Conjecture on an infinity of numbers (30k+7)(60k+13) which admit a deconcatenation in two primes

Abstract. In this paper I state the following conjecture: there exist an infinity of numbers q = (30*k + 7)*(60*k + 13) which admit a deconcatenation in two primes p1 and p2. Examples: for k = 2, q = 67*133 = 8911 which can be deconcatenated in p1 = 89 and p2 = 11; for k = 5, q = 157*313 = 49141 which can be deconcatenated in p1 = 491 and p2 = 41.

Conjecture:

There exist an infinity of numbers q = (30*k + 7)*(60*k + 13) which admit a deconcatenation in two primes p1 and p2. Examples: for k = 2, q = 67*133 = 8911 which can be deconcatenated in p1 = 89 and p2 = 11; for k = 5, q = 157*313 = 49141 which can be deconcatenated in p1 = 491 and p2 = 41.

The sequence of numbers q:

:	q	=	2701,	for	k	=	1;	p1	=	2	and	p2	=	701;
:	q	=	8911,	for	k	=	2;	p1	=	89	and	p2	=	11;
:	q	=	32131,	for	k	=	4;	p1	=	3	and	p2	=	2131;
:	q	=	49141,	for	k	=	5;	p1	=	491	and	p2	=	41;
:	q	=	121771,	for	k	=	8;	p1	=	1217	and	p2	=	71;
:	q	=	473851,	for	k	=	16;	p1	=	47	and	p2	=	3851;
:	q	=	534061,	for	k	=	17;	p1	=	5	and	p2	=	34061;
:	q	=	597871 ,	for	k	=	18;	p1	=	5	and	p2	=	97871;
:	q	=	1145341,	for	k	=	25;	p1	=	11	and	p2	=	45341;
:	q	=	1433971,	for	k	=	28;	p1	=	1433	and	p2	=	971;
:	q	=	1755001,	for	k	=	31;	p1	=	17	and	p2	=	55001;
:	q	=	2362051,	for	k	=	36;	p1	=	2	and	p2	=	362051;
:	q	=	2912491,	for	k	=	40;	p1	=	29	and	p2	=	12491;
:	q	=	3209311,	for	k	=	42;	p1	=	3209	and	p2	=	311;
:	q	=	4186171,	for	k	=	48;	p1	=	41	and	p2	=	86171;
:	q	=	4723201,	for	k	=	51;	p1	=	47	and	p2	=	23201;
:	q	=	5099221,	for	k	=	53;	p1	=	509	and	p2	=	9221;
:	q	=	5292631,	for	k	=	54;	p1	=	5	and	p2	=	292631;
:	q	=	8876791,	for	k	=	70;	p1	=	887	and	p2	=	6791;
:	q	=	11297881,	for	k	=	79 ;	p1	=	2	and	p2	=	297881;
:	q	=	11875501,	for	k	=	81;	p1	=	1187	and	p2	=	5501;
:	q	=	14979601,	for	k	=	91;	p1	=	149	and	p2	=	79601;
	(\ldots)													

Few larger numbers q:

:	q	=	1793615671 ,	for	k	=	998;	p1	=	179	and	p2	=
	36	156	571;										

- : q = 1797211081, for k = 999; p1 = 179 and p2 = 7211081;
- : q = 179936105671, for k = 9998; p1 = 17 and p2 = 9936105671;
- : q = 179972101081, for k = 9999; p1 = 17 and p2 = 9972101081;
- : q = 179999936100005671, for k = 9999997; p1 = 179999and p2 = 900100013861;
- : q = 179999936100005671, for k = 9999998; p1 = 1799999 and p2 = 36100005671.