An unusual conjecture on primes involving concatenation and repunits

Abstract

In this paper I make the following conjecture: for any k positive integer there exist an infinity of primes p such that the number q, obtained concatenating (p - k) with p then, repeatedly k times, with the digit 1, is prime. Examples: for $k=1$, there exist $p=19$ such that $q=18191$ is prime; for $k=2$, there exist $p=5$ such that $q=3511$ is prime; for $k=3$, there exist $p=7$ such that $q=47111$ is prime; for $k=4$, there exist $p=$ 37 such that $q=33371111$ is prime; for $k=5$, there exist $p=11$ such that $q=61111111$ is prime; for $k=6$, there exist $p=17$ such that $q=111711111$ is prime.

Conjecture :

For any k positive integer there exist an infinity of primes p such that the number q, obtained concatenating (p - k) with p then, repeatedly k times, with the digit 1 , is prime. Examples: for $k=1$, there exist $p=19$ such that $q=18191$ is prime; for $k=2$, there exist $p=5$ such that $q=3511$ is prime; for $k=3$, there exist $p=7$ such that $q=47111$ is prime; for $k=4$, there exist $p=$ 37 such that $q=3337111$ is prime; for $k=5$, there exist $p=11$ such that $q=61111111$ is prime; for $k=6$, there exist $p=17$ such that $q=1117111111$ is prime.

The sequence of primes q for $k=1$:

```
: 10111, 18191, 46471, 60611, 78791 (...)
    obtained for p = 11, 19, 47, 61, 79 (...)
```

The sequence of primes q for $k=2$:
: 3511, 5711, 272911, 353711, 414311, 454711, 515311, 697111, 777911, 10510711, 11111311, 14915111, 16516711, 17717911, 17918111, 18919111, 19719911 (...) obtained for $\mathrm{p}=5,7,29,37,43,47,53,71,79$, 107, 113, 151, 167, 179, 181, 189, 199 (...)

The sequence of primes q for $k=3$:
: 25111, 47111, 3841111, 4043111, 5659111, 8083111, 8689111, 100103111, 104107111, 106109111, 176179111, 178181111, 190193111 (...) obtained for $p=5,7,41,43,59,83,89,103,107$, 109, 179, 181, 193 (...)

The sequence of primes q for $k=4$:

```
: 33371111, 39431111, 57611111 (...)
obtained for p = 37, 43, 61 (...)
```

The sequence of primes q for $k=5$:

```
: 61111111, 485311111, 66711111, 747911111,
    9610111111, 10811311111, 13213711111, 17618111111,
    19419911111 (...)
    obtained for p = 11, 53, 67, 79, 101, 113, 137, 181,
    199 (...)
```

The sequence of primes q for $k=6:$

```
: 1117111111, 2329111111, 101107111111, 133139111111
(...)
obtained for p = 17, 29, 107, 139 (...)
```

The sequence of primes q for $k=7$:

```
: 64711111111, 90971111111, 1021091111111,
1241311111111, 1841911111111, 1901971111111 (...)
obtained for p = 71, 97, 109, 131, 191, 197 (...)
```

The sequence of primes q for $k=8:$

```
: 31111111111, 233111111111, 455311111111,
    818911111111, 9510311111111, 12313111111111,
    14915711111111, 16517311111111, 18519311111111,
        19119911111111 (...)
        obtained for p = 11, 31, 53, 89, 103, 131, 157, 173,
        193, 199 (...)
```

The sequence of primes q for $k=9$:

```
: 2231111111111, 6473111111111, 92101111111111,
158167111111111 (...)
obtained for p = 31, 73, 101, 167(...)
```

The sequence of primes q for $k=10:$

```
: 9191111111111, 21311111111111, 49591111111111,
    911011111111111, 147157111111111, 1831931111111111,
    1871971111111111, 1891991111111111 (...)
    obtained for p = 19, 31, 59, 101, 157, 193, 197, 199
    (...)
```

Note: all the possible primes q are listed above, for k up to 10 and p up to 199.

