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Abstract. Overfitting has always been a problem in machine learning. Re-

cently a related phenomenon called oversearching has been analyzed. This

paper takes a theoretical approach using a very general methodology covering
most learning paradigms in current use. Overfitting is defined in terms of the

expressive accuracy of a model for the data, rather than predictive accuracy.

The results show that even if the learner can identify a set of best models,
overfitting will cause it to bounce from one model to another. Overfitting is

ameliorated by having the learner bound the search space, and bounding is
equivalent to using an accuracy (or bias) more restrictive than the problem

accuracy. Also, Ramseys Theorem shows that every data sequence has an sit-

uation where either consistent overfitting or underfitting is unavoidable. We
show that oversearching is simply overfitting where the resource used to ex-

press a model is the search space itself rather than a more common resource

such as a program that executes the model. We show that the smallest data
sequence guessing a model defines a canonical resource. There is an equiva-

lence in the limit between any two resources to express the same model space,

but it may not be effectively computable.

1. Introduction

For as long as machine learning has been attempted, it has been known that
overfitting has been a problem. For example, in his pioneering paper on ma-
chine learning of checkers playing, Samuel notes A second defect [with learning-
by-generalization] seemed to be connected with the too frequent introduction of
new terms into the scoring polynomial and the tendency for these new terms to as-
sume dominant positions on the basis of insufficient evidence [11]. Overfitting can
be thought of as the incorporation of ”noise” in the data into the induced model.
What is meant by noise is any relationship that is found during training that is not
found in subsequent testing. It is usually thought that overfitting arises from the
selection of a model that is more detailed than the data admits. It has also been
found that overfitting can occur simply if one searches long enough - this is termed
oversearching [9].

This paper is an attempt to derive some general principles about overfitting.
There have been many successful results, both theoretical and experimental that
relate to overfitting ([10], [6], [8]). This paper begins with a definition of learning
that is sufficiently general to encompass all types of learning that are usually stud-
ied. From this very abstract definition, the derived results will apply to most types
of learning.

The basic paradigm of machine learning used here is one where the learning
machine, presented with t items of data, searches a space of models and selects
the best model M based on some evaluation function that quantifies the relative
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accuracy of each model. We consider a learning problem to consist of a set of
cases. Each case is manifested by a set of data sequences. For convenience in the
proofs, the data sequences are assumed to be all infinite. For each case, many
different models can fit the data. An example of a problem is the set of all regular
expressions that involve the star operator. Any data sequence for each case has the
same elements - the infinite set of strings that make up the regular set. The set of
best models for this case consists of all finite state automata that accept the strings
generated by the regular expression.

How well a model fits the data depends on a particular problems definition - it
is just some sort of logical predicate that defines the models accuracy on the data.
Although for most problems, the cases partition both the space of data sequences
and the space of models into discrete sets, this assumption is not needed for this
paper.

Several criteria define successful learning. Examples are Probabilistically Ap-
proximately Correct learning (PAC learning) and Identification in the Limit. The
formalism we use does not treat these as any more than subtypes of a more gen-
eral view of learning. Identification in the Limit offers a restrictive criterion that
applies to the process of learning as a whole. In PAC learning, we can either say
that each case has data sequences where noisy data leads to errors, or that the
accuracy criterion has a stochastic quality to it, or both. Since we are discussing
the localized learning behavior for the most part, we do not usually need to select
a particular global criterion. In those situations where we do, we have chosen a
weak form of learning - a generalization of Behaviorally Correct Identification [2]
- where correct behavior simply means that the model fits that data according to
the arbitrary accuracy function.

Given some problem and a learning criterion, the determination of overfitting or
underfitting is a hard concept to formalize in a general sense. Typically, overfitting
is considered to happen because of fitting data with a model which, although it
succeeds at fitting the data seen so far, (the training set) it is not as good at fitting
the whole data sequence. This focuses on the ”predictive accuracy” of the model.
The problem with this view is that the input to the learning procedure is usually
the initial segment of an infinite number of possible data sequences. This means
that if a learning system chooses some model M for the data, it may be perfectly
acceptable for some situations, but be considered overfitting (or even underfitting)
in the context of another data sequence.

