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Abstract 

A totally ordered set is identified with cardinality strictly between natural (N) and real (R) 

numbers.  This set, denoted DS, is essentially an experimental finding, identified in unrelated 

patented research on nonuniform data sampling and self-stabilizing computer arithmetic.  Its 

theoretical validation here will provide concrete proof that the Continuum Hypothesis (CH) is 

false.  Note that this is distinct from determining whether CH can or cannot be proven from 

current axioms of set theory, which is settled. Also note that the Generalized Continuum 

Hypothesis is not addressed. First, Cantor diagonalization is applied isomorphically to prove 

that DS has strictly more than Cardinality(N) points.  Then three (3) distinct proofs are provided 

to show that DS contains strictly fewer than Cardinality(R) elements. Each proof relies on a 

distinct property of primes.  It is surmised that the considerable research efforts to-date on CH 

missed this result due to over-generalization, by considering all Alephi sets, i=0.., ∞. Those 

efforts thereby missed the impact of primes specifically on Aleph0/Aleph1 sets.  
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1. Introduction: 

A totally ordered set is identified with cardinality strictly between natural (N) and real (R) 

numbers [1].  This set, denoted DS, is essentially an experimental finding, identified in unrelated 

patented research on nonuniform data sampling [2] and self-stabilizing computer arithmetic 

[3].  Its theoretical validation here will provide concrete proof that the Continuum Hypothesis 

(CH) [4, 5] is false.  Note that this is distinct from determining whether CH can or cannot be 

proven from current axioms of set theory, which is settled [6]. Also note that the Generalized 

Continuum Hypothesis [4] is not addressed. For the following proofs are based fundamentally 

on several unique properties of prime numbers. A subsequent paper will present a countable 

number of distinct DS sets. 

 

 It is surmised that the considerable research efforts to-date on CH missed this result due to 

over-generalization, by considering all Alephi sets, i=0.., ∞. Those efforts thereby missed the 

impact of primes specifically on Aleph0/Aleph1 sets.  

 

This set might be applied to physical measurements due to its attractive density. For it is far 

denser than integers, as required by experimental data. Yet it is not nearly as dense as real 

numbers, which must be approximated by finite, floating point, significant digits [2,3].   

 

2. Summary of Proofs: 

First, Cantor diagonalization [7] is applied isomorphically to prove that DS has strictly more than 

Cardinality(N) points.  Then three (3) distinct proofs are provided to show that DS contains 

strictly fewer than Cardinality(R) elements. Each proof relies on a distinct property of primes. In 

no particular order, asymptotic analysis [8] is first applied to prove that asymptotically, DS has 

fewer numbers than R.  It is based fundamentally on the asymptotic scarcity of prime numbers 

(from the Prime Number Theorem [9]).   A second proof constructs a set with Cardinality(R), yet 

not intersecting DS, for which there is no 1-to-1 correspondence between it and DS. That is, DS 

will be shown to exhaustively map to that set, but it will have remaining points not mapped by 
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DS points. It is based on the incommensurability of reciprocals of primes [2].  A third proof 

constructs another set of Cardinality(R) for which there is no 1-of-1 mapping between it and DS. 

It is based on the dichotomy property of N whereby each integer in N is either composite or 

prime.   It is also shown that if there is no 1-to-1 mapping between DS and one non-intersecting 

set of size R, then there is no such mapping to any other set of Cardinality(R).  This solidifies the 

2nd and 3rd proofs in not needing to examine any other Cardinality(R) sets. 

 

This paper is organized as follows: 

I. Introducing the DS Set 

II. DS Set’s Total Ordering Properties 

III. Proof that Cardinality(N)  <  Cardinality(DS)   

IV. 3 proofs that Cardinality(DS)  < Cardinality(R)       

a. Based on asymptotic scarcity of primes. 

b. Based on incommensurate reciprocals of primes. 

c. Based on dichotomy of N into primes and composites. 

 

I. Introducing the DS Set 

1.1 Generation of the DS Set: 

The DS set is generated in a manner isomorphic to the usual base number generation of real 

numbers (e.g., binary, decimal, octal, hexadecimal), with the twist that prime numbers are used 

instead.  As such, each of its points has a “base prime number” representation.  Only points 

within the half-inclusive unit interval [0,1) are considered for simplicity and without loss of 

generality.    

 

Formally:   
                ∞           k 

   DS = {  ∑    ak/∏pi  |  ak ε {0,1}  p0=2, p1=3,  .. consecutive primes .. ∞ }     (1) 

               k=0         i=0    

 

The numerator of each term in the infinite series, ak, is referred to as a ‘digit’, isomorphic to the 

usual digit in a base number representation.   

 

Sample DS Point:  1/2 + 0/(2*3) + 0/(2*3*5) + 1/(2*3*5*7) + 1/(2*3*5*7*11) + ….              (2) 

 

1.2 Decimal-Like, Base-Prime Representation of DS Points: 

Each point in DS can be mapped to a familiar decimal-like base-prime format as follows: 

P == a0/p0 + a1/(p0*p1 )+ …. + ak/(p0*..pk-1*pk) + ….. ∞     <-->  0.b0, b1, ……, bk ….. ∞     (3)  

where:    

 aj/(p0*p1*…*pj) <--> bj 
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For the sample point in (2): 

 1/2 + 0/(2*3) + 0/(2*3*5) + 1/(2*3*5*7) + 1/(2*3*5*7*11) …. == .10011... (base prime) 

A base prime representation is convertible to a base 10 representation by performing the usual 

arithmetic division on each DS digit as a real number, and then summing terms.  

For the sample (2) above: 

.10011..(base prime) ==  1/2 + 0/(2*3) + 0/(2*3*5) + 1/(2*3*5*7) + 1/2*3*5*7*11) + …. 

                          == 1/2 + 0 + 0 + 1/210  + 1/2310  + … 

                                      ==  0.5 + 0 + 0 + 0.00476 + 0.000432 +… 

                                      == 0.505192… (base 10) 

 

1.3 Convergence of DS Points: 

Theorem: Each DS point converges to a number < 1. That is: 

                                      n 
 DS Point P = lim         ∑    ak/(p0*p1..*pk )       < 1      (4) 

                        n ∞   k=0 

                                where ak ε {0,1}      p0=2, p1=3, p2=5, p3=7, p5=11 .. consecutive primes.. ∞      

 

Proof: 

Since:  a0/(p0) <= 1/2 and ak/(p0*..pk-1*pk) <  1/2k+1  for k=1,.. 

