
Kalman Folding 4: Streams and Observables (Review
Draft)

Extracting Models from Data, One Observation at a Time

Brian Beckman

<2016-05-03 Tue>

Contents

1 Abstract 1

2 Kalman Folding in the Wolfram Language 2
2.1 A Test Example . 3

3 Types for Kalman Folding 4

4 Over Lazy Streams and Asynchronous Observables 5
4.1 Folding Over Lazy Streams . 5
4.2 Folding Over an Asynchronous Observable . 8

5 Concluding Remarks 10

1 Abstract

In Kalman Folding, Part 1,1 we present basic, static Kalman filtering as a functional fold, high-
lighting the unique advantages of this form for deploying test-hardened code verbatim in harsh,
mission-critical environments. In that paper, all examples folded over arrays in memory for con-
venience and repeatability. That is an example of developing filters in a friendly environment.

Here, we prototype a couple of less friendly environments and demonstrate exactly the same
Kalman accumulator function at work. These less friendly environments are

• lazy streams, where new observations are computed on demand but never fully realized in
memory, thus not available for inspection in a debugger

• asynchronous observables, where new observations are delivered at arbitrary times from an
external source, thus not available for replay once consumed by the filter

1B. Beckman, Kalman Folding, Part 1, http://vixra.org/abs/1606.0328.

1

http://vixra.org/abs/1606.0328

Streams are a natural fit for integration of differential equations, which often arise in appli-
cations. As such, they enable unique modularization for all kinds of filters, including non-linear
Extended Kalman Filters.

The fact that the Kalman accumulator function gives bit-for-bit identical results in all cases
gives us high confidence that code developed in friendly environments will behave as intended in
unfriendly environments. This level of repeatability is available only because of functional decom-
position, which minimizes the coupling between the accumulator function and the environment
and makes it possible to deploy exactly the same code, without even recompilation, in all environ-
ments.

2 Kalman Folding in the Wolfram Language

In this series of papers, we use the Wolfram language2 because it excels at concise expression
of mathematical code. All examples in these papers can be directly transcribed to any modern
mainstream language that supports closures. For example, it is easy to write them in C++11 and
beyond, Python, any modern Lisp, not to mention Haskell, Scala, Erlang, and OCaml. Many can
be written without full closures; function pointers will suffice, so they are easy to write in C. It’s
also not difficult to add extra arguments to simulate just enough closure-like support in C to write
the rest of the examples in that language.

In Kalman Folding,1 we found the following elegant formulation for the accumulator function
of a fold that implements the static Kalman filter:

kalmanStatic (Z) ({x,P} , {A, z}) = {x+K (z−Ax) ,P−KDKᵀ} (1)

where

K = PAᵀ D−1 (2)
D = Z+APAᵀ (3)

and all quantities are matrices:

• z is a b× 1 column vector containing one multidimensional observation

• x is an n× 1 column vector of model states

• Z is a b× b matrix, the covariance of observation noise

• P is an n× n matrix, the theoretical covariance of x

• A is a b× n matrix, the observation partials

• D is a b× b matrix, the Kalman denominator

• K is an n× b matrix, the Kalman gain

2http://reference.wolfram.com/language/

2

http://reference.wolfram.com/language/

In physical or engineering applications, these quantities carry physical dimensions of units of
measure in addition to their matrix dimensions as numbers of rows and columns. If the physical
and matrix dimensions of x are [[x]]

def
= (X, n× 1) and of z are [[z]]

def
= (Z, b× 1), then

[[Z]] = (Z2 b× b)
[[A]] = (Z/X b× n)
[[P]] = (X2 n× n)
[[APAᵀ]] = (Z2 b× b)
[[D]] = (Z2 b× b)
[[PAᵀ]] = (XZ n× b)
[[K]] = (X/Z n× b)

(4)

Dimensional arguments, regarding both matrix dimensions and physical dimensions, are in-
valuable for checking code and derivations in this topic at-large.

