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ABSTRACT

The new solutions presented herein for the CLP and CCP limiting cases of the

Problem of Apollonius are much shorter and more easily understood than those

provided by the same author in [1]-[2]. These improvements result from (1) a

better selection of angle relationships as a starting point for the solution process;

and (2) better use of GA identities to avoid forming troublesome combinations

of terms within the resulting equations.
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1 Introduction

This document shows how the CLP and CCP limiting cases can be solved more

efficiently than in the author’s previous work ( [1] - [2]). Because that work and

[3] discussed the necessary background in detail, the solutions presented here

are somewhat abbreviated.

2 Solution of the CLP Limiting Case

For detailed discussions of the ideas used in this solution, please see [1]. We’ll

show two ways of solving the problem; the second takes advantage of observa-

tions made during the first.

The CLP limiting case reads,

Given a circle C, a line L, and a point P, construct the circles that

are tangent to C and L, and pass through P.

Figure 2.1: The CLP Limiting Case of the Problem of Apollonius: Given a

circle C, a line L, and a point P, construct the circles that are tangent to C and

L, and pass through P.

The problem has two types of solutions:

• Circles that enclose C;

• Circles that do not enclose C.

There are two solution circles of each type. In this document, we’ll treat

only those that do not enclose the given circle.
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2.1 The First Solution

Fig. 2.2 shows how we will capture the geometric content of the problem. An

important improvement, compared to the solution technique presented in [1], is

that we will use rotations with respect to the vector from the given point P to

the still-unidentified center point (c2) of the solution circle.

Figure 2.2: Elements used in the first solution of the CLP limiting case.

In deriving our solution, we’ll

use the same symbol —for

example, t —to denote both a

point and the vector to that

point from the origin. We’ll rely

upon context to tell the reader

whether the symbol is being

used to refer to the point, or to

the vector.

We’ll begin our solution by deriving an expression for r2 in terms of t̂. We´ll

do so by equating two independent expressions for s, then “dotting” both sides

with ĥ, after which we’ll solve for r2:

(r1 + r2) t̂ + r2ĥ = h + λĥi[
(r1 + r2) t̂ + r2ĥ

]
· ĥ =

[
h + λĥi

]
· ĥ

(r1 + r2) t̂ · ĥ + r2ĥ · ĥ = h · ĥ + λ
(
ĥi
)
· ĥ

(r1 + r2) t̂ · ĥ + r2 = ‖h‖+ 0;

∴ r2 =
‖h‖ − r1t̂ · ĥ

1 + t̂ · ĥ
, and r1 + r2 =

‖h‖+ r1

1 + t̂ · ĥ
. (2.1)

Next, we equate two expressions for the rotation ei2φ:[
t− p

‖t− p‖

] [
c2 − p

‖c2 − p‖

]
︸ ︷︷ ︸

=eiφ

[
t− p

‖t− p‖

] [
c2 − p

‖c2 − p‖

]
︸ ︷︷ ︸

=eiφ

=
[
−t̂
] [ c2 − p

‖c2 − p‖

]
︸ ︷︷ ︸

=ei2φ

,

from which

[t− p] [c2 − p] [t− p]
[
t̂
]

= some scalar,

∴ 〈[t− p] [c2 − p] [t− p]
[
t̂
]
〉2 = 0. (2.2)
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Using the identity ab ≡ 2a ∧ b + ba, we rewrite 2.2 as

〈(2 [t− p] ∧ [c2 − p] + [c2 − p] [t− p]) [t− p]
[
t̂
]
〉2 = 0,

〈(2 [t− p] ∧ [c2 − p]) [t− p]
[
t̂
]

+ [t− p]
2

[c2 − p]
[
t̂
]
〉2 = 0, and

〈(2 [t− p] ∧ [c2 − p]) [t− p]
[
t̂
]
〉2 + 〈[t− p]

2
[c2 − p]

[
t̂
]
〉2 = 0. (2.3)

Now, we note that

〈(2 [t− p] ∧ [c2 − p]) [t− p]
[
t̂
]
〉2 = 2 ([t− p] ∧ [c2 − p])

(
[t− p] ·

[
t̂
])
,

and 〈[t− p]
2

[c2 − p]
[
t̂
]
〉2 = [t− p]

2 (
[c2 − p] ∧

[
t̂
])
.

Note how the factor p ∧ t̂

canceled out in Eq. (2.4). That

cancellation suggests an

improvement that we’ll see in

our second solution of the CLP

case.