Then: P == a0/p0 + a1/(p0*p1 )+ …. + ak/(p0*..pk-1*pk) + ….. ∞    < 1/21   + 1/22   + …. + 1/2k+1 + .. ∞   

Upon adding and subtracting  1/20  and 1 respectively, to the right-hand side:    

           P == 1/20 +  (1/21 + 1/22+…+1/2k+1 +.. ∞)  - 1   

 

The infinite series on the right side is a clearly recognized infinite geometric progression with 

limit:  a/(1-r)  where a=1 and r=1/2   

Therefore:  

           P == 1/20 + (1/21+…+1/2k+1 +.. ∞)  - 1  =  1/(1-1/2) - 1 = 2/1-1 = 1 

Or: P < 1 

 

 

II. DS Set’s Total Ordering Properties 

2.1 Ordering of DS Numbers: 

2.1.1 Key Ordering Theorem: 

Given 2 DS points, P1 and P2, such that their digits match up to and including the kth position, 

where k+1= 0,.., then the point with the lesser (k+1)st digit value, is less than the other.   
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Formally, using base-prime notation: 

If:      P1 = 0.a0, a1, … ak, ak+1,   …  ak+n, ….. ∞      

          P2 = 0.a0, a1, … ak, bk+1,   …  bk+n, ….. ∞     

where ai == bi for 0 =< i =< k, and  ak+1 < bk+1 , then P1 < P2 

Note for k+1=0: 

P1 = 0.a0, a1, … ak, ak+1,   …  ak+, ….. ∞      

P2 = 0.b0, b1, … bk, bk+1,   …  bk+n, ….. ∞     

where a0 < b0  

 

Note this ordering is valid regardless of respective digit values beyond the (k+1)st. Also note that 

necessarily ak+1=0 and bk+1=1 when ak+1 < bk+1. For otherwise, ak+1 = bk+1, negating the premise.    

 

Finally note that this theorem and proof are isomorphic to those for usual base-10 decimals.  In 

that case, ak ε {0,9} and digit k, represents ak/10k . There is one exception, not applicable to 

base-prime,  whereby .nnnn…n9999.. == .nnnn…,n+1,0000 for an arbitrary mix of digits n.  

 

Proof:    

First, revert to the actual value of each point. From (4) and that ai == bi for 0 =< i =< k:  

P1 = a0/(p0 ) + … + ak/(p0*p1..*pk ) +ak+1/(p0*p1..*pk*pk+1 ) + ak+2/(p0*p1..*pk*pk+1 *pk+2) +…  ∞    (5) 

P2 = a0/(p0 ) + … + ak/(p0*p1..*pk ) +bk+1/(p0*p1..*pk*pk+1 ) + bk+2/(p0*p1..*pk*pk+1 *pk+2) +…  ∞ 

 

Must show:  

a0/(p0 ) + … + ak/(p0*p1..*pk ) +ak+1/(p0*p1..*pk*pk+1 ) +ak+2/(p0*p1..*pk*pk+1 *pk+2) +… ∞              (6) 

     ?<    

a0/(p0 ) + … + ak/(p0*p1..*pk ) +bk+1/(p0*p1..*pk*pk+1 ) + bk+2/(p0*p1..*pk*pk+1 *pk+2) +…  ∞ 

 

 A stronger inequality is proved, upon removing the bj terms on the right side with terms j>k+1:  

a0/(p0 ) + … + ak/(p0*p1..*pk ) + ak+1/(p0*p1..*pk*pk+1 ) + ak+2/(p0*p1..*pk*pk+1 *pk+2) +… ∞            (7) 

     ?<    

a0/(p0 ) + … + ak/(p0*p1..*pk ) +  bk+1/(p0*p1..*pk*pk+1 )    

For if (7) is true, then (6) is certainly true, since its right side is even greater than (7). 

 

 Upon subtracting common terms from both sides: 

ak+1/(p0*p1..*pk*pk+1 )+ak+2/(p0*p1..*pk*pk+1*pk+2)+…+ak+n/( p0*p1..*pk*pk+1*pk+2*.*pk+n)+..∞     (8)  

?<   

bk+1/(p0*p1..*pk*pk+1 )    

 

Since ak+1 < bk+1, consider the closest case, without lose of generality, whereby bk+1 == ak+1 +1.  
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Note that this can only occur if ak+1  = 0 and bk+1 = 1  

Then:  bk+1/(p0*p1..*pk*pk+1 )  ==    ak+1/(p0*p1..*pk*pk+1 )   + 1/(p0*p1..*pk*pk+1 )   

 

Substituting that into (8) leads to: 

ak+1/(p0*p1..*pk*pk+1 )+ak+2/(p0*p1..*pk*pk+1*pk+2)+… +ak+n/(p0*p1.*pk*pk+1*..*pk+n)+..∞      (9)   

?<   

 ak+1/(p0*p1..*pk*pk+1 )   + 1/(p0*p1..*pk*pk+1 )     

 

Upon subtracting the common ak+1/(p0*p1..*pk*pk+1 )   from both sides, the above becomes: 

ak+2/(p0*p1..*pk*pk+1 *pk+2) +…  +ak+n/( p0*p1..*pk*pk+1*pk+2*…*pk+n) +.. ∞   (10)    

?<   

1/(p0*p1..*pk*pk+1 )    

 

After multiplying both sides by (p0*p1 * ..*pk*pk+1) : 

ak+2/pk+2 + …   ak+n/(pk+2 *…* pk+n)  + ….  ∞  ?<  1                            (11) 

 

Note that for each term in (11): 

 ak+i/(pk+2*..*pk+i) < 1/3i-1  for i > 1                    (12)   

For aj =< 1 and  1/pi < 1/31  since pi >2 for i > 1 

Note for k+1=0, i=1: 

   a1/p1  = a1/3 <= 1/3 

 

Applying (12) to each term on the left side of (11) above: 

ak+2/pk+2 + …   +ak+n/(pk+2 *…* pk+n)  + ….  ∞  < (1/31   + …. + 1/3n-1 + .. ∞)                       (13) 
 

The infinite series on the right hand side is a clearly recognized geometric progression with 

limit: (a/1-r) - 1, where a=1 and r=1/3    

Therefore:  

ak+2/pk+2 + …   ak+n/(pk+2 *...*pk+n)  + ….  ∞  < (1/(1-1/3)) - 1 == 3/2-1 == 1/2 

Or: 

ak+2/pk+2 + …   ak+n/(pk+2 *pk+n)  + ….  ∞  < ½ < 1                     (14) 

 

This proves inequality (6) by reversing the steps from (14) to (7) upward.  

