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Abstract

In our previous work [1], we defined the method for computing general limits
of functions at their singular points and showed that it is useful for calculating
divergent integrals, the sum of divergent series and values of functions in their
singular points. In this paper, we have described that method and we will use
it to calculate the area of Torricelli's trumpet or Gabriel's horn, the sum of the
reciprocals of the primes and factorials of negative integers.
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1 Introduction

Divergent series and divergent integrals have appeared in mathematics for a long
time. Mathematicians have devised various means of assigning finite values to such
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series and integrals, although intuition suggests that the answer is infinity or it does
not exist. Method for computing general limits of functions at their singular points,
discovered in our previous work [1], will permit us to use the method of partial sums
for calculating sums of divergent series and Newton - Leibniz formula for calculat-
ing divergent integrals, which is the new and surprising result. We also showed that
our method is the strongest method around for summing divergent series and it is
superior to other known methods; for more details we refer the reader to [2]. As for
prerequisites, the reader is expected to be familiar with real and complex analysis in
one variable.

In Section 2 we describe the method for computing general limits of functions at their
singular points and show how that method may be used for assigning finite values to
divergent series and divergent integrals. In this section, we present definitions and
theorems with proofs because paper, [1] where the method is discovered, is not writ-
ten in English.

In Sections 3, 4 and 5 we have compiled some of the standard facts on an area of
Torricelli's trumpet or Gabriel's horn, the sum of the reciprocals of the primes and
factorials of negative integers, respectively. In those sections, we assign finite values
to an infinite area of Torricelli's trumpet or Gabriel's horn, the sum of divergent
series of the reciprocals of the primes and Gamma function at their singular points,
respectively. Gamma function extends factorials to real and even complex numbers.
The gamma function is undefined for zero and negative integers, from which we can
conclude that factorials of negative integers do not exist.

2 Method for Computing General Limits of Func-

tions at Their Singular Points

Definition 2.1 Let f be a function and has a series expansion about the point a ∈
C
⋃
∞. We will denote by limD

z→a f(z) the general limit of function f at point a and
define

limD
z→af(z) = c,

where c is constant term of any series expansion of f about a.

Example 2.1 The series expansions of sin z, cos z and ez at infinity are same these
functions and we considered that constant terms of their series expansions are 0. By
previous definition,

D

lim
z→∞

sin z =
D

lim
z→∞

cos z =
D

lim
z→∞

ez = 0.
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Example 2.2 Let us find the general limit of Riemann zeta function as z approaches
1. The Laurent series expansions of a function ζ(z) about z = 1 is the series 1

z−1
+

γ−γ1(z−1)+ 1
2
γ2(z−1)2− 1

6
γ3(z−1)3 + 1

24
γ4(z−1)4 +O((z−1)5), where γ is Euler-

Mascheroni constant and γn is the nth Stieltjes constant. By previous definition,

D

lim
z→1

ζ(z) = γ.

Definition 2.2 Let f be a function and has a series expansion about the point ∞.
We will denote by limD

z→∞(α) f(z), limD
z→∞(α)+ f(z) and limD

z→∞(α)− f(z) the general
limit, upper general limit and lower general limit of a function f(z) as z approaches
to ∞ over radial line lα,∞ = {r · eiα|r ∈ R}, α ∈ [0, 2π), respectively, and define

D

lim
z→∞(α)+

f(z) =
D

lim
z→+eiα∞

f(z) =
D

lim
r→∞(0)+

f(r · eiα) =
D

lim
r→+∞

f(r · eiα),

D

lim
z→∞(α)−

f(z) =
D

lim
z→−eiα∞

f(z) =
D

lim
r→∞(0)−

f(r · eiα) =
D

lim
r→−∞

f(r · eiα),

D

lim
z→∞(α)

f(z) =
1

2
(

D

lim
z→∞(α)+

f(z) +
D

lim
z→∞(α)−

f(z)) =
D

lim
r→∞(0)

f(r · eiα).