Because t = r1t̂ and c2 = (r1 + r2) t̂, t ∧ c2 = 0. We can expand [t− p]
2

as

r1
2 − 2p · t + p2. Using all of these ideas, (2.3) becomes (after simplification)

2r2
(
r1 − p · t̂

)
p ∧ t̂ +

(
r1

2 − 2p · t + p2
)
p ∧ t̂ = 0. (2.4)

For p ∧ t̂ 6= 0, that equation becomes

2r2
(
r1 − p · t̂

)
+ r1

2 − 2p · t + p2 = 0.

Substituting the expression that we derived for r2 in (2.1), then expanding and

simplifying,

2 (‖h‖+ r1)p · t̂−
(
p2 − r12

)
ĥ · t̂ = 2‖h‖r1 + r1

2 + p2.

Finally, we rearrange that result and multiply both sides by r1‖h‖, giving the

equation that we derived in [1]:{
2
(
r1‖h‖+ h2

)
p−

(
p2 − r12

)
h
}
· t = 2h2r1

2 + r1‖h‖
(
r1

2 + p2
)
. (2.5)

2.2 The Second Solution: Learning From and Building

Upon the First

In Eq. (2.4), we saw how the factor p∧t̂ canceled out. That cancellation suggests

that we might solve the problem more efficiently by expressing rotations with

respect to the unknown vector t̂, rather than to a vector from P to c2 (Fig.

2.3).

For this new choice of vectors, our equation relating two expressions for

the rotation ei2φ is:[
t̂
] [ p− t

‖p− t‖

]
︸ ︷︷ ︸

=eiφ

[
t̂
] [ p− t

‖p− t‖

]
︸ ︷︷ ︸

=eiφ

=
[
t̂
] [ p− c2
‖p− c2‖

]
︸ ︷︷ ︸

=ei2φ

,

from which

[p− t]
[
t̂
]

[p− t] [p− c2] = some scalar,

∴ 〈[p− t]
[
t̂
]

[p− t] [p− c2]〉2 = 0. (2.6)
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Figure 2.3: Elements used in the second solution of the CLP Limiting Case:

rotations are now expressed with respect to the unknown vector t̂, rather than

to a vector from P to c2.

Using the identity ab ≡ 2a ∧ b + ba, we rewrite 2.6 as

〈
(
2 [p− t] ∧

[
t̂
]

+
[
t̂
]

[p− t]
)

[p− t] [p− c2]〉2 = 0, and

〈
(
2 [p− t] ∧

[
t̂
])

[p− t] [p− c2]〉2 + 〈[p− t]
2 [

t̂
]

[p− c2]〉2 = 0. (2.7)

Now, we note that

〈
(
2 [p− t] ∧

[
t̂
])

[p− t] [p− c2]〉2 =
(
2 [p− t] ∧

[
t̂
])

[p− t] · [p− c2] ,

and 〈[p− t]
2 [

t̂
]

[p− c2]〉2 = [p− t]
2 [

t̂
]
∧ [p− c2] .

Because t = r1t̂ and c2 = (r1 + r2) t̂, t ∧ c2 = 0. We can expand [p− t]
2

as

p2 − 2p · t + r1
2. Using all of these ideas, (2.7) becomes (after simplification)

2 ([p− t] · [p− c2])p ∧ t−
(
p2 − 2p · t + r1

2
)
p ∧ t = 0.

For p ∧ t̂ 6= 0, that equation becomes, after expanding [p− t] · [p− c2] and

further simplifications,

p2 − r12 − 2p · c2 + 2t · c2 = 0.

Now, recalling that c2 = (r1 + r2) t̂, we substitute the expression that we

derived for r1 + r2 in (2.1), then expand and simplify to obtain (2.5). This

solution process has been a bit shorter than the first because (2.7) was so easy

to simplify.

3 Solution of the CCP Limiting Case

In this solution, we’ll follow the example of Section 2.2, and use rotations with

respect to the vector t̂. For detailed discussions of the ideas used in this solution,

please see [2].
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The CCP limiting case reads,

“Given two circles and a point P, all coplanar, construct the circles that

pass through P and are tangent, simultaneously, to the given circles.” (Fig. 3.1).

Figure 3.1: The CCP limiting case of the Problem of Apollonius: “Given two

circles (C1, C2) and a point P, all coplanar, construct the circles that pass

through P and are tangent, simultaneously, to the given circles.”