From (6),  P1 < P2 

 

 

 

 



8 
 

2.1.2 Corollary: Distance between DS Points: 

Given any 2 distinct DS points, P1 and P2  where their digits match up to and including the kth 

position, where  k+1 = 0,…, then their difference is greater than a position dependent value. 

More concretely: 

Given: 

P1 = 0.a0, a1, … ak, ak+1,   …  ak+n, ….. ∞      

P2 = 0.a0, a1, … ak, bk+1,   …  bk+n, ….. ∞     

where ai == bi for 0 =< i =< k, and ak+1 != bk+1  

then:  

 | P2 - P1 | > 1/(p0*p1..*pk*pk+1 )*(½)       (15)  

 

For from (10) above: 

P1 < P2  ak+2/(p0*p1..*pk*pk+1 *pk+2) +…  +ak+n/( p0*p1..*pk*pk+1*pk+2*…*pk+n) +.. ∞  

         <  1/(p0*p1..*pk*pk+1 )    

Or: : (P2 – P1)  > 0   

  1/(p0*p1..*pk*pk+1 ) * (1 - ( ak+2/(pk+2) +…  +ak+n/(pk+2* ...*pk+n) +.. ∞  ) ) > 0 

 

By (14) above:   ak+2/pk+2 + …   ak+n/(pk+2 *pk+n)  + ….  ∞  < ½       

 

Then: P1 < P2  (P2 - P1)  > 0   

 1/(p0*p1..*pk*pk+1 ) * (1 - ( ak+2/(pk+2) +…  +ak+n/(pk+2* ...*pk+n) +.. ∞  ) ) >  

    1/(p0*p1..*pk*pk+1 ) *(1 - ½) = 1/(p0*p1..*pk*pk+1 )*(½) > 0 

 

Similarly:  P2 < P1 → (P1 - P2)  > 1/(p0*p1..*pk*pk+1 )*(1 - ½) = 1/(p0*p1..*pk*pk+1 )*(½) > 0 

 

Or: | P2 - P1 | > 1/(p0*p1..*pk*pk+1 )*(1/2)  

 

 

2.2 Uniqueness of DS Points: 

Each point in DS is unique, from the following proof. This insures no double-counting of DS 

elements in the subsequent counting proofs.  

 

Given two arbitrarily selected points in the DS set, P1 and P2, consider their base-prime 

representations: 

P1 = a0, a1, … ak, ak+1,   …  ak+n, …..         

P2 = b0, b1, … bk, bk+1,   …  bk+n, …..      
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a.    If ak==bk for all k, then P1==P2 

For then, using (1) for P1 and P2: 

          ∞                                          ∞   

P1 == ∑  ak/(p0*p1..*pk ) =  limit ∑  bk/(p0*p1..*pk )  ==  P2    (16) 

                       k=0                                       k=0 

 

b. If P1==P2 then ak==bk for all k.  

The equivalent contrapositive statement is proved:  If  ak != bk for some k,  then P1!=P2 

 

For, consider the first k for which ak+1 != bk+1 .  Then assume, without lose of generality, 

that ak+1 < bk+1 for that k. From Section 2.1 above, that implies that P1 < P2 or P1!=P2 

 

2.3 Converse of Ordering Theorem: 

Given 2 DS points, P1 and P2, if P1 < P2 per section 1.2, then there is an index k in base-prime, 

such that their respective digits match up to k and differ at k+1 (with k+1= 0,1,..).   

 Or, if P1 < P2: 

 Then: 

P1 = a0, a1, … ak, ak+1,   …  ak+n, ….. ∞      

P2 = a0, a1, … ak, bk+1,   …  bk+n, ….. ∞     

         where ai == bi for 0 =< i  =< k, and  ak+1 < bk+1  

 

Consider the possibility that there is no k such that respective indexes differ. That is, consider  

ak = bk  for all k. Then by uniqueness of DS points (Section 2.2), P1 = P2, contradicting premise. 

 

 

2.4 Total Ordering Property of DS: 

DS is totally ordered with respect to the usual < operation in R, as proved here.  

Note that total ordering = partial ordering + comparability property.  

 

2.4.1 Partial Ordering of DS Set: 

Partial Ordering requires these properties: 

 

2.4.1.1 Reflexivity: P = P for all P in DS.  

Proof:  The decimal decomposition of each side necessarily leads to identical values. 

 

2.4.1.2 Antisymmetry:   

      P1 < P2 and P2 < P1  → P1 = P2 for all points in DS: 

 Consider the base-prime representation of each point: 
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 P1 = a0, a1, … ak, ak+1,   …  ak+n, ….. ∞      

 P2 = b0, b1, … bk, bk+1,   …  bk+n, ….. ∞     

 

By Theorem 2.3, P1 < P2 → there exists a k+1 such that: 

              ai = bi for 0 =< i =< k, and  ak+1 < bk+1  

 Also by Theorem 2.3, P2 < P1  → there exists an index l+1 such that: 

      ai = bi for 0 =< i =< l, and  al+1 > bl+1  

 

                   If l > k, then ak+1 = bk+1 contradicting the above, that ak+1 < bk+1  

 If l < k, then al+1 = bl+1 contradicting the above, that al+1 < bl+1  

 Therefore l == k and P1,P2 can be expressed as:  

 P1 = a0, a1, … ak, ak+1,   …  ak+n, ….. ∞      

 P2 = a0, a1, … ak, bk+1,   …  bk+n, ….. ∞     

 

If ak+1 < bk+1 then P1 < P2 by the Ordering Theorem in Sec. 2.1. But P1 > P2 by hypothesis, 

Therefore P1 !< P2 

If ak+1 > bk+1  then P1 > P2 by the Ordering Theorem. But P2 > P1, by hypothesis.  