As an example of this problem, let the data sequence begin with the values
< 16, 256, 2, 4 >. A natural presumption is that an acceptable model for the data
is the rule 2n, assuming that 8, 32, 64 and 128 will come later. If the value 6
comes along, one concludes that this initial guess had overfit the data, leading to a
corrected guess of 2n. Similarly, this initial guess underfits if no other value less than
256 ever appears. Then, the guess of 22n is better, leading to the prediction that
the next smallest value is 65536. Therefore, the single guess made by the learning
machine can be interpreted in three different ways, depending on the future data
presentation.

This paper will instead use a concept of overfitting that compares the relative
accuracy of an arbitrary model against some ideal accuracy defined relative to the
initial segment of the data seen so far. This can be considered an intrinsic measure
of overfitting; an expressive accuracy rather than predictive. The problem is that
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there is no obvious general method to compute this ideal accuracy. There is usually
no single best value that can be used to derive this ideal accuracy for all learning
problems. Even an optimum accuracy measure (such as an average) that can be
derived from a family of models, cannot be defined in a way that is generally
applicable to all learning problems. I will derive my results without reference to a
particular method of computing the reference point by which over or underfitting is
determined. Thus, these results will be applicable to any definition that says that
model M overfits data Dt if the accuracy of the model on the data is better than
some reference value, and underfits if it is not as accurate.

The results are divided into two parts. The first part derives some properties
of overfitting and search functions. These results apply to any arbitrary model
space. In the second section we show that the model space can be expressed in
terms of any arbitrary computational resource. A resource is any parameter, such
as the number of lines of program code, the number of branches in a search tree,
the amount of time that a learning program runs. Thus, a resource is anything that
can be expressed as a finite set of units, each of which may improve the accuracy of
the model in some particular situation. In this viewpoint, oversearching becomes
overfitting if the model space is redefined in terms of the location of the model in
the search space instead of the number of rules in the model.

2. Definitions

2.1. Problem Definition. A Learning Problem is defined to be a four-tuple
P =< CP , DP ,MP , AP >, where C ∈ CP is a problem case, D∞ ∈ DP (C)
is a data sequence from the space of possible data sequences, M ∈MP (C) is a
model for the data selected from the space of models, AP (M |D∞)→ A is an
accuracy measure that defines the relative accuracy of the models on a given data
sequence. The set of cases CP is assumed to be infinite.

An input data sequence D∞ is assumed to be infinite and without repetitions.
Also, any two sequences D∞ and D′∞ that are composed of the same values in a
different order must be part of the same case DP (C). This is for convenience in
the proofs. It does not result in a loss of generality, since features such as the data
set size or presentation order can be easily expressed in a framework that equates
different presentation orders. For example, to construct problems where some cases
are either a finite or infinite set of values S, the data sequence can be cylinderized
- that is, each D∞ ∈ DP is the set SXN . The input being presented to the
learning machine at time t is Dt - the first t elements of D∞.

In general, we do not assume a problem has data sequences that are recursively
enumerable [12]. In practice, this assumption is true for machine learning - actu-
ally, most applications are sets of total recursive functions of low computational
complexity.

The problem accuracy compares the fit of models to data. The term bias is
sometimes used to describe this measure [7]. The accuracy measure is a function
whose range A has a total ordering, such as the integers, rationals or reals. There
is a zero value representing an exact match, but there may be no upper limit to
the accuracy measure. The smaller the value AP (M |D∞) ∈ A is, the better the
fit of the model to the data. We shall not presume that a learning machine can
compute AP . In fact, it may be possible that AP is not effectively computable at
all.
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For all D∞ ∈ DP , define MP (D∞) to be the set of all M where AP (M |D∞)
is minimal. The set of models MP (C) is defined to be the union of MP (D∞) for all
D∞ ∈ DP (C). For all C and M , if M /∈MP (C) then for every D∞ ∈ DP (C)
there is a M ′ ∈MP (C) where AP (M ′|D∞) < AP (M |D∞). For the purposes
of this paper, we will assume that every model can be expressed as a finite set of
integers. Other equivalent expressions are a character string or an integer for each
model.

We shall assume that the accuracy function AP is approximable by some
computable function A. In the limit, A(M |Dt) approaches AP (M |D∞),
at least for all M ∈MP (D∞). No special definition is given beyond the
following general requirements that define a well-behaved accuracy function.
If the accuracy AP (M |D∞) = 0 then A(M |Dt) must get arbitrarily close
to zero. That is, for all t if A(M |Dt) > AP (M |D∞), then there is a
time s such that for all r > s, A(M |Dt) > A(M |Dr). The symmetrical
relation exists if A(M |Dt) < AP (M |D∞). Also, the relative ordering of
the accuracies must match: that is, for all D∞ and for all M and M ′,
if AP (M |D∞) < AP (M ′|D∞) there is a time t such that for all s > t,
A(M |Dt) < A(M ′|Dt).