Definition 2.3 Let f be a function and has a series expansion about the point a ∈
C. We will denote by limD

z→a(α) f(z), limD
z→a(α)+ f(z) and limD

z→a(α)− f(z) the general
limit, upper general limit and lower general limit of a function f(z) as z approaches
to a over radial line lα,a = {a+ r · eiα|r ∈ R}, α ∈ [0, 2π), respectively, and define

D

lim
z→a(α)+

f(z) =
D

lim
z→a+eiα0

f(z) =
D

lim
r→0(0)+

f(a+ r · eiα) =
D

lim
r→0+

f(a+ r · eiα),

D

lim
z→a(α)−

f(z) =
D

lim
z→a−eiα0

f(z) =
D

lim
r→0(0)−

f(a+ r · eiα) =
D

lim
r→0−

f(a+ r · eiα),

D

lim
z→a(α)

f(z) =
1

2
(

D

lim
z→a(α)+

f(z) +
D

lim
z→a(α)−

f(z)) =
D

lim
r→0(0)

f(a+ r · eiα).

Definition 2.4 Let f be a function and has a pole of order m ∈ N at a ∈ C
⋃
∞.

Define

limD
z→+∞Pn(z) =

∫ 0

−1

Pn(z)dz,

limD
z→−∞Pn(z) =

∫ 1

0

Pn(z)dz,

limD
z→∞(0)Pn(z) =

1

2

∫ 1

−1

Pn(z)dz,
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limD
z→0+Pn

(1

z

)
=

∫ −1

−∞
Pn

(1

z

)
· 1

z2
dz,

limD
z→0−Pn

(1

z

)
=

∫ +∞

1

Pn

(1

z

)
· 1

z2
dz,

limD
z→0(0)Pn

(1

z

)
=

1

2

∫ −1

1

Pn

(1

z

)
· 1

z2
dz,

D

lim
z→a(α)

f(z) =
D

lim
z→a(α)

F1(z) + c0,

where Pn(z) = anz
n + an−1z

n−1 + · · ·+ a1z+ a0 is polynomial of degree n ≥ 0, c0 is a
constant term and F1(z) is the principal part of a Laurent series expansion of f at a.

Example 2.3 Let us find the general limit of a Riemann zeta function as z ap-
proaches 1 over radial line l0,1, where l0,1 is real axis. The Laurent series expansions
of a function ζ(z) about z = 1 is the series 1

z−1
+γ−γ1(z−1) + 1

2
γ2(z−1)2− 1

6
γ3(z−

1)3 + 1
24
γ4(z − 1)4 +O((z − 1)5), where γ is Euler-Mascheroni constant and γn is the

nth Stieltjes constant. By previous definitions,

D

lim
z→1(0)

ζ(z) =
D

lim
z→1(0)

1

z − 1
+γ =

D

lim
r→0(0)

1

1 + r − 1
+γ =

1

2

∫ −1

1

1

r
· 1

r2
dr+γ = 0+γ = γ.

Example 2.4 Let us find the sum of divergent series
∑∞

n=1 1 = 1+1+1+1+···+1+···.
Thus, by previous definition,

∞∑
n=1

1 =
D

lim
m→+∞

m∑
n=1

1 =
D

lim
m→+∞

m =

∫ 0

−1

mdm =
−1

2
.

Example 2.5 Let us find the sum of divergent series
∑∞

n=1 n
k = 1k + 2k + 3k + 4k +

· · · + mk + · · ·, where k is positive integer. By Faulhaber’s formula,
∑m

n=1 n
k =

1
k+1

∑k
n=0(−1)n

(
k+1
n

)
Bnm

k+1−n since B1 = −1
2
, where Bn denotes the nth Bernoulli

number. Therefore
∑∞

n=1 n
k = limD

m→+∞
∑m

n=1 n
k = limD

m→+∞( 1
k+1

∑k
n=0(−1)n

(
k+1
n

)
Bnm

k+1−n) =∫ 0

−1
( 1
k+1

∑k
n=0(−1)n

(
k+1
n

)
Bnm

k+1−n)dm = 1
k+1

∑k
n=0(−1)n

(
k+1
n

)
Bn

∫ 0

−1
mk+1−ndm =

− 1
k+1

∑k
n=0(−1)n

(
k+1
n

)
Bn

(−1)k+2−n

k+2−n = − 1
k+1

∑k
n=0

(
k+1
n

)
Bn

(−1)k

k+2−n = (−1)k

k+1
·(−

∑k
n=0

(
k+1
n

)
Bn

k+2−n) =
(−1)k

k+1
·Bk+1 by recurrence equation for Bernoulli numbers and previous definition. We