2.1 A Test Example

In the following example, the observations z are 1× 1 matrices, equivalent to scalars, so b = 1.
The function in equation 1 lambda-lifts3 Z, meaning that it is necessary to call kalmanStatic with

a constant Z to get the actual accumulator function used in folds. This is desirable to reduce
coupling between the accumulator function and its calling environment.

In Wolfram, this function is

kalmanStatic[Zeta_][{x_, P_}, {A_, z_}] :=
Module[{D, K},
D = Zeta + A.P.Transpose[A];
K = P.Transpose[A].Inverse[D];
{x2 + K.(z - A.x), P - K.D.Transpose[K]}]

We test it on a small case

Fold[kalmanStatic[IdentityMatrix[1]],
{ColumnVector[{0, 0, 0, 0}], IdentityMatrix[4]*1000.0},
{{{{1, 0., 0., 0.}}, { -2.28442}},
{{{1, 1., 1., 1.}}, { -4.83168}},
{{{1, -1., 1., -1.}}, {-10.46010}},
{{{1, -2., 4., -8.}}, { 1.40488}},
{{{1, 2., 4., 8.}}, {-40.8079}}}

] // Chop
~~>

3https://en.wikipedia.org/wiki/Lambda_lifting

3

https://en.wikipedia.org/wiki/Lambda_lifting

x =


−2.97423
7.2624

−4.21051
−4.45378

 (5)

P =


0.485458 0 −0.142778 0

0 0.901908 0 −0.235882
−0.142778 0 0.0714031 0

0 −0.235882 0 0.0693839


expecting results within one or two standard deviations of the ground truth ℵ =

[
−3 9 −4 −5

]ᵀ,
where the standard deviations can be found as square roots of the diagonal elements of P. For de-
tails about this test case, see the first paper in the series, Kalman Folding, Part 1.1

Below, we reproduce these values exactly, to the bit level, by running kalmanStatic over lazy
streams and asynchronous observables.

3 Types for Kalman Folding

Kalman and all its variants are examples of statistical function inversion. We have models that
predict outcomes from inputs; we observe outcomes and want estimates of the inputs. Structurally,
all such incremental model inversions take a pair of a state estimate (with uncertainty) and an
observation, and produce a new state estimate (with uncertainty). Such an inverted model has
signature, using a type notation similar to that of Haskell or Scala

inverted-model [S, T] :: (S→ T → S)

where the return type is on the far right and the other types that appear before arrows are the
types of input arguments. This function signature is exactly that required for the first argument of
a functional fold (more precisely, a left fold). The signature of fold is as follows:

fold [S, T] :: (S→ T → S)→ S→ Sequence [T]→ S

Read this, abstractly, as follows

Fold over types S and T is a function that takes three arguments:

1. another function (called the accumulator function)

2. an initial instance of type S

3. a sequence of instances of type T

and produces an instance of type S. The accumulator function, in turn, is a binary
function that takes an S and a T and produces an S.

More concretely, In the context of Kalman filtering:

AccumulatorFunction :: Accumulation→ Observation→ Accumulation

4

where the types Accumulation and Observation are arbitrary.
It’s the job of Fold to pass the elements of the input sequence to the accumulator function one

observation at a time, and to maintain and ultimately return the final accumulation. The second
argument to Fold is the desired, initial value of the accumulation. The third and final argument to
Fold is the sequence of observations, of type Sequence [Observation]

Fold looks like a trinary function of an accumulator function, an initial accumulation, and a
sequence, yielding an accumulation. Folds thus have the following type:

Fold :: AccumulatorFunction→ Accumulation→ Sequence [Observation]→ Accumulation

where Sequence can be List, Stream, Observable, or any type that can be accessed sequentially.

4 Over Lazy Streams and Asynchronous Observables

The accumulator function knows nothing about the source of the observations. If we can figure
out how to implement Fold and FoldList for things other than List, we will have Kalman filtering
over those sources, too.

The following are research-grade sketches of implementations of Fold over lazy streams4 and
asynchronous observables.5 They provide just enough to support the Kalman-folding examples.

