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Abstract

This document adds to the collection of solved problems presented

in [1]-[4]. After reviewing, briefly, how reflections and rotations can be

expressed and manipulated via GA, it solves the LLP limiting case of the

Problem of Apollonius in three ways.

“Given a point P between two intersecting lines, construct the circles

that are tangent to both of the lines, and pass through P”.
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Geometric-Algebra Formulas

for Plane (2D) Geometry

The Geometric Product, and Relations Derived from It

For any two vectors a and b,

a · b = b · a
b ∧ a = −a ∧ b

ab = a · b + a ∧ b

ba = b · a + b ∧ a = a · b− a ∧ b

ab + ba = 2a · b
ab− ba = 2a ∧ b

ab = 2a · b + ba

ab = 2a ∧ b− ba

Definitions of Inner and Outer Products (Macdonald A. 2010 p. 101.)

The inner product

The inner product of a j -vector A and a k -vector B is

A ·B = 〈AB〉k−j . Note that if j>k, then the inner product doesn’t exist.

However, in such a case B ·A = 〈BA〉j−k does exist.

The outer product

The outer product of a j -vector A and a k -vector B is

A ∧B = 〈AB〉k+j .

Relations Involving the Outer Product and the Unit Bivector, i.

For any two vectors a and b,

ia = −ai
a ∧ b = [(ai) · b] i = − [a · (bi)] i = −b ∧ a

Equality of Multivectors

For any two multivectors M and N ,

M = N if and only if for all k, 〈M〉k = 〈N〉k.

Formulas Derived from Projections of Vectors

and Equality of Multivectors

Any two vectors a and b can be written in the form of “Fourier expansions”

with respect to a third vector, v:

a = (a · v̂) v̂ + [a · (v̂i)] v̂i and b = (b · v̂) v̂ + [b · (v̂i)] v̂i.
Using these expansions,

ab = {(a · v̂) v̂ + [a · (v̂i)] v̂i} {(b · v̂) v̂ + [b · (v̂i)] v̂i}

Equating the scalar parts of both sides of that equation,
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a · b = [a · v̂] [b · v̂] + [a · (v̂i)] [b · (v̂i)], and

a ∧ b = {[a · v̂] [b · (v̂i)]− [a · (v̂i)] [b · (v̂i)]} i.

Also, a2 = [a · v̂]
2

+ [a · (v̂i)]2, and b2 = [b · v̂]
2

+ [b · (v̂i)]2.

Reflections of Vectors, Geometric Products, and Rotation operators

For any vector a, the product v̂av̂ is the reflection of a with respect to the

direction v̂.

For any two vectors a and b, v̂abv̂ = ba, and vabv = v2ba. Therefore,

v̂eθiv̂ = e−θi, and veθiv = v2e−θi.

A useful relationship that is valid only in plane geometry: abc = cba.

Here is a brief proof:

abc = {a · b + a ∧ b} c
= {a · b + [(ai) · b] i} c
= (a · b) c + [(ai) · b] ic

= c (a · b)− c [(ai) · b] i

= c (a · b) + c [a · (bi)] i
= c (b · a) + c [(bi) · a] i

= c {b · a + [(bi) · a] i}
= c {b · a + b ∧ a}
= cba.
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1 Introduction

This document adds to the collection of solved problems presented in [1]-[4].

After reviewing, briefly, how reflections and rotations can be expressed and ma-

nipulated via GA, it solves the LLP limiting case of the Problem of Apollonius

in three ways.

2 A brief review of reflections and rotations in

2D GA

2.1 Review of reflections

2.1.1 Reflections of a single vector

For any two vectors û and v, the product ûvû is

ûvû = {2û ∧ v + vû} û (2.1)

= v + 2 [(ûi) · v] iû (2.2)

= v − 2 [v · (ûi)] ûi, (2.3)

which evaluates to the reflection of the reflection of v with respect to û (Fig.

2.1).

Figure 2.1: Geometric interpretation of ûvû, showing why it evaluates to the

reflection of v with respect to û.