We´ll derive the solution for the solution circles that enclose either both

of the given ones, or neither. Fig. 3.2 shows how we’ll capture the geometric

content. As in the CLP case, we can find both solution circles of this type by

analyzing the diagram for just one of them.

Figure 3.2: Elements used in the solution of the CCP limiting case.

We begin the solution by deriving an expression for r3 in terms of t̂ and

the given quantities. From two independent equations for c3,

(r1 + r3) t̂ = c3 = c2 + (r2 + r3) ŵ,
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we proceed as follows:

(r1 + r3) t̂− c2 = (r2 + r3) ŵ[
(r1 + r3) t̂− c2

]2
= [(r2 + r3) ŵ]

2

(r1 + r3)
2 − 2 (r1 + r3) c2 · t̂ + c2

2 = (r2 + r3)
2

∴ r3 =
c2

2 + r1
2 − r22 − 2r1c2 · t̂

2
(
r2 − r1 + c2 · t̂

) ,

and r1 + r3 =
c2

2 − (r2 − r1)
2

2
(
r2 − r1 + c2 · t̂

) . (3.1)

Next, we equate two expressions for the rotation ei2θ:[
p− t

‖p− t‖

] [
t̂
]

︸ ︷︷ ︸
=eiθ

[
p− t

‖p− t‖

] [
t̂
]

︸ ︷︷ ︸
=eiθ

=

[
p− c3
‖p− c3‖

] [
t̂
]

︸ ︷︷ ︸
=ei2θ

,

from which

[p− t]
[
t̂
]

[p− t] [p− c3] = some scalar,

∴ 〈[p− t]
[
t̂
]

[p− t] [p− c3]〉2 = 0. (3.2)

Using the identity ab ≡ 2a ∧ b + ba, we rewrite 3.2 as

〈
(
2 [p− t] ∧

[
t̂
]

+
[
t̂
]

[p− t]
)

[p− t] [p− c3]〉2 = 0, and

〈
(
2 [p− t] ∧

[
t̂
])

[p− t] [p− c3]〉2 + 〈[p− t]
2 [

t̂
]

[p− c3]〉2 = 0. (3.3)

Now, we note that

〈
(
2 [p− t] ∧

[
t̂
])

[p− t] [p− c3]〉2 =
(
2 [p− t] ∧

[
t̂
])

[p− t] · [p− c3]

and 〈[p− t]
2 [

t̂
]

[p− c3]〉2 = [p− t]
2 [

t̂
]
∧ [p− c3] .

Because t = r1t̂ and c3 = (r1 + r3) t̂, t ∧ c3 = 0. We can expand [p− t]
2

as

p2 − 2p · t + r1
2. Using all of these ideas, (3.3) becomes (after simplification)

2 ([p− t] · [p− c3])p ∧ t−
(
p2 − 2p · t + r1

2
)
p ∧ t = 0.

For p ∧ t̂ 6= 0, that equation becomes, after further simplification,

p2 − r12 − 2p · c3 + 2t · c3 = 0.

Recalling that c3 = (r1 + r[3]) t̂, and substituting the expression that we derived

for r1 + r3 in (3.1), then expanding and simplifying,[
c22 − (r2 − r1)

2
]
p · t̂−

(
p2 − r12

)
c2 · t̂ = (r2 − r1)

(
p2 − r2r1

)
+ r1c

2
2.

Finally, we rearrange that result and multiply both sides by r1, giving{[
c22 − (r2 − r1)

2
]
p−

(
p2 − r12

)
c2

}
· t = r1

[
(r2 − r1)

(
p2 − r2r1

)
+ r1c

2
2

]
. (3.4)
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Defining u =
[
c22 − (r2 − r1)

2
]
p −

(
p2 − r12

)
c2, we can transform that result

into

P û (t) =
r1
[
(r2 − r1)

(
p2 − r2r1

)
+ r1c

2
2

]
‖u‖

, (3.5)

where P û (t) is the projection of t upon û . As described in detail in [2], there

are two vectors that fulfill that condition. Labeled t̂ and t̂
′

in Fig. 3.3, they are

the vectors from the center of C1 to the points of tangency with the two solution

circles shown. Readers are encouraged to derive this same solution using the

Figure 3.3: The solution circles that enclose both of the givens, and that enclose

neither. See text for definitions of u and P û (t).

magenta circle as the starting point.
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