have
∞∑
n=1

nk = −Bk+1

k + 1

since k ∈ N, because the odd Bernoulli numbers are zero.
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Theorem 2.1 If f is a function and has a pole of order 1 at a ∈ C
⋃
∞ and if c0 is

a constant term of a Laurent series expansion of f at a, then

D

lim
z→a(α)

f(z) = c0, α ∈ [0, 2π).

Proof: By previous definition, limD
z→a(α) f(z) = limD

z→a(α) F1(z)+c0 = limD
z→a(α)

c−1

z−a+

c0 = limD
r→0(0)

c−1

a+reiα−a + c0 = 1
2

∫ −1

1
c−1

reiα
· 1
r2
dr + c0 = c−1

2eiα

∫ −1

1
1
r3
dr + c0 = 0 + c0 = c0,

where F1(z) is the principal part of a Laurent series expansion of f at a. Similarly
we can prove that the theorem holds for a =∞. �

Example 2.6 Let us find the general limit of a Gamma function, denoted by Γ(z),
as z approaches 0 over radial line l0,0, where l0,0 is real axis. The Laurent series
expansions of a function Γ(z) about z = 0 is the series 1

z
−γ+ 1

12
(6γ2+π2)z+ 1

6
z2(−γ3−

γπ2

2
+ ψ()()) + 


z(γ + γπ + π


− γψ()()) + 


z(−γ − γπ − γπ +

γψ()()+πψ()()+ψ()())+O(z), where γ is Euler-Mascheroni constant
and ψ()(z) is the nth derivative of the digamma function. By previous theorem,

D

lim
z→0(0)

Γ(z) =
D

lim
z→0

Γ(z) = −γ.

Definition 2.5 Let f be a function and has a series expansion about the point a ∈
C
⋃
∞ and does not have a pole at a.

D

lim
z→a(α)+

f(z) = c (
D

lim
z→a(α)−

f(z) = c)

if limz→a(α)+ f(z) (limz→a(α)− f(z)) is infinite or does not exist, where c is a constant
term of any series expansion of f about a; otherwise

D

lim
z→a(α)+

f(z) = lim
z→a(α)+

f(z) (
D

lim
z→a(α)−

f(z) = lim
z→a(α)−

f(z)).

Example 2.7 Let us find the sum of the harmonic series which are divergent. We
have

∑∞
n=1

1
n

= limD
m→+∞

∑m
n=1

1
n

= limD
m→+∞Hm, where Hm is harmonic number.

Therefore, by previous definition,

∞∑
n=1

1

n
= γ,

where γ is Euler-Mascheroni constant, because the series expansions of a function Hm

about m =∞ is the series (γ − ln( 1
m

)) + 1
2m
− 1

12m2 + 1
120m4 − 1

252m6 +O(( 1
m

)7), where
ln(z) is natural logarithm.
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Example 2.8 Let us find the sum of divergent series
∑∞

n=1(n − 1)! = 0! + 1! +
2! + 3! + · · · + (n − 1)! + · · ·. We have

∑∞
n=1(n − 1)! = limD

m→+∞
∑m

n=1(n − 1)! =
limD

m→+∞(−1)mm!!(−m−1)+!(−2)+1, where n!! is the double factorial function and
!n is subfactorial function. Therefore, by previous definition,

∞∑
n=1

(n− 1)! ≈ 0.697175 + 1.15573 · i,

because the constant term of a series expansion of function (−1)mm!!(−m−1)+!(−2)+

1 about∞ are 1+Γ(−1,−1)
e

= 0.69717488323506606876547868191955159531717543095436951732...+
1.1557273497909217179100931833126962991208510231644158204... · i, where Γ(a, z)
is the incomplete gamma function.

