Kalman Folding 7: A Small Streams Library (Review
Draft)

Extracting Models from Data, One Observation at a Time

Brian Beckman

<2016-05-03 Tue>

Contents
[I_—Abstracl 1
2 Kalman Folding in the Wolfram Language| 2
— — i
|4 Stream Operators| 2
T D v
4.3 Reify ::Stream — List|. o 4
e e]
4.6 MapbStream :: Stream — UnaryFunction — Stream| o000 5
Eranr S D SR D SRS D R
6
[oTesting the EKF 7
|7 Concluding Remarks| 9
1 Abstract

In Kalman Folding 5: Non-Linear Models and the EKFEl we present an Extended Kalman Filter as
a fold over a lazy stream of observations that uses a nested fold over a lazy stream of states to

IB. Beckman, Kalman Folding 5: Non-Linear Models and the EKF, to appear.

integrate non-linear equations of motion. In Kalman Folding 4: Streams and Obserwblesﬁ we present
a handful of stream operators, just enough to demonstrate Kalman folding over observables.

In this paper, we enrich the collection of operators, adding takelUntil, last, and map. We then
show how to use them to integrate differential equations in state-space form in two different ways
and to generate test cases for the non-linear EKF from paper 5.

2 Kalman Folding in the Wolfram Language

In this series of papers, we use the Wolfram languageﬂ because it supports functional program-
ming and it excels at concise expression of mathematical code. All examples in these papers can
be directly transcribed to any modern mainstream language that supports closures. For example,
it is easy to write them in C++11 and beyond, Python, any modern Lisp, not to mention Haskell,
Scala, Erlang, and OCaml. Many can be written without full closures; function pointers will suf-
fice, so they are easy to write in C. It’s also not difficult to add extra arguments to simulate just
enough closure-like support in C to write the rest of the examples in that language.

3 Review of Stream Basics

From paper 4, we briefly review the following basics:

Represent a lazy stream as a pair, in curly braces, of a value and a thunk (function of no argu-
ments)ﬁ The thunk must produce another lazy stream when called. Such a stream can be infinite
in abstract length because the elements of the stream are only concretized in memory when de-
manded by calling thunks.

By convention, a finite stream has a Null thunk at the end. Thus, the empty stream, obtained
by invoking such a thunk, is Null [], with empty square brackets denoting invocation with no
arguments.

A finite stream is one that eventually produces Null[].

One of Wolfram's notations for a literal thunk is an expression with an ampersand at the end.
An ampersand turns the expression to its left into a thunk.

Here is a function that returns an infinite stream of natural numbers starting at n:

integersFrom[n_Integer] := {n, integersFrom[n + 1] &}

Calling, say, integersFrom[42] produces {42, integersFrom[42 + 1]&},astream con-
sisting of an integer, 42, and another stream, integersFrom[42+1]&.

4 Stream Operators

The following are just sketches, suitable for research but not for release to third-party users, who
will need packaging, namespacing, documentation, and error handling. In fact, it is easy to con-
struct pathological cases that circumvent the stated semantics for these implementations, which
are designed only to illustrate the concepts and to support the examples in this series of papers.

2B. Beckman, Kalman Folding 4: Streams and Observables, to appear.
Shttp://reference.wolfram.com/language/
4This is quite similar to the standard — not Wolfram’s — definition of a list as a pair of a value and of another list.

http://reference.wolfram.com/language/

Furthermore, this is just a representative set found most useful while developing Kalman fold-
ing, not anything like a complete set. It turns out that nearly identical sets of operators can be
developed for any kind of sequential collection. Haskel has operators for lists, Rxﬁ has a large
set for observables, and LIN(ﬂ has sets for many types including SQL tables. Haskell also in-
cludes mechanismsﬁﬂ for abstracting the underlying collection, making it easy to implement a
standardized set of operators for any new, user-defined collection type.

4.1 Extract: Stream — Value

Extract pulls the n-th element, 1-indexed, from a given stream. Its run time is O(n) and its space
consumption is constant, O(1).

First, a base case. Extracting any element from the empty stream Null[] should produce
nothing, represented in Wolfram by Nul1l without the brackets, which conveniently does not print
in a Mathematica notebook.

extract [Null[], _] := Null;

Another base case is to get the first value from a stream. This overload pattern—matcheﬂ or
destructures its stream input, instantiating the variables v and thunk to the two components of
that input. It then returns the value v.

extract[{v_, thunk_}, 1] := v;

The final, recursive case extracts the n — 1-th element from the tail of the input stream by
discarding the current value v and invoking the thunk. This runs in constant memory when the
programming language supports tail-recursion, as Wolfram doesE] If the programming language
does not, ext ract should be implemented with a loop.