A computable noise-free problem P is one where there is an effective proce-
dure IP (M) to generate indices of recursively enumerable sets such that for all
C ∈ CP and all D∞ ∈ DP (C) there is a M ∈MP (C) where IP (M) = D∞

and AP (M |D∞) = 0. That is, every M is a model for an recursively enumerable
data sequence and every data sequence in the problem has a model. A problem
that has noise, on the other hand, would contain cases where the data cannot be
exactly fit by any model, thus the accuracy can never really go to zero for that case.

Most learning functions search a space of models that provides alternatives that
fit the data seen so far better than any previous guess. This characteristic of a
model space will be termed the refinement property: given any model, either the
model is completely accurate, or it can be improved (refined) in some way [5]. More
formally, the refinement property holds if, for all Dt and M , either A(M |Dt) = 0
or else there exists an M ′ such that A(M ′|Dt) < A(M |Dt).

2.2. Learning Machine and Learning Criterion. Let P be a problem and
L(Dt) be a learning machine which outputs a value in MP . L is defined for all
Dt ⊂ D∞ and for any D∞ ∈ DP . A learning machine L(Dt) is termed a search
function if it selects the best model from a finite set S(Dt) - the model M with the
minimum goodness measure G(M |Dt). The goodness value may be the accuracy
A(M |Dt), but this is not necessary.

Some theorems consider the overall learning criterion. We shall use the weak
variant of Identification in the limit, Behaviorally Correct Identification. BC iden-
tification occurs if there is a time t such that for all s > t, L(Ds) ∈MP (D∞).

2.3. Over/Under fitting. Over and underfitting is some sort of comparison of
the accuracy of an arbitrary model M on some initial data sequence Dt compared
against the accuracy of the best models MP (D∞) on Dt. As discussed above,
there is no single acceptable way to combine the accuracies of all of these models.
For the purposes of this paper, we shall not select a method. We shall instead define
over and underfitting to be defined relative to a cutoff value F (Dt). The function
is defined relative to the finite set Dt, without knowledge of which data sequence
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D∞ it is part of. The function F may or may not be effectively computable.
The learning machine L(Dt) = M overfits if A(M |Dt) < F (Dt) and underfits
if A(M |Dt) > F (Dt).

If P has noise, the best models may not have zero accuracy, in contrast to the
noise free problem where every data sequence has a model that exactly matches it.
With noisy data, it is possible for the accuracy, even for one of the best models, to
bounce between over and underfitting. This situation can occur also with noise-free
data, depending upon how F (Dt) is defined. The learning function L chronically
overfits D∞ if there is a t for all time s > t, L(Ds) overfits.

3. General Results

The concept of a well-behaved accuracy reasonably matches the kind of behaviors
we expect when considering learning problems. For example, it is possible to show
that a well-behaved accuracy can be constructed for any computable noise-free
problem.

Theorem 1.1: Let P be a computable noise-free problem. Then there exists a
total function A that is a well behaved accuracy function.

Proof: Let any noise-free problem P be given. By the definition, for all
C ∈ CP and all D∞ ∈ DP (C) there is a M ∈MP (C) where IP (M) = D∞

and AP (M |D∞) = 0. Compute A as follows: Let any input Dt and model M
be given. For the given M enumerate IP (M) = D′∞ for t steps. Call this D′t.
A will return the value 1/s where s is the first point where the two sequences Dt

and D′t differ. If they do not differ, return 1/(1 + r) where r is the largest value
in Dt. To show the accuracy is well behaved, we need to show the following. In
the limit, A(M |Dt) approaches AP (M |D∞), at least for all M ∈MP (D∞). If
the accuracy AP (M |D∞) = 0 then A(M |Dt) will get arbitrarily close to zero.
For all D∞ and for all M and M ′, if AP (M |D∞) < AP (M ′|D∞) there is a
time t such that for all s > t, A(M |Dt) < A(M ′|Dt). For all Dt and M , either
A(M |Dt) = 0 or else there exists an M ′ such that A(M ′|Dt) < A(M |Dt). As
t→∞ the accuracy for M ∈MP (D∞) goes to zero, and every other model stops
at some point where the first difference occurs. �

This argument works for problems with partial recursive data sequences as well
as total recursive data. Although it is much harder to make a generalization about
noisy data sequences and data sequences where there is a complicated relationship
between the data sequence for the model and the data sequences for each case, we
shall always assume that the accuracy function is approximable by some computable
function.