Example 2.9 Let us find the finite value of divergent integral
∫ +∞

0
sinxdx. We have∫ +∞

0
sinxdx = (− cosx)|+∞0 = limD

x→+∞(− cosx)+cos 0. Thus, by previous definition,∫ +∞

0

sinxdx = 0 + 1 = 1,

because the series expansions of − cosx at ∞ are − cosx = − cosx+ 0.

Example 2.10 Let us find the finite value of divergent integral
∫ +∞

0
lnx sinxdx,

where lnx is natural logarithm. We have
∫ +∞

0
lnx sinxdx = (Ci(x)− lnx cosx)|+∞0 =

limD
x→+∞(Ci(x)− lnx cosx)− limD

x→0(Ci(x)− lnx cosx) = 0− γ = −γ, where Ci(x)
is cosine integral and γ is Euler-Mascheroni constant. Thus, by previous definition,∫ +∞

0

lnx sinxdx = 0− γ = −γ,

because the series expansions of Ci(x) − lnx cosx at ∞ are cosx(ln 1
x

+ O(( 1
x
)7)) +

cosx(−( 1
x
)2+ 6

x4
−120

x6
+O(( 1

x
)7))+sinx( 1

x
− 2
x3

+ 24
x5

+O(( 1
x
)7))+O(( 1

x
)9)−iπb1

2
−arg(x)

π
c+0

and the series expansions of Ci(x)− lnx cosx at 0 are γ + 1
4
x2(2 lnx− 1) + 1

96
x4(1−

4 lnx) + 1
4320

x6(6 lnx− 1) +O(x7).

Theorem 2.2 If f is a function and has a pole of order m ∈ N at a ∈ C
⋃
∞ and if

c0 is a constant term of a Laurent series expansion of f at a, then limD
z→af(z) is a

mean value of general limits limD
z→a(α) f(z), α ∈ [0, 2π).

Proof: Let us first prove that the theorem holds for a ∈ C. By previous defi-
nitions and the first mean value theorem for definite integrals, limD

z→a f(z) = 1
2π
·∫ 2π

0
limD

z→a(α) f(z)dα = 1
2π
·
∫ 2π

0
limD

z→a(α) F1(z)dα+ c0 = 1
2π
·
∫ 2π

0
1
2
(limD

z→a(α)+ F1(z) +

limD
z→a(α)− F1(z))dα+c0 = 1

2π
·
∫ 2π

0
1
2
(limD

r→0+ F1(a+reiα)+limD
z→a(α)− F1(a+reiα))dα+
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c0 = 1
2π
·
∫ 2π

0
1
2
(limD

r→0+
∑−1

k=−m ck(a+reiα−a)k+limD
r→0+

∑−1
k=−m ck(a+reiα−a)k)dα+

c0 = 1
2π
·
∫ 2π

0
1
2
(
∫ −1

−∞
∑−1

k=−m ck(re
iα)kdr +

∫ +∞
1

∑−1
k=−m ck(re

iα)kdr)dα + c0 = 1
2π
·∫ 2π

0
1
2

∑−1
k=−n ck

1+(−1)k

−k+1
eiαkdα+c0 = 1

2π
· 1

2

∑−1
k=−n ck

1+(−1)k

−k+1

∫ 2π

0
eiαkdα+c0 = 0+c0 = c0,

where F1(z) is the principal part of a Laurent series expansion of f at a. Similarly
we can prove that the theorem holds for a =∞. �

3 Area of Torricelli’s Trumpet or Gabriel’s Horn

Torricelli’s Trumpet, also called Gabriel’s Horn, a mathematical figure that stretched
to infinity but was not infinitely big is the surface of revolution obtained by rotating
the graph of the function f(x) = 1

x
on the interval [1,∞) around the x-axis. Using

integration, it is possible to find the surface area A:

A = 2π

∫ +∞

1

1

x
·
√

1 +
[(1

x

)′]2

dx = 2π

∫ +∞

1

1

x
·
√

1 +
1

x4
dx ≥ 2π

∫ +∞

1

1

x
dx = +∞.