We also note that because u = |u| û,

uvu = u2 (ûvû) = u2v − 2 [v · (ui)]ui. (2.4)



2.1.2 Reflections of a bivector, and of a geometric product of two

vectors

The product ûvwû is

ûvwû = û (v ·w + v ∧w) û

= û (v ·w) û + û (v ∧w) û

= û2 (v ·w) + û [(vi) ·w] iû

= v ·w + û [−v · (wi)] (−ûi)
= v ·w + û2 [(wi) · v] i

= w · v + w ∧ v

= wv.

In other words, the reflection of the geometric product vw is wv, and does

not depend on the direction of the vector with respect to which it is reflected.

We saw that the scalar part of vw was unaffected by the reflection, but the

bivector part was reversed.

Further to that point, the reflection of geometric product of v and w is

equal to the geometric product of the two vectors’ reflections:

ûvwû = ûv (ûû)wû

= (ûvû) (ûwû) .

That observation provides a geometric interpretation (Fig. 2.2) of why reflecting

a bivector changes its sign: the direction of the turn from v to w reverses.

Figure 2.2: Geometric interpretation of ûvwû, showing why it evaluates to

the reflection of v with respect to û. Note that ûvwû = ûv (ûû)wû =

(ûvû) (ûwû).
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2.2 Review of rotations

One of the most-important rotations—for our purposes—is the one that is pro-

duced when a vector is multiplied by the unit bivector, i, for the plane: vi

is v’s 90-degree counter-clockwise rotation, while iv is v’s 90-degree clockwise

rotation.

Every geometric product bc is a rotation operator, whether we use it as

such or not:

bc = ‖b‖‖c‖eθi .

where θ is the angle of rotation from b to c. From that equation, we obtain the

identity

eθi =
bc

‖b‖‖c‖
=

[
b

‖b̂‖

] [
c

‖ĉ‖

]
= b̂ĉ .

Note that a [ûv̂] evaluates to the rotation of a by the angle from û to v̂, while

[ûv̂]a evaluates to the rotation of a by the angle from v̂ to û.

A useful corollary of the foregoing is that any product of an odd number

of vectors evaluates to a vector, while the product of an odd number of vectors

evaluates to the sum of a scalar and a bivector.

An interesting example of a rotation is the product ûv̂abv̂û. Writing that

product as (ûv̂a) (bv̂û), and recalling that any geometric product of two vectors

acts as a rotation operator in 2D (2.2), we can see why ûv̂abv̂û = ab (Fig.

2.3).

Figure 2.3: Left-multiplying a by the geometric product ûv̂ rotates a by an

angle equal (in sign as well as magnitude) to that from v̂ to û. Right-multiplying

b by the geometric product v̂û rotates b by that same angle. The orientations

of a and b with respect to each other are the same after the rotation, and the

magnitudes of a and b are unaffected. Therefore, the geometric products ab

and (ûv̂a) (bv̂û) are equal.

We can also write ûv̂abv̂û as ûv̂ [ab] v̂û, giving it the form of a rotation of

the geometric product ab. Considered in this way, the result ûv̂abv̂û = ab is

a special case of an important theorem: rotations preserve geometric products

[5].
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3 Use of reflections and rotations to solve the

LLP limiting case of the Problem of Apollo-

nius

The Problem of Apollonius is described in detail in [3]. Its LLP limiting case,

which we will solve here, is

“Given a point P between two intersecting lines, construct the circles

that are tangent to both of the lines, and pass through P” (Fig. 3.1).

Figure 3.1: Statement of the problem: “Given a point P between two intersect-

ing lines, construct the circles that are tangent to both of the lines, and pass

through P.”

Because [1]-[4] deal at length with the “translation” of such problems into

GA terms, we will go directly to the solution process here. We’ll present three

solution methods, in each of which we will identify the location of the center of

the solution circle.

The three methods’ algebraic manipulations have much in common, but

their differences are instructive. Please note that the third method makes,

perhaps, the best use of GA.

3.1 First solution method

We’ll begin by identifying key elements that can be expressed in GA terms (Fig.

3.2):

The directions of the given lines are captured as â and b̂. As our origin,

we’ve chosen the point of intersection of those lines. With respect to that

origin, the center (C) of the solution circle lies along the direction â + b̂. For

our convenience, we’ve defined a unit vector (û) in that direction. Therefore,

we can write the location of C as a scalar multiple of û:

c = λû.
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Figure 3.2: One of several possible ways to express key elements of the problem

in terms of reflections and rotations, via GA. See the text for explanation.