Overfitting is usually considered to happen because a model is chosen for some
data sequence that matches the data well up to that point, but is not the best
model for the data overall. But overfitting can occur even if you have focused on
a set of models all of which are good choices for the problem. The problem is that
if you have the minimum accuracy as the criterion for choice, then overfitting is
inevitable. Even if a learning machine limits itself to only a finite number of correct
choices, overfitting can occur.

Theorem 1.2: Let any problem P be given. Let L(Dt) be a learning machine
whose domain is finite subsets Dt of sequences D∞ ∈ DP and whose range is in
MP . Assume L(Dt) and F (Dt) are defined such that for D∞ ∈ DP (C) there
exists a time t such that for all r > t there is a set S ⊂MP such that for all
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M ∈ S, A(L(Dr)|Dr) ≤ A(M |Dr) and there are two M ′ ∈ S and M ′′ ∈ S
where A(M ′|Dr) < F (Dr) and A(M ′′|Dr) > F (Dr). Then L chronically over-
fits D∞.

Proof: Obvious. Since at least one model M exists where A(M |Dr) < F (Dr)
for every r > t, then the learning machine will choose one of these overly accurate
models. �

The natural corollary to this observation is that chronic overfitting does not
occur if the set of models as a whole is sometimes more, sometimes less accurate
than the cutoff. This condition can arise if there is no real difference between the
models in the set - they are just different expressions of the same property - and the
F function differs from the accuracy of this unique property. Where the problem
has only one data sequence for each case, it may be possible for the accuracy and
the F function to match. This is not true for some problems where the matching
of model to data is stochastic in nature. Then there can be two models whose
explanation of the data may have different underlying causes, but the same effect
in the long run. This would yield a different relative accuracy at different times on
the same data, but the same accuracy in the limit and Theorem 1.2 would apply.

Corollary 1.3: Let any problem P and L(Dt) be a learning machine whose
domain is finite subsets Dt of sequences D∞ ∈ DP and whose range is in MP .
Assume L(Dt) and F (Dt) are defined such that for D∞ ∈ DP (C) there ex-
ists a time t such that for all r > t there is a set S(Dr) ⊂MP such that for
all M ∈ S(Dr), A(L(Dr)|Dr) ≤ A(M |Dr), but it is not true that L chroni-
cally overfits D∞, then there are an infinite number of times r such that for all
M ∈ S(Dr) we have A(M |Dr) ≥ F (Dr).

A conclusion that can be drawn from this simple observation is that any search-
based learning method will not effectively avoid overfitting on a problem with many
different answers if all it does is limit the search space. Another conclusion is that
something more than just the accuracy must be factored in to avoid overfitting.

Let us turn to the situation where there is only one good model under differ-
ent names. That is, every M ∈MP (C) has the same accuracy for the same
data at the same time A(M |Dt). It would be nice to set F (Dt) = A(M |Dt).
But if the problem has the refinement property it is not possible to assume that
F (Dt) = A(M |Dt), since the data sequence Dt can be a subset of any number
of data sequences D∞ in any number of DP (C), and each of the M ∈MP (C)
could have a different accuracy for the same data A(M |Dt).

Theorem 1.4: Let P be a problem with the refinement property where
for all C and all M ∈MP (C), M ′ ∈MP (C) and D∞ ∈ DP and t,
A(M |Dt) = A(M ′|Dt). For all D∞ ∈ DP and t if F (Dt) 6= 0 then there
are an infinite number of C where M ∈MP (C) and D′∞ ∈ DP (C) such that
Dt ⊂ D′∞ but F (Dt) 6= A(M |Dt).

