Conjecture on an infinity of numbers (30k+7) (60k+13) which admit a deconcatenation in two primes

Abstract

In this paper I state the following conjecture: there exist an infinity of numbers $q=(30 * k+7) *(60 * k+$ 13) which admit a deconcatenation in two primes p1 and p2. Examples: for $k=2, q=67 * 133=8911$ which can be deconcatenated in $\mathrm{p} 1=89$ and $\mathrm{p} 2=11$; for $\mathrm{k}=5$, $\mathrm{q}=$ $157 * 313=49141$ which can be deconcatenated in p1 $=491$ and $\mathrm{p} 2=41$.

Conjecture:

There exist an infinity of numbers $q=(30 * k+7) *(60 * k+$ 13) which admit a deconcatenation in two primes p1 and p2. Examples: for $k=2, q=67 * 133=8911$ which can be deconcatenated in $\mathrm{p} 1=89$ and $\mathrm{p} 2=11$; for $\mathrm{k}=5$, $\mathrm{q}=$ $157 * 313=49141$ which can be deconcatenated in p1 $=491$ and $\mathrm{p} 2=41$.

The sequence of numbers q :


```
: \(q=1793615671\), for \(k=998 ; p 1=179\) and \(p 2=\)
    3615671 ;
: \(\mathrm{q}=1797211081\), for \(\mathrm{k}=999\); \(\mathrm{p} 1=179\) and \(\mathrm{p} 2=\)
    7211081;
: \(q=179936105671\), for \(k=9998 ; p 1=17\) and \(p 2=\)
    9936105671;
: \(q=179972101081\), for \(k=9999 ; p 1=17\) and \(\mathrm{p} 2=\)
    9972101081;
: \(\quad q=179999936100005671\), for \(k=9999997 ; p 1=179999\)
    and p2 = 900100013861;
: \(q=179999936100005671\), for \(k=9999998 ; \mathrm{p}=\)
    1799999 and p2 = 36100005671.
```

