii) they are equal to d*Q, where d is the least prime factor and Q the product of the others, and Q = (n*d - n + m)/m; (iii) they are equal to d*Q, where d is the least prime factor and Q the product of the others, and Q = (n*d - n + m)/m; (iii) they are equal to d*Q, where d is the least prime factor and Q the product of the others, and Q = (n*d + n - m)/m.

Verifying the observation:

(true for the first 27 odd primes p for which 2*p - 1 is also prime)

Note that if d is equal to 7 is obviously respected condition (i) or condition (ii).

:	for $p = 3$, $N = 43$, prime;
:	for $p = 7$, $N = 211$, prime;
:	for $p = 19$, $N = 1483$, prime;
:	for $p = 31$, $N = 3907$, prime;
:	for $p = 37$, $N = 7*13*61$ so $d = 7$;
:	for $p = 79$, $N = 7*37*97$ so $d = 7$;
:	for $p = 97$, $N = 37831$, prime;
:	for $p = 139$, $N = 77563$, prime;
:	for $p = 157$, $N = 98911$, prime;
:	for $p = 199$, $N = 158803$, prime;
:	for $p = 211$, $N = 7*7*3643$ so $d = 7$;
:	for $p = 229$, $N = 13*16171$ and $16171 = (2695*13 - 2695 + $
	2)/2;
:	for $p = 271$, $N = 13*22639$ and $22639 = (3773*13 - 3773 + $
	2)/2;
:	for $p = 307$, $N = 13*29047$ and $29047 = (4841*13 - 4841 + $
	2)/2;
:	for $p = 331$, $N = 7*62701$ so $d = 7$;
:	for $p = 337$, $N = 7*64993$ so $d = 7$;

```
for p = 367, N = 79*6829 and 6829 = (683*79 + 683 - 8)/8;
:
     for p = 379, N = 7*82189 so d = 7;
:
     for p = 439, N = 771763, prime;
:
     for p = 499, N = 7*7*20347 so d = 7;
:
     for p = 547, N = 7*171133 so d = 7;
:
     for p = 577, N = 43*30997 and 30997 = (738*43 - 738 + 
:
     1)/1;
     for p = 601, N = 1446007, prime;
:
     for p = 607, N = 31*47581 and 47581 = (1586*31 - 1586 + 
:
     1)/1;
     for p = 619, N = 13*117991 and 117991 = (19665*13 - 19665)
:
     + 2)/2;
     for p = 661, N = 13*134539 and 134539 = (22423*13 - 22423)
:
     + 2)/2.
```

Note:

: Some numbers of this form meet another condition, i.e. they are equal to d*Q, where d is the least prime factor and Q the product of the others, and the number Q - d + 1 is prime or respectively the number Q + d - 1 is prime. An example: for p = 691, N = 43*44449 and 44449 + 43 - 1 = 44491, prime.