Proof: Let any problem P be given. For all Dt and M , either A(M |Dt) = 0
or else there exists an M ′ such that A(M ′|Dt) < A(M |Dt). If F (Dt) 6= 0 then
there are either an infinite number of C where M ∈MP (C) and D′∞ ∈ DP (C)
such that Dt ⊂ D′∞ and A(M |Dt) = 0 or A(M |Dt) = F (Dt) and there exists
an M ′ such that A(M ′|Dt) < A(M |Dt) and A(M ′|Dt) 6= F (Dt). �

The best we can assume is that for all D∞ ∈ DP (C) where M ∈MP (C), it
is true that for all t there is an s > t and an r > t where F (Ds) ≤ A(M |Ds)
and F (Dr) ≥ A(M |Dr), so that M neither chronically overfits nor underfits.
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Assume that we have a learning machine based on search that chronically over-
fits. Can it be fixed? Search means that the learning machine selects some finite
set of models S(Dt) and chooses one of these as the best guess - best being the
minimization of some function G. We can adjust the search space to keep out mod-
els that are artificially accurate (i.e., that overfit). But we can alternatively adjust
the minimization function so that no model chosen by G is more accurate than
the best one. The G function matches A for the model selected by the learning
machine; there exist cases where a model is eliminated from contention by setting
G(M |Dt) > A(M |Dt). The following theorem shows that both methods are
equivalent. The theorem that follows deals with a single data sequence Dt. Since
the construction is uniform in the definitions of the learning machine, it shows
that both methods are effectively equivalent for patching a chronically overfitting
learning machine.

Theorem 1.5: Let P be any problem. Let L and S be such that for
any D∞ ∈ DP (C) and t there is a finite set S(Dt) ⊂MP such that for all
M ∈ S(Dt), A(L(Dt)|Dt) ≤ A(M |Dt) and L(Dt) overfits. There is an L′

and S′ such that there is a finite set S′(Dt) ⊂ S(Dt) ⊂MP such that for all
M ∈ S, A(L′(Dt)|Dt) ≤ A(M |Dt) and L′ does not overfit iff there is an L′′ and
G such that G(L′′(Dt)|Dt) = A(L′′(Dt)|Dt), G(L′′(Dt)|Dt) ≤ G(M |Dt)
for all M ∈ S(Dt), and for all M ′ ∈MP , if A(M ′|Dt) < F (Dt) then
G(M ′|Dt) > A(M ′|Dt) and L′′ does not overfit.

Proof: Let L and S be such that for D∞ ∈ DP (C) there exists a time t such
that for all r > t there is a finite set S(Dr) ⊂MP such that for all M ∈ S(Dr),
A(L(Dr)|Dr) ≤ A(M |Dr). We shall use S in the construction of the other
machines.
→ : Assume there is an L′ and S′ such that there is a finite set

S′(Dt) ⊂ S(Dt) ⊂MP such that for all M ∈ S, A(L′(Dt)|Dt) ≤ A(M |Dt).
Construct L′′ as follows: Given Dt, compute S(Dt) and S′(Dt). For
all M ∈ S′(Dt), G(M |Dt) = A(M |Dt). For all M ′ ∈ (S(Dt)− S′(Dt)),
G(M ′|Dt) = max{A(M ′|Dt)|M ′ ∈ S′(Dt)}. If the set S′(Dt) is enu-
merated first, then the M returned by L′′(Dt) is the first one where
G(M |Dt) = A(L′(Dt)|Dt), so L′(Dt) = L′′(Dt). By the construc-
tion of G, G(L′′(Dt)|Dt) = A(L′′(Dt)|Dt), and for all M ′ ∈MP , if
A(M ′|Dt) < F (Dt) then G(M ′|Dt) > A(M ′|Dt). Since L′ does not overfit
and L′(Dt) = L′′(Dt), L′′ does not overfit either.
← : Assume there is an L′ and G such that for all M ∈ S(Dt),

G(L′(Dt)|Dt) ≤ G(M |Dt). Construct L′′ as follows: Given Dt, compute
S(Dt). Define S′(Dt) as follows: Given any M ∈ S(Dt), add M to S′(Dt)
iff G(M |Dt) ≤ A(M |Dt). By the definition of G, there exists an M ∈ S(Dt)
where G(M |Dt) = A(M |Dt), so S′(Dt) is not empty. By the definition of G,
given any M ′ ∈MP , if A(M ′|Dt) < F (Dt) then G(M ′|Dt) > A(M ′|Dt), so
M ′ is not added to S′(Dt). Since L′ does not overfit and L′(Dt) = L′′(Dt), L′′

does not overfit either. �
The previous theorem showed how to fix a learning machine when it overfits.