Let us find the finite value of divergent integral A = 2π
∫ +∞

1
1
x
·
√

1 + 1
x4
dx. We have

2π
∫ +∞

1
1
x
·
√

1 + 1
x4
dx = 2π

(√
1
x4

+1x2 sinh−1(x2)
2
√
x4+1

− 1
2

√
1
x4

+ 1

) ∣∣∣+∞
1

. Thus, limD
x→+∞ 2π

(√
1
x4

+1x2 sinh−1(x2)

2
√
x4+1

−

1
2

√
1
x4

+ 1
)
−limx→1 2π

(√
1
x4

+1x2 sinh−1(x2)

2
√
x4+1

−1
2

√
1
x4

+ 1
)

= 1
2
π ln(4)−π−2π(1

2
sinh−1(1)−

1√
2
) ≈ 0.70996, where ln(z) is natural logarithm and sinh−1(z) is the inverse hyper-

bolic sine function, because the series expansions of 2π
(√

1
x4

+1x2 sinh−1(x2)
2
√
x4+1

− 1
2

√
1
x4

+ 1
)

at ∞ are (−2π ln( 1
x
)− π + 1

2
π ln(4))− π

4x4
+ π

32x8
+O(( 1

x
)11). This gives

A = 0.70995...

.

4 Sum of the Reciprocals of the Primes

The sum of the reciprocals of all prime numbers diverges. This was proved by Leon-
hard Euler in 1737, and strengthens Euclid’s 3rd-century-BC result that there are
infinitely many prime numbers. We will denote by pn nth prime number. Let us find
the sum of series

∑+∞
n=1

1
pn

. We have
∑∞

n=1
1
pn

= limD
m→+∞

∑m
n=1

1
pn

= limD
s→1 P (s),

where P (s) ≡
∑

p is prime

1

ps
is the prime zeta function. For s close to 1, P (s) has the
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expansion P (1 + ε) = − ln ε + C + O(ε), where ε ≥ 0 and C =
∑+∞

n=2
µ(n)
n

ln ζ(n) =
M − γ = 0.261497212... − 0.577215664... = −0.315718452..., where M is Meissel-
Mertens constant, γ is Euler-Mascheroni constant, µ(n) is the Möbius function, ζ(n)
is the Riemann zeta function and ln(z) is natural logarithm. Therefore,

∑+∞
n=1

1
pn

=

limD
ε→0 P (1 + ε) = limD

ε→0(− ln ε + C + O(ε)) = C because the series expansions of a
function − ln ε+ C +O(ε) about ε = 0 is the series (C + ln(ε)) +O (ε1). This gives

+∞∑
n=1

1

pn
= M − γ = −0.315718452...

.

5 Factorials of Negative Integers

The gamma function was first introduced by Leonhard Euler in his goal to gener-
alize the factorial to non integer values. The (complete) gamma function Γ(z) =∫ +∞

0
xz−1e−xdx is defined to be an extension of the factorial to complex and real

number arguments. It is analytic everywhere except at z = 0,−1,−2, ..., where it has
a poles of order 1. It is related to the factorial by Γ(n + 1) = (n)! as special case of
functional equation Γ(z+1) = zΓ(z). Gamma function is not the only solution of the
previous functional equation. Let us find the factorials of negative numbers as the
general limit of a gamma function as z approaches −n, where n are positive integers.
We have (−n)! = limD

z→−n Γ(z) = c(n), where c(n) denote the constant term of the
Laurent series expansion of a function Γ(z) about z = −n. This gives

(−1)! = −1 + γ,

(−2)! =
3

4
− γ

2
,

(−3)! = −11

36
+
γ

6
,

(−4)! =
25

288
− γ

24
,

..., where γ is Euler-Mascheroni constant.
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