The notation /; precedes a conditional expression in the scope of the argument list. In most
other languages, this would be implemented by a conditional test in the body of the function.

extract[{v_, thunk_}, n_Integer /; n > 1] := extract[thunk[], n - 1];
Now we can get the 630000-th integer efficiently in space, if not terribly quickly:
Block[{$IterationLimit = Infinity},
extract [integersFrom[1], 630000]] // AbsoluteTiming
~>

{1.47735 second, 630000}

Without tail recursion, this would exceed the system’s stack depth.

Shttp://learnyouahaskell.com/higher—order—functions
Shttp://introtorx.com/

7LINQ’s Standard Query Operators
8https://en.wikipedia.org/wiki/Monad

9See Haskell’s type classes
Ohttp://tinyurl.com/j59zy69
Uhttps://en.wikipedia.org/wiki/Conditional_term rewriting

http://learnyouahaskell.com/higher-order-functions
http://introtorx.com/
https://en.wikipedia.org/wiki/Monad
http://tinyurl.com/j5jzy69
https://en.wikipedia.org/wiki/Conditional_term_rewriting

4.2 Disperse :: List — Stream

We'll need a way to convert a whole finite list into a stream. There are three cases: an empty list, a
singleton list, and the inductive or recursive case.

disperse[{}] := Null[]; (x empty list yields empty stream *)
disperse[{x_}] := {x, Null}; (x the stream for a singleton list x)
disperse[{v_, xs__}] := {v, disperse[{xs}] &}; (x recursion *)

4.3 Reify:: Stream — List

We need to go the other way, too; don't call this on an infinite stream:

reify [Null[]]
rify[{v_, Null}

1 {v}; (# singleton list from singleton stream x*)
reify[{v_, thunk_}

{}; (* produce empty list from empty stream x)
] := Join[{v}, reify[thunk[]]]; (% recursion *)

Reify undoes disperse:

reify@disperse@{l, 2, 3}
~~> {1, 2, 3}

4.4 Take : Stream — FiniteStream

Infinite streams are very important, but we frequently want finite subsets so that we don’t have to
explicitly extract values by index. Take takes a stream and an element count and produces another
stream that eventually yields Null[], that is, a finite stream. Because the streams are lazy, take
doesn’t actually run until elements are demanded, say by extract, last, or reify.

take[_, 0] := Null[];

take [Null[], _] := Nulll];

take[{v_, thunk_}, 1] := {v, Null};

take[{v_, thunk_}, n_Integer /; n > 1] := {v, take[thunk[], n - 1] &};

Produce a finite stream of three integers; extract the first value:

extract[take[integersFrom[1], 3], 1]
~~> 0]

and the last value:

extract[take[integersFrom[1l], 3], 3]
~~> 3

If we extract too far into a finite stream, we get Null, which doesn’t print to the notebook:

extract[take[integersFrom[1l], 3], 4]
~~>

4.5 TakeUntil :: Stream — Predicate — Stream

TakeUntil produces a new stream that produces elements from the original stream, evaluating the
predicate on them until it produces True, at which point it permanently produces the empty
stream Null[].

takeUntil [Null([], _] := Null[];
takeUntil[{v_, thunk_}, predicate_] /; predicate([v] := Nulll[];
takeUntil[{v_, thunk_}, predicate_] = {v, takeUntil[thunk[], predicate]

reify[takeUntil [integersFrom[1l], # >= 3 &]]
~~> {1, 2, 3}

4.6 MapStream :: Stream — UnaryFunction — Stream

MapStream converts a stream into another stream of equal length by applying the given unary
function to the elements one at a time. Because it converts a lazy stream to a lazy stream, it is safe
to apply to infinite streams: nothing happens until elements are demanded.

ClearAll [mapStream];
mapStream[Null[], _] := Nullf[];
mapStream[{v_, thunk_}, f_] := {f[v], mapStream[thunk[], f] &};

Here we map the unary function #°2 &, which squares its single argument #, over a finite
sub-stream of the integers.

reify@mapStream[take[integersFrom[1l], 31]

~~> {1, 4, 9}

4.7 Last: Stream — Value

Last produces the last value in a finite stream without an explicit index. It requires tail recursion
to run in constant memory.

last [Null[]] := Null;
last[{v_, thunk_} /; thunk[] === Null[]] := v;
last[{v_, thunk_}] := last[thunk[]];

Called on an empty stream, last produces Null, which does not print.

last@disperse[{}]
~~>

Otherwise, it produces the last element, even of a very long finite stream:

Block[{S$IterationLimit = Infinity},
last@take[integersFrom[1], 630000]] // AbsoluteTiming
~~> {4.72633 sec, 630000}

The at-sign @ is Wolfram’s prefix form for function invocation; £@x is the same as £ [x].