Therefore P1 !> P2 

Combining the above: P1 !< P2 & P1 !> P2  P1 = P2 

 

2.4.1.3 Transitivity: P1 < P2 and P2 < P3  → P1 < P3 

              Consider the base-prime representation of any three points in DS: 

P1 = a0, a1, … ak,  ak+1,   …  ak+n, ….. ∞      

P2 = b0, b1, … bk, bk+1,   …  bk+n, ….. ∞   

P3 = c0, c1, …  ck, ck+1,    …  ck+n, ….. ∞     

 

P1 < P2  there is an index k such that ai = bi for i=0..k and ak+1 < bk+1   Or: 

    P1 = a0, a1, … ak, ak+1,   …  ak+n, ….. ∞      

    P2 = a0, a1, … ak, bk+1,   …  bk+n, ….. ∞   

   

P2 < P3   there is an index l such that bi = ci for i=0..l and bl+1 < cl+1  Or: 

    P2 = b0, b1, … bl, bl+1,   …  bl+n, ….. ∞   

    P3 = b0, b1, … bl, cl+1,   …  cl+n, ….. ∞     

 

If l+1 < k+1, then upon combining the above for P1 < P2 and P2 < P3 : 

  P1 = a0, a1, … al, al+1,…,  ak,  ak+1, …  ak+n, ….. ∞      

 P3 = a0, a1, … al, cl+1,…,ck, ck+1, …  cl+n, ….. ∞     
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P1 < P2  al+1 = bl+1  But P2 < P3 → bl+1 < cl+1. Therefore al+1 <  cl+1  → P1 < P3  

 

If l+1 > k+1, then combining the above for P1 < P2 and P2 < P3 : 

  P1 = a0, a1, … al, …, ak, ak+1, … al+1, ….. ∞      

 P3 = a0, a1, … al,…, ak,ck+1 …  cl+1, ….. ∞     

where ak+1 < ck+1 because ak+1 < bk+1   and bk+1= ck+1 

Then by the Ordering Theorem in Section 2.1, P1 < P3 

 

If l+1 == k+1, then ak+1 < bk+1   and bk+1 < ck+1  ak+1 < ck+1  P1 < P3 

 

2.4.2 Comparability: 

For any (P1, P2) pair in DS, either P1 =< P2 or P2 =< P1   

 

Proof: 

Given any two points in DS in base-prime representation: 

          P1 = a0, a1, … ak, ak+1,   …  ak+n, ….. ∞      

P2 = b0, b1, … bk, bk+1,   …  bk+n, ….. ∞   

 

At the first index, k+1 when ak+1 != bk+1 :  

If ak+1 < bk+1   then by the Ordering Theorem in Sec. 2.1, P1 < P2 

If ak+1 > bk+1   then by the Ordering Theorem in Sec. 2.1, P1 > P2  

If for all indexes, ak+1 = bk+1, (i.e, all digits are identical) then by the uniqueness of DS points from  

Section 2.2,  P1 = P2  

 

III. Diagonalization Proof that  Cardinality(N)  < Cardinality(DS): 

The following proof that Cardinality (N)  < Cardinality (DS), is isomorphic to the standard 

Cantor diagonalization proof that Cardinality (N) < Cardinality (R) [7]. 

Assume that DS is only countable infinite.  Listing its points effectively enumerates 

them, mapped from an implicit integer index. Consider any enumeration of its elements 

in base-prime(Section 1.2), as follows:   

DS0 == 0.a0,0, a0,1, ……  a0,k, …  ∞   

. 

. 

DSm == 0.am,0, am,1, …… am,k , …  ∞   

. 

. 
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Consider a DS point 0.b0, b1, …, bk , …., constructed as follows: 

 If ak,k  == 0 then set bk=1. Otherwise If ak,k  == 1, set bk=0. 

 

Then 0.b0, b1, …, bk , ….. necessarily differs from each of the purportedly enumerated 

elements of DS by at least one digit.   Regardless of enumerated set, this diagonalization 

procedure will generate a point that is not in that enumerated set.    Therefore there is 

at least one point in DS not in N. Hence Cardinality (N) < Cardinality (DS). 

 

 

III. 3 proofs that Cardinality (DS)  < Cardinality (R)       

 

4.1 Asymptotic Proof that Cardinality(DS)  > Cardinality(R): 

This proof relies, fundamentally, on the relative scarcity of primes vis-a-via all real numbers.   

Asymptotic analysis [8] is applied to compare the growth rates of DS and R points’ base 

partial sums towards their respective limit points.   

 

4.1.1 Hierarchical Representation:  

A hierarchical tree representation of both R and DS is described, as an aid to visualize 

the growth rate and asymptotic evolution of each respective set’s points’ partial sums.   

Each level of the hierarchy, from the root, corresponds to a digit position in either a real 

point’s binary or DS point’s prime-base representation.   The number of branches 

emanating from each node, at any level, corresponds to the number of possible digit 

values.   This is 2 for both R and DS points, since their respective digits are in the 

inclusive integral range of [0,1].  Traversing any path from the root, is equivalent to, or 

in 1-to-1 correspondence with, the partial sum of a point in either set.  

More concretely, consider the incremental increase in number of paths for a point in 

each set, as its depth level increments by 1: 

 

Evolution of points in R: 

From: 0.a0, a1, ……, ak           where ak   ==  ak/(2**k+1)          at level n=k 

To: 0.a0, a1, ……, ak, ak+1  where ak+1 == ak+1/(2**k+2)       at level n=k+1  

 

Evolution of points in DS: 

Let m=π (k) be the number of primes less than or equal to k. 

From: 0.a0, a1, ……, am           where am   ==       am/(p0*p1*…*pm)                  at level=m           

 To: 0.a0, a1, ……, am, am+1  where am+1 ==   am+1/(p0*p1*…*pm*pm+1)     at level=m+1  
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4.1.2 Counting DS vs. R Branches: 

The limit of each partial path in either set’s hierarchical representation, is a point in that 

set. This is equivalent to a point as the limit of a base series.  Therefore counting the 

evolving branches will yield, asymptotically, the number of respective points in the R or 

DS sets.  This counting is restricted to a unit interval, without loss of generality.  

First consider the number of evolving partial paths in a unit interval in R. There are 2**n   

partial paths at level n. These paths evolve into Cardinal(R) number of points as n ∞, 

because there are 2 choices, or branches, for each digit, aj . Or: 

Cardinal(R)  = limit 2**n                                (17) 

                         n  ∞ 

 

Next, consider the number of evolving partial DS paths in a unit interval. Each level 

corresponds to a prime. The number of prime levels less than or equal to index n is π(n).  

 

By the Prime Number Theorem [9], π(n)~ n/ln(n).  Therefore there are 2**π(n) or 2**n/ln(n)   

partial paths indexed by n. These paths evolve into Cardinal(DS) number of points as  

n  ∞, because there are 2 choices, or branches, for each digit aj .   Or:  

 

Cardinal(DS)  = limit 2**n/ln(n)                                  (18) 

   n  ∞ 

         

               4.1.3  Asymptotic Comparison: 

Consider the relative rate of asymptotic path growth between (17) and (18), as n  ∞: 

Let ‘<~’ denotes asymptotic inequality [9][10]. 