4.1 Folding Over Lazy Streams

Represent a lazy stream as a pair of a value and a thunk (function of no arguments).6 The thunk
must produce another lazy stream when called. Such a stream can be infinite in abstract length
because the elements of the stream are only concretized in memory when demanded by calling
thunks.

Streams are a natural fit for integrals of differential equations. We see in other papers of this
series how we an use them to deeply modularize filters over rich non-linear models. In this paper,
we show only how to fold a linear Kalman filter over a stream.

By convention, a finite stream has a Null thunk at the end. Thus, the empty stream, obtained
by invoking such a thunk, is Null[], with square brackets denoting invocation with no argu-
ments.

One of Wolfram’s notations for a literal thunk is an expression with an ampersand in postfix
position. An ampersand turns the expression to its left into a thunk. For instance, here’s a function
that returns an infinite stream of natural numbers starting at n:

integersFrom[n_Integer] := {n, integersFrom[n + 1] &}

Calling, say, integersFrom[42] produces {42, integersFrom[42 + 1]&}, a pair of an
integer, 42, and another stream, integersFrom[42+1]&. We get the stream by extracting the
second part of the pair via Wolfram’s double-bracket notation

integersFrom[42][[2]] ~~> integersFrom[42 + 1]&

4http://www1.cs.dartmouth.edu/~doug/music.ps.gz
5http://introtorx.com/
6This is quite similar to the standard — not Wolfram’s — definition of a list as a pair of a value and of another list.

5

http://www1.cs.dartmouth.edu/~doug/music.ps.gz
http://introtorx.com/

and then call it with empty brackets (it’s a thunk, and takes no arguments):

integersFrom[42][[2]][] ~~> {43, integersFrom[43 + 1]&}

and so on. We can get a few more by repeating the process

integersFrom[42][[2]][][[2]][][[2]][] ~~> {45, integersFrom[45 + 1]&}

but the best way to extract values from streams is to write recursive functions to demand any
number of elements from the head. The variety of such functions, which include map, select, fold,
is well known, large, and identical across lists, streams, observables, and, in fact, any collection
that can support a next operator. A good, contemporary full-service library for collection types is
LINQ’s Standard Query Operators (SQO),7. If building up a library from the present prototype
level into something of product grade, presentable to intolerant users, the SQO are an excellent
framework to emulate.

As another example, the following function, when called with an appropriate input, say the
2× 2 identity matrix, returns a lazy stream of matrices full of Fibonacci numbers:

fs[f_] := {f, fs[{{0, 1}, {1, 1}}.f] &}

Here is an explicit invocation a few values down:

fs[IdentityMatrix[2]][[2]][][[2]][][[2]][][[2]][][[2]][][[2]][][[
2]][][[2]][][[2]][][[2]][]

~~> {(
34 55
55 89

)
, fs

[(
34 55
55 89

)
·
(
0 1
1 1

)]
&
}

the point being that lazy streams are versatile.
We now write bi-directional conversions between streams and lists so we can test an example,

then we write foldStream.

4.1.1 Disperse :: List→ Stream

We’ll need a way to convert a list into a stream. There are three cases: an empty list, a singleton
list, and the inductive or recursive case.

disperse[{}] := Null[]; (* empty list yields empty stream *)
disperse[{x_}] := {x, Null}; (* the stream for a singleton list *)
disperse[{v_, xs__}] := {v, disperse[{xs}] &}; (* recursion *)

4.1.2 Reify :: Stream→ List

We need to go the other way, too; don’t call this on a stream of infinite length:

reify[Null[]] := {}; (* produce empty list from empty stream *)
rify[{v_, Null}] := {v}; (* singleton list from singleton stream *)
reify[{v_, thunk_}] := Join[{v}, reify[thunk[]]]; (* recursion *)

7LINQ’s Standard Query Operators

6

4.1.3 foldStream

Our equivalent for Wolfram’s FoldList is foldStream.8 Its type is similar

foldStream :: AccumulatorFunction→ Accumulation
→ Stream [Observation]→ Stream [Accumulation]

