Abstract

This note discusses an absurdity that is rooted in the modern physics interpretation of Einstein’s relativistic mass formula when \(v \) is very close to \(c \). Modern physics (and Einstein himself) claimed that the speed of a mass can never reach the speed of light. Yet at the same time they claim that it can approach the speed of light without any upper limit on how close it could get to that special speed. As we will see, this leads to some absurd predictions. Because even if a material system cannot reach the speed of light, an important question is then, How close can it get to the speed of light? Is there really no clear-cut bound on the exact speed limit for an electron, as an example?

Key words: Relativistic mass, maximum velocity of subatomic particles, boundary condition, Haug maximum velocity.

1 Introduction

Einstein’s relativistic energy mass formula [1, 2] is given by

\[
\frac{m c^2}{\sqrt{1 - \frac{v^2}{c^2}}}
\]

(1)

Further, Einstein commented on his own formula

This expression approaches infinity as the velocity \(v \) approaches the velocity of light \(c \). The velocity must therefore always remain less than \(c \), however great may be the energies used to produce the acceleration.

Carmichael (1913) [3] came up with a similar statement in relation to Einstein’s theory:

The velocity of light is a maximum which the velocity of a material system may approach but never reach.

We certainly agree with Einstein’s formula\(^2\). Our question is, How close can \(v \) be to \(c \)? Modern physics says nothing about this, except that it can approach \(c \), but never reach \(c \). Does this mean that one can make it as close to \(c \) as one wants? This is what we will look into here, and we will show that without a more specific boundary condition on \(v \) this can lead to truly absurd predictions.

Einstein’s relativistic mass equation predicts that a mass will keep increasing as the velocity of the mass approaches the velocity of the speed of light. If \(v = c \), then the mass would become infinite. Einstein and others have given an ad hoc solution to the problem, namely in claiming that indeed the relativistic mass never can become infinite, as this would require an infinite amount of energy for the acceleration. Still, they also seems to claim that the speed of subatomic particles can get as close to \(c \) as one would want.

\(^*\)e-mail espenhaug@mac.com. Thanks to Victoria Terces for helping me edit this manuscript. Also thanks to Alan Lewis, Daniel Duffy, ppauper and AvT for useful tips on how to do high precision calculations.

\(^2\)As a matter of fact, I have proven that Einstein’s formula is consistent with atomism, a belief system that I have reason to believe contains the ultimate depth of reality.
2 The Absurdity of the Electron Following Modern Physics’ Incomplete Relativistic Mass Interpretation

An electron is a very small so-called fundamental particle with a rest mass of approximately $m_e \approx 9.10938 \times 10^{-31} \text{ kg}$. Next let’s look at the relativistic mass of the electron as v approaches, but never reaches, the speed of light.

Absurd Moon Mass Electron

Assume an electron is accelerated (by for example a giant exploding star, or by the core of a galaxy) to the following velocity

$$v = c \times 0.99
Velocity of electron

\[\frac{923 \times 10^{-120} \text{ (9 ns in front)}}{884 \times 10^{-122} \text{ (9 ns in front)}} = \text{rest mass off} \]

<table>
<thead>
<tr>
<th>Velocity of electron</th>
<th>Relativistic electron mass</th>
<th>Kinetic energy: (^a)</th>
<th>Ton TNT equivalent: (^b)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(923 \times 10^{-120}) (9 ns in front)</td>
<td>Moon</td>
<td>(6.597 \times 10^{37}) J</td>
<td>(1.58 \times 10^{30})</td>
</tr>
<tr>
<td>(884 \times 10^{-122}) (9 ns in front)</td>
<td>Earth</td>
<td>(5.375 \times 10^{41}) J</td>
<td>(1.28 \times 10^{32})</td>
</tr>
<tr>
<td>(895 \times 10^{-133}) (9 ns in front)</td>
<td>Sun</td>
<td>(1.787 \times 10^{42}) J</td>
<td>(4.27 \times 10^{37})</td>
</tr>
<tr>
<td>(895 \times 10^{-145}) (9 ns in front)</td>
<td>Milky Way</td>
<td>(1.787 \times 10^{49}) J</td>
<td>(4.27 \times 10^{49})</td>
</tr>
</tbody>
</table>

Table 1: The table shows the kinetic energy for an electron traveling at various velocities below the speed of light.

\(^a\)The Kinetic energy is calculated as \(E_k = \frac{mc^2}{\sqrt{1 - \frac{v^2}{c^2}}} - mc^2\).

\(^b\)One ton TNT equivalent is about 4.184 giga joules.

Maybe such fast-traveling electrons exist, but they are very uncommon and therefore have a very low probability of occurring? What if, as a counterpoint, a single electron wiped the dinosaurs out? Are we doomed? And why have we not heard physicists discussing such velocities for electrons? Perhaps they simply dont like to talk about such things, as they have no good explanations on why such very fast electrons have never been observed.