Claim that: 

2**n/ln(n)    ?<~  2**n                      (19) 

  

 Start with the following asymptotic relation “<~“   between two functions [10]: 

   f(n) <~ g(n) <==> lim f(n)/g(n) = 0           (20)      

                                  n  ∞ 

 

Then with:  f(n)  = 2**n/ln(n)   and  g(n) = 2**n  

 

2**n/ln(n) /2**n    2**(n/ln(n) – n)     2**n(1/ln(n)-1)                             (21) 

As n∞, 2**n(1/ln(n)-1) 
2**n(0-1) 

 2**n(-1) 
1/2**n  0    
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Then, by (21), (19) is a valid asymptotic ordering. 

Therefore: 

Therefore: Cardinal(DS)  =   lim 2**n/ln(n)   <~   lim 2**n     = Cardinal(R)     (22) 

                                           n∞             n-->∞ 

 

              4.1.4 Discussion: 

The asymptotic inequality (22) provides a quantitative measure of just how 

asymptotically fewer evolving paths there are for DS vs. R.  Thus the density of DS is 

asymptotically lower than R, with fewer DS points than reals, in a unit interval. 

  

Fundamentally, this inequality is due to the unique nature of the distribution of prime 

numbers in N.  They are (countably) infinitely abundant, yet too scarce asymptotically, 

to keep up with the R growth rate. 

 

 

4.2 Another Proof: Construction of an R Set > Cardinality(DS):  

A set A is constructed with cardinality R, yet with none of its elements in DS. It is then 

proved that there cannot be a 1-to-1 correspondence between it and DS.   The proof is 

based fundamentally on the incommensurability of reciprocals of primes [2]. This 

necessarily creates gaps between reciprocals of primes, with each gap containing 

Cardinality(R) of real number [7]. 

 

4.2.1 Any Cardinality(R) Set will do: 

Note that if there is no 1-1 mapping between DS A, then there cannot be a 1-1 

mapping between DS and any other set of cardinality(R).    

 

For consider the possibility of a 1-1 mapping from set DS to another set B, also of 

cardinality R.  Since sets A and B have the same cardinality(R), by definition, there must 

exist a 1-1 mapping between their respective members.   Then there would necessarily 

be a 1-1 composite mapping between DS and set B via set A. That is: 

             DS<->B  &  B<->A    DS<->A  

But that contradicts the premise that there is no 1-1 mapping between sets DS and A. 
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4.2.2 Construction of Set A: 

Consider the following set A: 
       k=∞  

A = U     {  .a0, a1, …  εk…, am ….. ∞  |       (23)    

      k=0              am ε {0,1}                  & 

  εk = δk/(p0*..*pk)     &     

  1/2 < δk < 1     

 }     

Note:  0 < δk < 1 which differs from a DS digit: 0 or 1    

            δk can differ from one k to the next. 

 

 4.2.2.1 DS-to-A Mapping: 

Each member of A can be generated from a corresponding point in DS, by just 

substituting ak →  εk as follows: 

                  DS point: Pds                   Set A point: Pa 

  .a0, a1, …  ak…, am ….. ∞  → .a0, a1, …  εk…, am  

 

   ak  = 0  → δk0                       1/2 < δk0 < 1     (24) 

   ak  = 1 → δk1               1/2 < δk1 < 1       δk0 != δk1 

 

 Then Pds – Pa = dk  = ∆k/(p0*..*pk)       where:     (25) 

                  ∆k = -δk0        if ak  = 0   

                    = (1-δk1)   if ak  = 1   

 

 Sets A and DS are distinct, not overlapping, as shown in a subsequent section. 

 

4.2.3 Convergence: 

Each point in A converges to a point in R. The proof is isomorphic to that in Section 1.3 

with δk replacing ak. 

 

4.2.4 Counting Comparison between Sets A and DS: 

4.2.4.1 Set A Cardinality: 

The number of points in A is of Cardinality(R). For 0 < δk < 1/3  is a line segment which 

has R number of real points [7].    
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4.2.4.2 Set DS vs. A Count: 

Note that Cantor’s diagnalization proof cannot be applied to map corresponding points 

between DS and set A.  For enumerations of DS points do not guarantee that all DS 

points are exhaustively indexed, since DS > N.  Indeed, that approach was initially tried 

before realizing that diagonalization using DS points as the enumeration index, was not 

exhaustive. Therefore not all DS points would have mapped to set A.  

 

The following alternate approach creates an exhaustive mapping of points in DS-to-A. It 

will then be shown that there is at least one point in A (and actually many more) not 

mapped into from DS.   Hence DS < A → DS < R. 

 

4.2.4.3 Each point in set A is distinct: 

For consider any 2 points in set A: 

 PA1 = .a0, a1, …  εk, ak+1,  …..  an, …. ….. 

 PA2 = b0, b1, …  bk ,bk+1, ……εn, bn+1 ….   

 

Consider their corresponding DS points, with:  εk → ak  and  εn →  bn 

 Pds1 = .a0, a1, … ak, ak+1,  …..  an, …. ….. 

 Pds2 = b0, b1, …  bk ,bk+1, ……  bn, bn+1 ….   

 

Let index i+1 be the first where their respective digits differ. Then, from (15), Sec 2.1.2, 

 | Pds1 - Pds2 |  > 1/(p0*p1..*pi*pi+1 )*(½) 

 

Then from (25) above:   

   | PA 1- PA2 | == |Pds1+dk  -  Pds2+dn | ==| Pds1 - Pds2  +dk +dn |  

      > 1/(p0*p1..*pi*pi+1 )*½  +dk +dn  != 0 

Note: 1/(p0*p1..*pi*pi+1 )*½  +dk +dn  != 0 for any of the 4 combos of dk,dn in (24).   

 

Note the inequality cannot be 0, from the substitutions in (25). Therefore PA1 != PA2 

Note that the logic above remains intact if both εk are in the same position: 

 PA1 = .a0, a1, …  εk, ak+1,  …..  an, …. ….. 

 PA2 = .b0, b1, … εk, bk+1,  …..  bn, …. ….. 