The question is, does the learning machine actually do anything like learn after it
is fixed? We shall presume that the finite set of candidates that are selected by
the function S is constantly growing in size. Once a model is chosen, it remains in
the set of candidates and is judged on the basis of its accuracy. The next theorem
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states that Behaviorally Correct identification is possible if and only if S grows to
include alternative models slower than the best model for the data converges to the
optimum accuracy.

Theorem 1.6: Let P be a problem and L and S be such that for
D∞ ∈ DP (C) and t there is a finite set S(Dt) ⊂MP such that for all
M ∈ S(Dt), A(L(Dt)|Dt) ≤ A(M |Dt). Also, for all Ds and Dt if s < t, then
S(Ds) ⊂ S(Dt).

For all C and all D∞ ∈ DP (C), L BC-identifies D∞ iff there is a
M ∈MP (D∞) and t such that M ∈ S(Dt) and for all s > t and all
M ′ /∈MP (D∞) where for all M ′′ ∈MP (D∞) and M ′′ ∈ S(Dt) we have
A(M ′|Ds) < A(M ′′|Dt) then M /∈ S(Ds).

Proof: Obvious . �
We can show that the function G in Theorem 1.5 will preserve BC

identification if, although A(M |Dt) < G(M |Dt), if it ever happens that
G(M |Dt) = A(M |Dt) then this equivalence must be true for M from then on.

Theorem 1.7: Let P be a problem and L and S be such that for D∞ ∈ DP

and t there is a finite set S(Dt) ⊂MP such that for all s < t, S(Ds) ⊂ S(Dt)
and for all M ∈ S(Dt), A(L(Dt)|Dt) ≤ A(M |Dt). Let L BC-identify P .

Let G and L′ be defined so that for all D∞ ∈ DP and t, L′(Dt) ∈ S(Dt) and
for all M ∈ S(Dt), G(L′(Dt)|Dt) ≤ G(M |Dt) and A(M |Dt) ≤ G(M |Dt).
If for all D∞ ∈ DP and t, G(L′(Dt)|Dt) = A(L′(Dt)|Dt), and if
G(M |Dt) = A(M |Dt) implies that for all s ≥ t G(M |Ds) = A(M |Ds) and
there is an M ′ ∈MP (D∞) and r where G(M ′|Dr) = A(M ′|Dr) then L′ which
uses G in place of A, must BC-identify P also.

Proof: By the construction in Theorem 1.5, define S′(Dt) from G and S(Dt) as
follows: Given any M ∈ S(Dt), add M to S′(Dt) iff G(M |Dt) = A(M |Dt).
Then for all s < t, S′(Ds) ⊂ S′(Dt). By the definition of G, there exists
an M ∈MP (D∞) and t such that M ∈ S′(Dt). Since L BC-identifies P ,
then by Theorem 1.6 we have for all s > t and all M /∈MP (D∞) where for
all M ′ ∈MP (D∞) and M ′ ∈ S(Dt) such that A(M |Ds) < A(M ′|Dt) then
M /∈ S(Ds). This does not change in the construction of S′(Dt) so L′ must
BC-identify P also. �

We conclude this section with a proof that shows that for any problem, for
any case and any data sequence for that case, there are situations where uniform
underfitting or overfitting are inevitable. This assumes that there is noise in the
data, so even the best model toggles between over and under fitting as more data
is given. Since the chance of an exact match is vanishingly small, it can arbitrarily
assigned to be either an overfit or underfit.

This theorem is an application of Ramsey theory. That is, for every problem
complicated enough, there is a finite data sequence where every n-element subset
of this larger set is consistently overfit or underfit:

Ramsey’s Theorem (Finite Version): For all k, l, r ∈ w there exists
n(k, l, r) ∈ w such that if n ≥ n(k, l, r) and C : [n|k]→ [r] is any r-coloring of
the k-element subsets of [n], then some l-subset of [n] has all its k-element subsets
with the same color.

See [3] for a good introduction to this field. In applying this theorem, r is two.
We shall arbitrarily assign exact matches to be either overfit or underfit.
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Theorem 1.8: Let any noisy problem be given. For any values k and l and any
case C and D∞ ∈ DP (C) there is a sufficiently large n where there is a set Dl

where Dl ⊂ Dn ⊂ D∞ and every data presentation Dk ⊂ Dl underfits or every
such Dk overfits.