3 A Simple Solution to the Absurdity that Saves Einstein’s Relativistic Mass Formula

Einstein’s special relativity formula is perfectly correct, but it lacks an exact boundary condition on the velocity for mass. Such a boundary condition has recently been derived by Haug\(^5\)\(^,\)\(^6\)\(^,\)\(^7\). The maximum velocity any subatomic particle can take is given by

\[v_{max} = \frac{c}{\sqrt{1 - \frac{l_p^2}{\lambda^2}}}\] \(\text{(2)}\)

where \(\lambda\) is the reduced Compton wavelength of the mass in question, and \(l_p\) is the Planck length \(^8\). When inserted into Einstein’s relativistic mass equation, this show that the maximum relativistic mass that any “fundamental” particle can take actually is the Planck mass. The Planck mass is approximately \(2.17651 \times 10^{-8}\) kg. It is enormous compared to the electron, but still it is miniscule compared to the mass of the Moon, Earth or the Sun. Further, the Planck mass only can last for an instant, as pointed out by Haug. In other words, this seems to make perfect sense.

Further, an electron can travel at a velocity very close to that of the speed of light, but its maximum velocity will still be significantly below what is described above. The maximum velocity for an electron is

\[v_{max} = c \sqrt{1 - \frac{l_p^2}{X^2}} = c \times 0.9912416\] \(\text{(3)}\)

Because there is some uncertainty in both the exact Planck length and the reduced Compton wavelength there is some uncertainty around this velocity, but it must be very close to this. We can rest assured that the electron (or any other mass) can never reach a relativistic mass close to even one kg, so there is no chance that a single electron will cause much harm no matter how fast it is accelerated. This is because there is a maximum velocity that limits both its kinetic energy and its relativistic mass.

Will modern physics accept the existence of a maximum speed limit for subatomic masses based on atomism or will they keep holding on to their absurd beliefs? If they dont accept the maximum velocity for subatomic particles given by atomism, then they must accept the following absurdities:

- That there is a wavelength shorter than the Planck length. Something that is highly unlikely and impossible under atomism.
- That there is a maximum frequency higher than the Planck frequency. Something that is highly unlikely and impossible under atomism.
- That an electron can take a relativistic mass similar to that of the Moon, the Earth, the Sun, and even the Milky Way, or even larger masses. This is, at best, truly absurd! Our theory shows that no subatomic particle can take a relativistic mass higher than the Planck mass.
- That there is no limit on the relativistic Doppler shift. This is also highly unlikely. Haug \(^6\) has shown that the limit here is the Planck frequency Doppler shift.
• For a subatomic particle, there is a momentum close to infinity. This is absurd. The maximum momentum of a subatomic particle is actually just below the Planck momentum.
• For a subatomic particle, there is a kinetic energy close to infinity. This is, again, absurd. The newly introduced maximum velocity puts a series of limits on subatomic “fundamental particles”:
 • The maximum frequency is the Planck frequency: \(f_{\text{max}} = \frac{2c}{\hbar p} \).
 • The maximum relativistic Doppler shift is equal to the Planck frequency.
 • The maximum relativistic mass a subatomic particle can take is the Planck mass.
 • The maximum relativistic momentum a subatomic particle can take is just below the Planck momentum.
 • The maximum kinetic energy a subatomic particle can take is close to \(\frac{\bar{h}}{\lambda_p} \).
 • The maximum relativistic length contraction of a subatomic particle is \(2\lambda_p \), which is the length of the Planck mass.

4 Ways to Write the Maximum Velocity Formula

There are several ways to write the maximum velocity for subatomic particles that will all give the same answer; here we present some of them

In terms of reduced Compton wavelength:

\[
v_{\text{max}} = c\sqrt{1 - \frac{l_p^2}{\lambda^2}}
\]

(4)

In terms of particle mass

\[
v_{\text{max}} = c\sqrt{1 - \frac{m^2}{m_p^2}}
\]

(5)

where \(m \) is the rest mass of the particle and \(m_p \) is the Planck mass.

As a function of Newton’s gravitational constant

\[
v_{\text{max}} = c\sqrt{1 - \frac{Gm^2}{hc}}
\]

(6)

All these formulas are basically the same, but require somewhat different input:

\[
v_{\text{max}} = c\sqrt{1 - \frac{l_p^2}{\lambda^2}} = c\sqrt{1 - \frac{m^2}{m_p^2}} = c\sqrt{1 - \frac{Gm^2}{hc}}
\]

(7)

Electron the maximum velocity

For an electron, the maximum velocity can be written as function of the dimensionless gravitational coupling constant \(^3\)

\[
v_{\text{max}} = c\sqrt{1 - \alpha_G}
\]

(8)

this is no surprise, since the dimensionless gravitational coupling constant is given by \(\alpha_G = \frac{m_e^2}{m_p} = \frac{l_p^2}{\lambda_e^2} \).

5 Conclusion

We conclude that simply by saying that a mass must travel more slowly than the speed of light, but when it can approach the speed of light, we may get absurd predictions such as the idea that an electron could attain a relativistic mass equal to the rest mass of the Moon, the Earth, the Sun, and even the Milky Way or entire galaxy clusters. Haug has recently addressed this absurdity by showing that there must be a precise maximum velocity for anything with mass given by \(v_{\text{max}} = c\sqrt{1 - \frac{l_p^2}{\lambda^2}} \).

\(^3\)For information about the dimensionless gravitational coupling constant see [9, 10, 11, 4].
References