Here is an implementation:

foldStream[f_, s_, Null[]] := (* acting on an empty stream *)
{s, Null}; (* produce a singleton stream containing ’s’ *)

foldStream[f_, s_, {z_, thunk_}] :=
(* pass in a new thunk that recurses on the old thunk *)
{s, foldStream[f, f[s, z], thunk[]] &};

4.1.4 Test

Test it over the dispersion of the example data:

foldStream[
kalmanStatic[IdentityMatrix[1]], (* same ’kalmanStatic;’ no changes *)
{ColumnVector[{0, 0, 0, 0}], IdentityMatrix[4]*1000.0},
disperse[{{{{1, 0., 0., 0.}}, { -2.28442}},

{{{1, 1., 1., 1.}}, { -4.83168}},
{{{1, -1., 1., -1.}}, {-10.46010}},
{{{1, -2., 4., -8.}}, { 1.40488}},
{{{1, 2., 4., 8.}}, {-40.8079}}}]

] // reify

The only changes to the earlier fold over lists is the initial call of disperse to convert the test case
into a stream, and the final postfix call // reify to turn the result back into a list for display.
The final results are identical to those in equation 5, but we see all the intermediate results as well,
confirming that Kalman folds over observations one at a time. We would have seen exactly the
same output had we called FoldList instead of Fold over lists above.

8The initial uncial (lower-case) letter signifies that we wrote this function; it wasn’t supplied by Wolfram.

7




0
0
0
0



1000. 0 0 0
0 1000. 0 0
0 0 1000. 0
0 0 0 1000.



−2.28214

0
0
0



0.999001 0 0 0

0 1000. 0 0
0 0 1000. 0
0 0 0 1000.



−2.28299
−0.849281
−0.849281
−0.849281




0.998669 −0.332779 −0.332779 −0.332779
−0.332779 666.889 −333.111 −333.111
−0.332779 −333.111 666.889 −333.111
−0.332779 −333.111 −333.111 666.889



−2.28749
1.40675
−5.35572
1.40675




0.998004 0 −0.997506 0
0 500.125 0 −499.875

−0.997506 0 1.49676 0
0 −499.875 0 500.125



−2.29399
7.92347
−5.34488
−5.1154




0.997508 0.49762 −0.996678 −0.498035
0.49762 1.3855 −0.829836 −0.719881

−0.996678 −0.829836 1.49538 0.830528
−0.498035 −0.719881 0.830528 0.553787



−2.97423
7.2624

−4.21051
−4.45378




0.485458 0 −0.142778 0
0 0.901908 0 −0.235882

−0.142778 0 0.0714031 0
0 −0.235882 0 0.0693839





(6)

4.2 Folding Over an Asynchronous Observable

Just as FoldList produces a list from a list, and foldStream produces a stream from a stream, foldOb-
servable produces an observable from an observable. Its full signature is

foldObservable :: AccumulatorFunction→ Accumulation
→ Observable [Observation]→ Observable [Accumulation]

Lists provide data elements distributed in space (memory). Lazy streams provide data in con-
stant memory, but distributed in a kind of virtual time, delivered when demanded, the way a
debugger fakes time. Observables provide data elements distributed asynchronously in real time.
To consume elements of an observable, subscribe an observer to it. An observer has a callback
function, and the observable will invoke the callback for each observation, asynchronously, as the
observation arrives. The callback function takes a single argument that receives the observation.

8

We do not develop observables fully, here. For that, see a reference like Campbell’s Intro to Rx.5

Instead, we content ourselves with just enough to demonstrate Kalman folding over them and, as
with lazy streams, a way to get back and forth from lists.