For then: 

| PA1 - PA2 | == |Pds1+dk  -  Pds2+dk | ==| Pds1 - Pds2  +dk +dk |  

    > 1/(p0*p1..*pi*pi+1 )*½  +dk +dk  != 0 

 

where again: 1/(p0*p1..*pi*pi+1 )*½  +dk +dn  != 0 for any of the 4 combos of dk,dn in (24).   
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4.2.4.4 Equality of Points in Set A: 

Two points in set A are identical if and only if their corresponding digits are identical. 

Alternately, if any corresponding digits differ, then the two points differ. 

 

For consider two arbitrary points, PA1 and PA2, in their base prime representations: 

 PA1 = .a0, a1, …  εk, ak+1,  …..  an, …. ….. 

 PA2 = b0, b1, …  bk ,bk+1,  ……  εn, bn+1 ….  

 

a.    If ai==bi for all i, and εk=bk  and an=εn then PA1==PA2 

         The proof is isomorphic to Section 2.2a above. 

 

b. If PA1==PA2 then ai==bi for all i, and εk=bk  and an=εn.  

The proof is isomorphic to Section 2.2b above. 

        This is why 1/2 < δki < 1, to still satisfy the inequality of (14). 

 

4.2.4.5 Each distinct DS point maps to a unique point in A: 

Consider the mapping of any two distinct DS points. Distinct implies a difference of at 

least one digit in their respective base-prime representations. 

                 DS Set:                                      Set A 

P1 = .a0, a1, …  ak , ak+1, …… an,an+1 ….     .a0, a1, …......  εk, ak+1, … an, …. …...  

P2 = .b0, b1, …  bk , bk+1, ……bn,bn+1 ….     .b0, b1, …  εi, bi+1, … bn, …. ….. 

From 4.2.4.3 above, the two mapped points in set A are distinct. 

  

 4.2.4.6 Set A has null intersection with set DS: 

           Proof by Contradiction: 

 Given any point Pa in set A, assume it is equal to a point Pds in DS. Or in base-prime: 

  Pa  =  .a0, a1, …  εk, ak+1, … an, …. ….. 

      ?== Pds = .b0, b1, …  bk , bk+1, …… bn,bn+1 …. 

  

 Consider the corresponding DS point of Pa with εk → ak, from the substitutions of (24): 

  Pa_ds = .a0, a1, …  ak, ak+1, … an, …. ….. 

 

 From (25): Pa – Pa_ds =  dk  or Pa_ds = Pa - dk   

 From (15): Pds – Pa_ds > δk/(p0*..*pi)*1/2   where i is the first digit Pds & Pa_ds differ. 

 Upon adding dk to both sides of the inequality above: 

   Pds – Pa_ds +dk >  δk/(p0*..*pi)*1/2 +  dk 

 Upon substituting (25) into the inequality above:  

  Pds – Pa > δk/(p0*..*pi)*1/2 +  dk  
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 But: δk/(p0*..*pi)*1/2 + dk != 0 for all i, including  k=i.  

 That contradicts the hypothesis that Pds = Pa.  

 Therefore Pds != Pa and there is null intersection between sets A and DS. 

 This is important for it assures that all points in DS exhaustively map to set A. 

  

          4.2.4.7 Mapping of DS to A is exhaustive: 

 By definition of the mapping in (24) and (25) in Section, 4.2.2.1, all DS points are 

mapped.     

 

          4.2.5 Theorem: DS < A 

 Will now identify points in set A not mapped from DS. 

 Consider any point Pa1 in A mapped from DS. That is: 

  Pa1 = .a0, a1, …  εk, ak+1,  …..  an, …. ….. 

  where: 

  k = 0, …                     & 

  εk = δk/(p0*..*pk)     &     

  ak =0 → δk0                       & 

  ak =1 → δk1                       & 

  1/2 < δk0,  δk1 < 1       

Then consider:  

 Pa = .a0, a1, …  εk + ∆k/(p0*..*pk), ak+1,  …..  an, …. ….. 

where 1/2 < ∆k < 1/(p0*..*pk)    and ∆k != δk0 or δk1 

It is also a member of set A, for it satisfies the condition of (23) for membership.   It was 

not mapped into by (26) since ∆k != δk0 or δk1.  

 There are a Cardinality(R) number of such values, none in set DS.  

Hence Cardinality (DS) < Cardinality (A) 

 

 

4.3 Yet Another Proof: Construction of an R Set > DS: 

A set A is constructed with cardinality(R) and for which there is no 1-to-1 mapping 

between it and DS. That is, DS will exhaustively map to set A. But A will have remaining 

points not mapped, thereby showing Cardinality(R) > Cardinality (DS).   The proof is 

based fundamentally on the dichotomy of integers into composite and prime numbers. 

 

4.3.1  Description of Set A:  

                                              ∞ 

Consider set A = { a | a = ∑  an/n!  where ak ε {0,1}    }      (27) 

                                                   n=2 
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4.3.2 Decimal-Like Representation of Set A: 

 Each point can be represented in a “factorial-base” as:  

            ∞  

        = ∑  an/n!  = d2, d3, … dk, …. dn … ∞ where ak/k!    dk 

                                   n=2 

   Then a point d ε A is represented as: 

  d2, d3, … dk, …. dn … == a2/2! + a3/3! + … + ak/k! + …. + an/n!  + …   (28)   

   

 

 4.3.3 Cardinality of Set A: 

Set A is shown to have Cardinality(R). First, a diagonalization proof shows it to be 

greater than Cardinality(N).   Then a combinatorics argument shows it to be equal to R. 

 

 4.3.3.1  A vs. N: 

Assume that set A is only countable infinite.  Listing its points effectively enumerates 

them, mapped by an implicit integer index. Consider any enumeration of its elements in 

its factorial-base form, as follows:   

a0,2, a0,3, ……  a0,k, …  ∞    where  i == ith row and ai,k ==  ai,k/k!   

. 

. 

ai,2, ai,3, …… ai,k , …  ∞      

. 

. 