Proof: This is immediate by Ramsey’s Theorem, where the mapping
C : [n|k]→ [r] is the function F . �

4. Resources

The original inspiration for this paper was the Quinlan and Cameron-Jones pa-
per on oversearching. To quote from their abstract: ”when learning classifiers, more
extensive search for rules is shown to lead to lower predictive accuracy on many
of the real-world domains investigated.” Overfitting usually occurs when ”the con-
struction of theories more complex than can be justified by the data leads to poor
predictive performance”. This situation is the result of Theorem 1.6 in the previous
section. Using Behaviorally Correct identification as the criterion for learning, the
learning system does not chronically overfit if the search space does not include
poor predictors as fast as the best model for the data converges to the optimum
accuracy.

To apply the results in the previous section to oversearching requires an under-
standing of the notion of what a model space is. Although models for the data are
often considered to be composed of a finite set of rules (for a classifier), a set of
states (for a state machine), or even a set of program statements, a model space
can actually be constructed using any arbitrary resource. The representation itself
is usually considered as the definition of the model space. Here we are considering a
model in some pure form that can be manifested in any way, as long as the accuracy
of model to data remains unchanged

The oversearching phenomenon can be understood as an overfitting result, where
the space of classifiers are expressed using the search space of the learning machine
as the resource. Consider the overfitting phenomenon when a learning system
guesses a model that is too precise - it incorporates unimportant variability in the
data as part of the model. Oversearching is analogous; the unimportant variability
arises from the effort to search for better models. The similarity is hidden because
the models are expressed in terms of the same resource (number of lines of code or
whatever), but the results are analyzed in terms of two different resources.

The following theorem shows that any machine that minimizes a function over
a finite but increasing search space solves some sort of learning problem as defined
in this paper. This establishes a canonical problem definition based on describing
a model in the model space by the first data sequence that causes the learning
machine to guess that model. This canonical form will be used as the basis from
which any other expression of a model space can be expressed. This use of the
first initial data segment as a canonical form is similar to its use as the basis of the
order independence result in Identification in the Limit [1]. For the purposes of this
theorem, the pure form of the model is some integer expressed in some undefined
form.

Theorem 2.1: Let L, G and S be such that for all finite input sets Dt there
is a finite set S(Dt) such that L(Dt) ∈ S(Dt) and for all integers m ∈ S(Dt),
G(L(Dt)|Dt) ≤ G(m|Dt). The function S is defined from finite sets to finite sets
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in such a way that if Dt ⊆ Dr then S(Dt) ⊆ S(Dr). Let some method of com-
puting a limit value be given. There exists a problem P =< CP , DP ,MP , AP >
where for every D∞ such that there is a M and x such that in the limit as
t→∞G(L(Dt)|Dt) = G(M |Dt) = x, there is a C where D∞ ∈ DP (C) and
L BC-identifies P .

Proof: Let L be given, where L(Dt) is computed by minimizing G(M |Dt) for
M ∈ S(Dt) and S grows as given. Define P =< CP , DP ,MP , AP > as follows.
MP is the range of L. Choose some enumeration of the finite sequences. The value
M ∈MP is a representation of the first finite sequence Dt in the enumeration
where L(Dt) = m, for some integer m. For every infinite sequence of integers D∞

where the function L(Dt) returns a value for all Dt ⊂ D∞, define AP (M |D∞) to
be the limit of G(M |Dt) as t→∞ for all Dt ⊂ D∞ if such a value exists. If there
is no limit value for M on D∞ but there is some AP (M ′|D∞) defined so far then
set AP (M |D∞) arbitrarily to some larger value than AP (M ′|D∞). For every
D∞ where there is some AP (M |D∞) defined, and there is some time t where for
all s ≥ t if AP (L(Ds)|D∞) = AP (M |D∞), include D∞ as a case C ∈ CP (i.e.
C = D∞) and include M ′ ∈MP (C) if AP (M |D∞) = AP (M ′|D∞). Each of
these cases are BC-identified by L. �

With the canonical problem definition of Theorem 2.1 and the relationship of
problem to BC-identification in Theorem 1.7 we have the basic relationship of
problem to learning machine, in that the first finite data sequence where a value
is in the range of the learning machine becomes the resource used to express the
model. We now want to interrelate different learning machines. We can show
that for two learning machines that are solving the same problem (except that the
model spaces are expressed by the use of two different resources) and there are
duplications of models in the space, then the model spaces can be put in one-to-one
correspondence with each other in the limit.