&};

4.8 foldStream

Our equivalent for Wolfram'’s FoldList is foldStreamE Its type is similar

foldStream :: AccumulatorFunction — Accumulation
— Stream [Observation] — Stream [Accumulation |

Here is an implementation:

foldStream[f_, s_, Null[]] := (* acting on an empty stream x)
{s, Null}; (» produce a singleton stream containing ’'s’ %)
foldStream[f_, s_, {z_, thunk_}] :=
(+ pass in a new thunk that recurses on the old thunk *)
{s, foldStream[f, f[s, z], thunk[]] &};

and an example that produces the Fibonacci numbers in pairs:

allFibs = foldStream]
Function[{s, =z}, {s[[2]]1, s[[1]] + s[[2]1}],
{0, 13},
integersFrom[0]1];

Transposelreify@[take[allFibs, 11]]
~a>

01 12 3 5 8 13 21 34 55
1 1 2 3 5 8 13 21 34 5 &9

5 EKF

The EKF developed in paper 5 is

EKFDrag[sigmaXi_, Zeta_, Phi_, Xi_, integrator_, fdt_, idt_]
[{x_, P_}, {t_, A_, z_}] :=
Module[{x2, P2, D, K},
x2 = last[takeUntil[foldStream[integrator, {t, x},
dragDStream| {idt, t, dragD}1],
First[#] > t + fdt &]1I[[2]11;
P2 = sigmaXi”2 Xi[fdt, x] + Phi[fdt, x].P.Transpose[Phi[fdt, x]1];
D = Zeta + A.P2.Transpose[A];
K = P2.Transpose[A] .inv[D];
{x2 + K.(z - A.x2), P2 - K.D.Transpose[K]}];

The EKF integrates the equations of state evolution, which can be arbitrarily nonlinear, by folding
an integrator over a stream dragDStream. The integrator operates on a time increment idt,

12The initial uncial (lower-case) letter signifies that we wrote this function; it wasn't supplied by Wolfram.

which is often smaller than the overall update period £dt of the EKF. The last element of the
integrated stream is collected and used as the state update for the filter.

The integrated stream advances time and passes through to the integrator a function Dx that
produces differential increments from the state and the time. In our example, Dx is dragD, which
computes the height x of an object falling at speed v and experiencing aerodynamic drag. Don’t
confuse this x with the vector x that represents the state in the integrators. It’s difficult not to run
out of symbols.

dragDStream[Delta : {dt_, t_, Dx_}] :=
{Delta, dragDStream[{dt, t + dt, Dx}] &};
dragD[{x_, v_}, t_] := {v, g (A Exp[-x/k] v"2/(2. beta) - 1)};

The additional functions Phi and Xi use linear approximations of the equations of state evo-
lution to advance the gain K and the covariance P. They are explained in paper 5.

The simplest integrator is the Euler integrator, which updates a state with its derivative times
a small interval of time. This is a binary function, like all accumulator functions for folds, that
takes an accumulation and an observation and produces a new accumulation. In our case, the
accumulation is a pair of a scalar time t and a vector state x, and the observation is a triple of a
time increment dt, a time t, and the function Dx that produces differential increments.

eulerAccumulator[{t_, x_}, {dt_, t_, Dx_}] :=
{t + dt, x + dt Dx[x, tl};

Much better numerics can be achieved with the Runge-Kutta integrators, which are drop-in
replacements for the Euler integrator at the cost of calling Dt more often:

rk2Accumulator[{t_, x_}, {dt_, t_, Dx_}] :=
With[{dxl = dt Dx[x, t1]l},
With[{dx2 = dt Dx[x + .5 dx1, t + .5 dtl},
{t + dt, x + (dx1 + dx2)/2.}11;
rk4Accumulator[{t_, x_}, {dt_, t_, Dx_}] :=
With[{dxl = dt Dx[x, t]l},
With[{dx2 = dt Dx[x + .5 dx1, t + .5 dt]}
With[{dx3 = dt Dx[x + .5 dx2, t + .5 dt]
With[{dx4 = dt Dx[x + dx3, t + dtl},
{t + dt, x + (dx1 + 2. dx2 + 2. dx3 + dx4)/6.}1111;

by

6 Testing the EKF

We test the EKF by folding it over another lazy stream — a stream of observation packets {t,
A, =z} of time t, model partial derivatives 2, and observations per-se z. Unlike the filter itself,
the test code does not run in constant memory. It doesn’t have to — its purpose is to assist the
verification of the filter by creating sample data, statistics, and plots. It does so by reifying some
finite substreams of infinite streams.