We then use that result to express the location of the point of tangency T :

t = λ (û · â) â.

The point P ′ is P’s reflection with respect to û. The vector from the origin to

P ′ is ûpû (Section 2.1.1). Because P ′ is P’s reflection with respect to a line

through C, P ′ belongs to the solution circle.

As discussed in [1], the angles θ are equal. Therefore, we can write (see

2.2) [
p− t

‖p− t‖

] [
p′ − t

‖p′ − t‖

]
=

[
p− c

‖p− c‖

]
(−û) . (3.1)

Using ideas presented in [1]-[4], we can transform that result into

û [p− c] [p− t] [p′ − t] = −‖p− t‖‖p′ − t‖‖p− c‖,

the right side of which is a scalar. Therefore, the according to the postulate for

the Equality of Multivectors,

〈û [p− c] [p− t] [p′ − t]〉2 = 〈−‖p− t‖‖p′ − t‖‖p− c‖〉2 = 0.

Now, we make the substitutions c = λû, p′ = ûpû, and t = λ (û · â) â to

obtain

〈û [p− λû] [p− λ (û · â) â] [ûpû− λ (û · â) â]〉2 = 0. (3.2)

Expanding,

〈ûp2ûpû− ûp2λ (û · â) â− ûpλ (û · â) âûpû

+ûpλ (û · â) âλ (û · â) â− ûλûpûpû + ûλûpλ (û · â) â

+ûλûλ (û · â) âûpû− ûλûλ (û · â) âλ (û · â) â〉2 = 0.
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To simplify that equation, we note (see 2.3 )that

ûpλ (û · â) âûpû = ûp [λ (û · â) âû]pû

= λp2 (û · â) âû.

We also note that

ûλûλ (û · â) âλ (û · â) â = λ3 (û · â)
2
,

which is a scalar. Therefore, its bivector part is zero.

Making use of such observations to find the bivector part of the left-hand

side, we obtain (after simplifying) the following quadratic equation for λ:

λ2 (û · â)
2

(û ∧ p)− λ[2 (û · p) (û ∧ p)] + p2 (û ∧ p) = 0.

The product û∧p is zero only if p is a scalar multiple of û; that is, if the given

point P lies along the centerline of the angle formed by the two given lines.

We’ll omit that possibility from consideration, and multiply both sides of the

preceding equation by (û ∧ p)
−1

to arrive at

λ2 (û · â)
2 − λ[2û · p] + p2 = 0. (3.3)

The two solutions to that quadratic are

λ =
û · p±

√
(û · p)

2 − p2 (û · â)
2

(û · â)
2 . (3.4)

To write that solution in terms of â, b̂, and p, we use the relations

û =
â + b̂

‖â + b̂‖
=

â + b̂[
2
(

1 + â · b̂
)]1

2

.

to transform (3.3) into

λ2

(
1 + â · b̂

2

)
− λ


√

2
(
â + b̂

)
· p(

1 + â · b̂
)1

2

+ p2 = 0, (3.5)

the solutions of which are

λ =
√

2


(
â + b̂

)
· p±

{[(
â + b̂

)
· p
]2
− p2

(
1 + â · b̂

)2}1

2

(
1 + â · b̂

)3

2

 . (3.6)

The two solution circles are shown in Fig. 3.3:
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Figure 3.3: The two solution circles.

3.2 Second solution method

This second solution uses only rotations, instead of a combination of rotations

and reflections. It is similar to many solutions given in [1]. Again, we’ll begin

by identifying key elements that can be expressed in GA terms (Fig. 3.4):

Figure 3.4: A second way to express key elements of the problem in terms of

GA. See the text for explanation.

We’ve made use of the fact that the two tangents drawn two a circle from

any external point are equal in length, to write that t′ = λ (û · â) b̂. Now, we

use theorems about angles and circles to write

φ =
1

2
[ψ − (2π − ψ)] ; ∴

ψ

2
− φ

2
=
π

2
.

Next, we use that relationship between ψ and φ to obtain an equation for λ.