Consider a point b0, b1, …, bk, …., constructed as follows: 

If ak,k ==1 then set bk=0. Otherwise set bk=1 

Then b0, b1, …, bk , ….. necessarily differs from each of the purportedly enumerated 

elements of A by at least one digit.    Regardless of enumerated set, this diagonalization 

procedure will generate a point that is not in that enumerated set.    Therefore there is 

at least one point in A not in N, hence Cardinality (N) < Cardinality (A). 
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 4.3.3.2 A vs. R: 

Since each digit in A has 2 choices, there are then 2**n points in set A. This is the same 

number as R, per (17).   Alternately, there is a 1-to-1 correspondence between 1/n! and 

1/10n (in a decimal). Therefore Cardinality (A) == Cardinality (R) 

 

 4.3.4 Convergence of Set A: 

 Each point converges since:       
 ∞                                                                   ∞ 

 ∑     x/n!  converges for all x     ∑     x/n! converges for all x    
 n=0                                                                n=2 

 

 4.3.5  Ordering Theorem Generalization:  

Note that the Ordering Theorem in Sec. 2.1 had denominators of the form: ∏pi whereas 

here, denominators have the form: n! Then consider this generalization: 

 

Given 2 points in set A, P1 and P2, such that their digits match up to and including the kth, 

where k+1= 0,.., then the point with the lesser (k+1)st value, is less than the other. Or:  

 If: 

 P1 = 0.a0, a1, … ak, ak+1,   …  ak+n, ….. ∞      

 P2 = 0.a0, a1, … ak, bk+1,   …  bk+n, ….. ∞     

 where ai == bi for 0 =< i =< k, and  ak+1 < bk+1  then P1 < P2 

 

 The proof is identical to Section 2.1 above, by simply replacing: ∏pi  n! 

 

4.3.6 Uniqueness of Points in Set A: 

Given two arbitrarily selected points, P1 and P2 in set A, in base-factorial: 

 P1 = a0, a1, … ak, ak+1,   …  ak+n, …..         

 P2 = b0, b1, … bk, bk+1,   …  bk+n, …..      

 

a.    If ak==bk for all k, then P1==P2 

         The proof is isomorphic to Section 2.2a above. 

b. If P1==P2 then ak==bk for all k.  

The proof is isomorphic to Section 2.2b above. 

 

Briefly, consider the first digit where they differ. Then by the Ordering Theorem in 

Section 2.1.1, either P1 < P2 or P1 > P2. Both results negate the premise that P1==P2. Therefore 

there is no digit where they differ. Or ak==bk for all k. 
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This uniqueness property of set A is needed below, when identifying set A points not 

mapped from DS, to insure that they are not in DS. 

 

4.3.7 Refactoring Set A in DS-like Form: 

Set A points will be refactored into a DS-like form. This will enable direct counting 

comparisons of set A vis-a-via set DS. 

 

       For instance, given: 

   a  =  1,0,0,1,1 … == 1/2! + 0/3! + 0/4! + 1/5! + 1/6! + … 

On collecting composite factors in each term's numerator: 

         a =  (1/1)/(2)  + (0/1)/(2*3) + (0/1*4)/(2*3) + (1/1*4*6)/(2*3*5) +... 

       Then collecting terms with the same denominator (of primes only) yields: 

   a = (1/2)  +  ( (0/1)+0/1*4) ) /(2*3)  +  (1/1*4*6)/(2*3*5) +..  

This point in set A now has the same format as a DS point, but with a rational numerator 

instead of 0/1. This reformatting will enable a direct comparison of DS vs. set A points. 

  

More generally, from the dichotomy property of integers as either composite (‘c’) or primes 

(‘p’), k! can be refactored into composites and primes. Thus, consider k!  = 1*2*3…k for any 

k=pr for some r. When refactored, it becomes: 

 k!  =c0…cm, ..  p0… pr                 (29) 

 

In order to better associate composites with their respective primes, consider the following 

added subscript: 

Let ci,j be the ith composite associated with the jth prime,  appearing after the j-1st prime. 

Then, after the mth composite before pk, the n composites after pk, less than pk+1, are:  

 ...cm,k * pk      cm+1,k+1  … cm+n-1,k+1 , cm+n,k+1.     pk+1 …...... 

 

 Then each factorial inclusively between those primes pk  and pk+1, can be refactored as:  

 k!            = c0,0 *..*cm,k                                                                              *  p0…pk                      (30) 

 (k+1)!     = c0,0*…*cm,k*cm+1,k+1                                                        *  p0…pk+1   

 … 

 (k+n-1)! = c0,0*…*cm,k*cm+1,k*  … *cm+n-1,k+1                          * p0…pk+1       

 (k+n)!     = c0,0*…*cm,k*cm+1,k*  … *cm+n-1,k * cm+n,k+1     * p0…pk pk+1    

Substitute the above into (28) and place the composites in the numerator as follows: 

dk     = ak/k!                    = (ak/c0,0…cm,k) )/p0…pk      (31) 

…….. 

dk+n-1 = ak+n-1/(k+n-1)!    = (ak+n-1/c0,0…cm,k  cm+1,k+1  … cm+n-1,k+1)/p0…pk+1 

dk+n = ak+n/(k+n)!            = (ak+n/c0,0…cm,k  cm+1,k+1  … cm+n-1,k+1 , cm+n,k+1)/p0…pk*pk+1    
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Then, from (28) and substituting terms from (31): 

∞ 

∑ ak/k! = d2, d3, … dk, …. dn …          (32) 

       k=2        

     =   (a2/1)/p0   + …..  where p0=2 

……. + 

           (ak-1/c0,0…cm-1,k)/p0…pk + 

   (ak/c0,0…cm,k)/p0…pk +  

  ……. + 

   (ak+n-1/c0,0…cm,k  cm+1,k+1  … cm+n-1,k+1)/p0…pk+1 +      

   (ak+n/c0,0…cm,k  cm+1,k  … cm+n-1,k , cm+n,k+1)/p0…pk*pk+1   + 

  ……… 

 

Consolidating partial sums with the same denominator, results in: 

∞ 

∑ ak/k! = (  (a2/1 )/p0   +              where p0=2               (33) 

          k=2                …… +          

        ( (….. + ak-1*cm,k  + ak)/(c0,0…cm,k) )/p0…pk 

  + 

       ( (…..+ ak+n-1* cm+n,k+1  +  ak+n)/(c0,0…cm,k-1cm+1,k  … cm+n-1,k , cm+n,k+1) )/p0…pkpk+1   + 

  ………. 

 

This summation is simplified as follows: 

First simplify the numerator of each numerator of each summation term above.  Let: 

      b2 = a2 

 …. 

      bk = (….. + ak*cm+1,k ) 

             bk+1 = (…..+ ak+n-1* cm+n,k+1  +  ak+n)       (34) 

 ….. 