First, we set up some constants

With[{nStates = 2, nIterations = 10},
With[{sigmaZeta = 25., sigmaXi = 0.0, t0 = 0., tl1 = 30.,
filterDt = 0.1, integrationDt = 0.1},
With[{x0 = 200000, vO = -6000, Zeta = sigmaZeta”2 id[1l],
PO = 1000000000000 id[nStates]},

We then build some fake data by building a lazy stream that integrates the equations of motion,
producing an infinite stream of time-state pairs starting with {t0, {x0, v0}}, where tO0 is the
initial scalar time and {x0, wvO0} is the initial vector state:

Module[{fakes},
fakes[] := foldStream[rk4Accumulator, {t0, {x0, vO0}},
dragDStream[{filterDt, t0, dragD}]];

Height Residual vs. Time Speed Residual vs. Time

0 5 10 15 20 25 30 0 5 10 15 20 25 30
Time/[s] Timel/s]

Figure 1: RK-2 integrator, idt = 0.001 sec, o = 25 ft; also RK-4 integrator, idt = 0.1 sec

We now set up some variables to hold the results of multiple iterations of the integration. We use
these variables to produce the statistical plots in paper 5, one of which we reproduce here in figure
[l The variables are:

ffs afinite substream of the fakes, pairs of times and states
rffs an array: the reification of ffs

ts an array of times gotten by mapping the function pick [1] over rffs using Wolfram'’s built-
in mapping operator /@ for reified lists.

txs an array of ground-truth values for the first state component x, the height of the falling object,
for computing residuals

tvs an array of ground-truth values for the second state component v, the speed of the falling
object, for computing residuals

xss, vss parallel arrays of arrays of heights and speeds. The outer array haslengthnIterations
and is built by mapping (using Wolfram'’s built-in Map) a function over Range [nIterations],
a list of the integers 1,2,...,nIterations. The inner arrays have the same length as ts,
for plotting. These can be fed straight into Wolfram'’s plotting functions.

xvs, ps parallel arrays of vector states {x, v} and covariance matrices gotten by folding the
EKEF over a stream built by mapSt ream-ing a function over the finite fakes stream f£fs. That
function picks the times (from the first element of its argument # via #[[1]]) and the heights
(from element 2, 1 its argument # via #[[2, 1]]) from the finite fakes £fs and builds a stream
of observation packets with the constant, 1 x 2 matrix A = {{1, 0}}.

SeedRandom([44];
Module[{ffs, rffs, ts, txs, tvs, xss, vss, XVvs,
ps, sigmaxs, sigmavs},

xss = ConstantArray[0, nIterations];
vss = ConstantArray[0, nIterations];
ffs = takeUntil[fakes[], First@# > tl1 &];

rffs = reifyQ@ffs;
ts = pick[1l] /@ rffs;
txs = pick[2, 1] /@ rffs;
tvs = pick[2, 2] /@ rffs;
{xss, vss} = Transpose@Map [
({xvs, ps} = Transpose@Rest@reify@foldStream]|
EKFDrag[sigmaXi, Zeta, Phi, Xi,
rk4Accumulator, filterDt, integrationDt],
{{0, 0}, PO},
mapStream|[ffs,
{(#00211, { (1, O} }, #[[2, 1]1] + genlZetal} &]];
sigmaxs = Sqgrt([pick([1l, 1] /@ ps;
sigmavs Sgrt [pick([2, 2] /@ ps;
Transpose@xvs) &,
Range [nIterations]];

Some minor manipulation of these arrays suffice to produce a plot like figure

This test harness uses many of the stream operators in the little library, namely takeUntil,
reify, foldStream, and mapStream, but the EKF does not know and cannot detect that it’s
being called through lazy streams. This is one of the secrets of Kalman folding that allows code to
be tested in one environment and moved verbatim into other environments. It’s even feasible to
change integrators at run time through a functional shim. The only thing EKF knows is that it’s
internally stream-folding an integrator provided by its caller through a fixed interface contract.

7 Concluding Remarks

Lazy infinite streams are one of the kinds of collections supported by Kalman folding. They af-
ford space-efficient integration of differential equations, but also concise and elegant test fixtures.
As with all Kalman-folding scenarios, the code-under-test can be moved verbatim, without even
recompilation, from the test environment to production and embedded environments.

	Abstract
	Kalman Folding in the Wolfram Language
	Review of Stream Basics
	Stream Operators
	Extract :: Stream Value
	Disperse :: List Stream
	Reify :: Stream List
	Take :: Stream FiniteStream
	TakeUntil :: Stream Predicate Stream
	MapStream :: Stream UnaryFunction Stream
	Last :: Stream Value
	foldStream

	EKF
	Testing the EKF
	Concluding Remarks