We model observables as stateful thunks that produce new values every time they’re invoked,
then invoke the thunks inside asynchronous Wolfram tasks that start at the moment some observer
subscribes.9

4.2.1 Subscribe :: Observable→ Observer→ Null

Wolfram supplies a primitive, RunScheduledTask, for evaluating expressions asynchronously, once
per second by default. The expression that we pass to RunScheduledTask, just calls the observer on
the evaluated observable:

subscribe[observable_, observer_] :=
RunScheduledTask[observer[observable[]]];

4.2.2 Dispense :: List→ Observable

The following is a specification of a task to run. Nothing happens till you subscribe something to
it.

dispense[aList_List] :=
Module[{state = aList},
If[{} === state,

Null, (* empty obs from empty list *)
(state = Rest[state]; First[state]]);] &]

4.2.3 Harvest :: Observable→ List

Set up a conventional, external variable, r$, so that we can interactively look at the results in a
Wolfram Dynamic[r$] form. Our harvest subscribes an observer that appends observations to a
list held in r$. Semicolon-separated expressions are sequenced, as with Scheme’s begin or Lisp’s
progn.

harvest[obl_] :=
(r$ = {};
subscribe[obl, Function[v, If[v =!= Null, AppendTo[r$, v]]]]);

We must eventually clean up the tasks and the external variable.

cleanup[] := (ClearAll[r$];
RemoveScheduledTask[ScheduledTasks[]];);

9This convention only models so-called cold observables, but it’s enough to demonstrate Kalman’s working over them.

9

4.2.4 foldObservable

The concrete type of foldObservable is obvious: just replace Stream with Observable in a copy of the
type of foldStream.

foldObservable :: AccumulatorFunction→ Accumulation
→ Observable [Observation]→ Observable [Accumulation]

One might ask about the appropriate generalization of higher-order types like this, where we
could go up a level, parameterize on types like Stream and Observable, and make the concrete types
of foldStream and foldObservable instances of that higher, parameterized type. This is a sensible
question, and the answer leads to category theory and monads,10 out of scope for this paper.

This implementation isn’t hygeinic: it uses global variables (suffixed with $ signs). It’s just
enough to test Kalman folding over observables.

foldObservable[f_, s_, obl_] :=
Module[{newObl, s$ = s},
newObl[] := With[{result = s$},

s$ = f[s$, obl[]];
result];

newObl] (* return new observable *)

4.2.5 Test

The following call has the same shape as our call of foldStream above, except calling dispense instead
of disperse and harvest instead of reify.

Dynamic[r$]
foldObservable[

kalmanStatic[IdentityMatrix[1]],
{ColumnVector[{0, 0, 0, 0}], IdentityMatrix[4]*1000.0},
dispense[{{{{1, 0., 0., 0.}}, { -2.28442}},

{{{1, 1., 1., 1.}}, { -4.83168}},
{{{1, -1., 1., -1.}}, {-10.46010}},
{{{1, -2., 4., -8.}}, { 1.40488}},
{{{1, 2., 4., 8.}}, {-40.8079}}}]

] // harvest;
r$

The results are exactly the same as in equation 6.

5 Concluding Remarks

With prototypes for foldStream and foldObservable, we have demonstrated Kalman folding with
exactly the same accumulator function over wildly different data-delivery environments. This

10https://en.wikipedia.org/wiki/Monad

10

https://en.wikipedia.org/wiki/Monad

demonstrates the primary thesis of this series of papers: that writing filters as functional folds
enables verbatim deployment of code in both friendly, synchronous environments with all data
in memory, and unfriendly asynchronous environments using only constant memory. Verbatim
means with no changes at all, not even recompilation.

We have tested these prototypes against bigger examples like the tracking example11 and the
accelerometer example,1 and there are no surprises.

11B. Beckman, Kalman Folding 2: Tracking and System Dynamics, http://vixra.org/abs/1606.0348.

11

http://vixra.org/abs/1606.0348

	Abstract
	Kalman Folding in the Wolfram Language
	A Test Example

	Types for Kalman Folding
	Over Lazy Streams and Asynchronous Observables
	Folding Over Lazy Streams
	Folding Over an Asynchronous Observable

	Concluding Remarks