We’ll keep in mind that û · b̂ = û · â = 1 + â · b̂, ‖û‖2 = 2
(

1 + â · b̂
)

, and
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âp + pâ = 2â · p:

e

(
ψ

2
− φ

2

)
i

= e
π

2
i{

e
ψ

2
i

}[
e
−φ

2
i

]
︸ ︷︷ ︸

=ûâ

= i

〈

{
e
ψ

2
i

}
ûâ〉0 = 〈i〉0

〈
{[

t− p

‖t− p‖

] [
t′ − p

‖t′ − p‖

]}
ûâ〉0 = 0

〈[t− p] [t′ − p] ûâ〉0 = 0

〈[λ (û · â) â− p]
[
λ (û · â) b̂− p

]
ûâ〉0 = 0

〈

[
λ

(
1 + b̂â

‖â + b̂‖

)
− p

][
λ

(
1 + âb̂

‖â + b̂‖

)
− p

](
1 + b̂â

‖â + b̂‖

)
〉0 = 0.

From here, we would expand the left-hand side, thereby arriving at (3.5).

3.3 Third solution method

Of the three solutions presented in this document, this one probably makes

the best use of GA. Again, we’ll begin by identifying key elements that can be

expressed in GA terms (Fig. 3.5). Note that the angle of rotation from iâ to

û: is half the angle ψ that was shown in Fig. 3.4:

Figure 3.5: A third way, based upon Fig. 3.4, to express key elements of the

problem in terms of GA. See the text for explanation.

As noted in 2.2, the geometric product of two unit vectors is a rotation

operator. In this solution, we’ll use the equality of the angles ψ/2 to write that
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the product [
t− p

‖t− p‖

] [
t′ − p

‖t′ − p‖

]
is an operator that rotates iâ into û:

[iâ]

[
t− p

‖t− p‖

] [
t′ − p

‖t′ − p‖

]
= û.

Now, we transform that equation into a product of four vectors that is equal to

a bivector:

[iâ]

[
t− p

‖t− p‖

] [
t′ − p

‖t′ − p‖

]
= û

−i [iâ]

[
t− p

‖t− p‖

] [
t′ − p

‖t′ − p‖

]
= −iû

−ii [â]

[
t− p

‖t− p‖

] [
t′ − p

‖t′ − p‖

]
= −iû

[â]

[
t− p

‖t− p‖

] [
t′ − p

‖t′ − p‖

]
= −iû

â

[
t− p

‖t− p‖

] [
t′ − p

‖t′ − p‖

]
= ûi

ûâ

[
t− p

‖t− p‖

] [
t′ − p

‖t′ − p‖

]
= i

ûâ [t− p] [t′ − p] = ‖t− p‖‖t′ − p‖i,

from which

〈ûâ [t− p] [t′ − p]〉0 = 0. (3.7)

The simplification of 〈ûâpb̂〉0
uses the fact that b̂âpb̂ is a

reflection of âp:

〈ûâpb̂〉0 = 〈

[
â + b̂

‖â + b̂‖

]
âpb̂〉0

= 〈 ââpb̂ + b̂âpb̂

‖â + b̂‖
〉0

= 〈pb̂ + pâ

‖â + b̂‖
〉0

=

[
â + b̂

‖â + b̂‖

]
· p

= û · p.

From 3.7, we could obtain a quadratic in λ in many ways, one of which is

the following, which uses û =
(
â + b̂

)
/‖â + b̂‖ ; û · â = û · b̂; t = λ (û · â) â:

t′ = λ (û · â) b̂; and (û · â)
2

=
(

1 + â · b̂
)
/2 :

〈ûâ [t− p] [t′ − p]〉0 = 0

〈ûâ [λ (û · â) â− p]
[
λ (û · â) b̂− p

]
〉0 = 0.

Expanding and simplifying,

〈λ2 (û · â)
2
ûb̂− λ

{
(û · â)

[
ûp + ûâpb̂

]}
+ ûâp〉 = 0

λ2 (û · â)
2
û · â︸︷︷︸
=û·b̂

−λ {(û · â) [2û · p]}+ (û · â)p = 0.

Eliminating the factor û · â,

λ2 (û · â)
2 − λ [2û · p] + (û · â)p = 0,

which is identical to 3.3.
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