 

     Then simplify the numerator of each summation term in (33): 

             e2, = b2/1 

 …. 

      ek = bk/(c0,0…cm,k)         (35) 

             ek+1 = bk+1/(c0,0…cm,k-1cm+1,k  … cm+n-1,k , cm+n,k+1) 

 .... 
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The summation (33) is now more compactly expressed as: 

∞ 

        ∑ ak/k! =  e2/p0 + …  

        k=2                   ……. + 

                         ek/p0…pk  +          (36) 

             ek+1/p0… pkpk+1   +      

                               …..... 

 

Continue to simplify each summation term as follows:  Let: 

      f2 = e2/p2 

 …. 

      fk = ek/(p0………pk)          (37) 

             fk+1 = ek/(p0………pkpk+1) 

             …. 

 

        Then: 

 ∞              ∞ 

        ∑ ak/k! =  ∑ fk, 

        k=2                    k=2 

 

        Or, in the equivalent base-factorial notation: 

 ∞ 

        ∑ ak/k! = f2, f3, ……  fk, …  ∞          (38) 

        k=2 

 

Note that it does not matter for the proof whether each numerator < 1.  

(38) shows how a point in set A, can be represented in a DS-like form, with the same 

respective denominators as a DS point. 

 

4.3.8 Set DS-to-Set A Mapping: 

Consider the following mapping from DS-to-A: 

         Set DS   Set A       

h0, h1, ……  hk, …  ∞         f2, f3, ……  fk, …  ∞        (39)  

where: 

hk = mk/(p0………pk)       fk, = ek/(p0………pk)  

and  mk ε {0,1}             and ek, = bk/(c0,0…cm,k) 

                                    and bk = ….. + ak-1*cm,k  + ak 

                                        and ai ε {0,1}   
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Bringing it all together: 

∞                                    ∞                              ∞ 

∑ mk/(p0………pk)   →   ∑ ek/(p0………pk)  ==  ∑ ak/k!          (40) 
k=0                                         k=2                                  k=2 

 

Therefore mk    ….. + ak-1*cm,k  + ak 

Or, in simplified tuple form, since the ck are fixed values: 

mk    (….,ak-1, ak)                   (41) 

 

Within the mapping (39) above, each mk digit will map to the first ai  of its associated tuple in 

(41). Then the remaining aj associated with mk are fixed at an arbitrary value, 0 for simplicity. 

That is: 

 mk = 0     (ai =0,  … ak-1=0, ak=0, ...)     

 mk = 1     (ai =1,  … ak-1=0, ak=0, …) 

 

Therefore mk     (mi…….0, 0)            (42)   

 

Further, the respective denominators of DS vs. A in (41) are now identical per (40).  This is 

needed for comparable counting of their respective like-formed points. 

 

4.3.8.1 This mapping exhaustively maps all DS points into set A points: 

From (39) and (42), there is at least one ai in a set A point, for each mk to map into. Therefore 

every DS point is mapped to a corresponding point in set A, to exhaustively map to set A.   

 

4.3.8.2 This maps each DS point to a unique point in set A: 

For, from (39) and (42), each mk maps to a distinct sequence of {ai … ak}. 

Therefore each DS point maps into a distinct sequence of a point, {f0 … fk ….}, in set A point.  Or: 

             ∞ 

 h0, h1, ……  hk, …  ∞        f2, f3, ……  fk, …  ∞     ∑ ak/k!     (43) 

                                                                                     k=2 

 But from Section 4.3.6, each sequence of {ak} is unique. Thus, a DS point maps to a unique 

point in set A. 

 

4.3.8.3 Sets A and DS are non-intersecting: 

For if there was a DS point in set A, then, from (39), its DS digit-by-digit representation should 

equal its set A digit-by-digit representation. But by (41) and (42), mk  != (….,ak-1, ak) for any k.   

Therefore there is no point in DS that is also in set A. That is, they are non-intersecting.       
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4.3.8  Proof that Cardinality(DS) < Cardinality(A):  

It was established above that: 

- Sets DS and A are non-intersecting. 

 DS is exhaustively mapped into A. 

 Both DS and A points are unique.  

It is now shown that set A has a least one point not mapped by DS (and actually at least a 

countable number).  

 

From (42) again, to establish that all DS points are exhaustively mapped to set A: 

             Digit in a DS point:       Digit in a point in set A: 

  mk                                   (mi…….0, 0)        

 

More generally, for a mi digit in a DS point, and ignoring the fixed composites ci, and identical 

denominators: 

             Digit in a DS point:       Digit in a point in set A: 

  mi     (mi…….ak …  ….. + an)        (44)     

 

From (44), combining mi of each DS point into a tuple: 

     DS point:   →  Set A point: 

 (m0 , ….mk …)    (m0, a1… ai, …. an,  … mk, …..... )    

 

This mapping leaves many degrees-of-freedom for values of the unmapped ai . Thus setting 

even one ai =1 in (m0, a1… ai, …. an,  … mk, ….....) yields a new point in set A that was not mapped 

into from DS. For example, this set A point could not have mapped into from DS, by definition 

of the mapping in (39) and (42): 

   (m0, 1… 1, …. 1,  … mk, …..... )  

 

Therefore: Cardinality(DS) < Cardinality(A) 

 

There are actually at least a countable number of ai with varied values to generate new set A 

points not in DS. Each unmapped set A point not in DS is generated by new combinatorics of ai  

where i > 0. 

 

Then, mindful of the argument in Section 4.2.1 that if one mapping from DS-to-R is not 1-to-1, 

then no other mappings from DS-to-R are 1-to-1, this thereby proves that: 

       Cardinality(DS) < Cardinality(A).    
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5. Conclusion: 

The proofs in the various sections above are combined as follows:  

 

From Section III: 

Cardinality(N)  <  Cardinality (DS)   

 

From (22), where <~ denotes asymptotic inequality: 

  Cardinality (DS)  <~ Cardinality (R)       

 

From Sections 4.2 and 4.3:  

Cardinality (DS)  <  Cardinality (R)       

 

Therefore: 

Cardinality(N)  <  Cardinality (DS)  < Cardinality (R)       

 

This result relies entirely on any of three unique properties of prime numbers; 

asymptotic scarcity, incommensurate reciprocals and the dichotomy of N into primes 

and composites.  Hence it is not readily generalizable to higher order sets addressed by 

the Generalized Continuum Hypothesis [4].  Indeed, it is surmised that the research to-

date on CH missed these conclusions, due to over-generalized arguments applied to all 

Alpha sets. That is, they did not account for primes specifically in Aleph0/Aleph1 sets.  
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