Theorem 2.2: Let machines L and L′ be such that for all M in the range of L
there is an infinite number of M ′ in the range of L′ such that for all finite sets Dt,
G(M |Dt) = G′(M ′|Dt) and the same holds in the other direction - for all M ′

in the range of L′ there is an infinite number of M in the range of L such that for
all finite sets Dt, G(M |Dt) = G′(M ′|Dt). Then there is a one-to-one function
f from the range of L to the range of L′ and a function g(M, t) such that for all
M there is a t such that for all s ≥ t, g(M, s) = f(M).

Proof: The function g(M, t) is defined as follows. For every M in the range of
L, enumerate the elements M ′ in the range of L′ not currently assigned via g to
any M ′′ < M . Check G(M |Ds) against G′(M ′|Ds) for all s < t and go to the
next element in the range of L′ if the values are different. If they are the same, then
g(M, t) = M ′. The function is total, since for every M and t a corresponding
M ′ can be found, since there are an infinite number that match. Eventually, every
M will stabilize on a value for some t. Then, the next greater value will stabilize
and so on. �

Even though the values of the correspondence function are computable in the
limit, there exist situations where they are not computable by any total function.
This is a consequence of the very abstract and general definitions we are using in
this paper. Because I have not restricted how the mapping from model names to
accuracy is defined, I can have problems of arbitrary complexity. This is true even
for classes where equality is computable, such as the identification of finite sets.
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Theorem 2.3: Let machines L and L′ be such that for all M in the range of L
there is an infinite number of M ′ in the range of L′ such that for all finite sets Dt,
G(M |Dt) = G′(M ′|Dt) and the same holds in the other direction - for all M ′

in the range of L′ there is an infinite number of M in the range of L such that for
all finite sets Dt, G(M |Dt) = G′(M ′|Dt). Then there is a one-to-one function
f from the range of L to the range of L′ and a function g(M, t) such that for all
M there is a t such that for all s ≥ t, g(M, s) = f(M), but the function f is
not effectively computable.

Proof: Define the problem P =< CP , DP ,MP , AP > as follows. CP are
finite sets. DP are cylinders of finite sets, that is, for every finite set SinCP ,
every element of SXN appears in the data sequence D∞ ∈ DP (S). MP (S) is
just the listing of the elements of the set S, with the number of models in each
case made infinite by tagging each model with any integer. AP (M |D∞) is defined
to be the difference between M and D∞. AP (M |Dt) is defined similarly. The
learning machine L is simply the function that extracts the set S from the data
SXN in Dt. The value that is used as a tag may is simply the number t for input
Dt.

Define a new problem P ′ =< CP , DP ,M ′P,AP > that is virtually identical
to P except that the model space is defined as M ∈MP if M is the set of state
transitions for some Turing Machine TMi. If Wi is the recursively enumerable set
that is defined to be the domain of TMi, then TMi ∈MP (S) if Wi = S.

A learning machine L′ can be defined as follows: for L′(Dt), let z be the
maximum value for some < z, y > in Dt for some value y. Let v be the maximum
of the two values z and t. For each value i, run TMi from 0 to v for t steps. Halt
on the first Wi that matches {x| < x, y >∈ Dt} for as much of Wi as can be
computed in t steps, for the range 0 to v. Both machines learn their associated
problems in the limit. There is also a one-to-one function f from the range of L
to the range of L′ but the function f is not effectively computable, otherwise the
Halting Problem would be solvable. �

Taken together, the three results show that: (1) the data sequences can be used
as a canonical resource to represent the model space, (2) any other resource is
equivalent in the limit, and (3) resources in general have no effective correspon-
dence. Thus, the Quinlan and Cameron-Jones result on oversearching is one where
the relationship between model size and search space resources is not a simple
equivalence.

5. Conclusions

The results given in this paper are very general. There are many ways to
strengthen these results if other assumptions are added. For example, the con-
cept of refinement is a very powerful one that has been studied in machine learning
[5], but not used to its full effect here. For example, refinement can be exploited as
a way to arrive at a metric for the overfitting function F . An example is the use of
the Vapnik-Chervonenkis dimension as a metric for the accuracy (inductive bias)
[4].

This paper employs Ramseys theorem to show that overfitting is inevitable. The
way that the theorem is applied is curious and somewhat unexpected. Ramseys
theorem is usually interpreted as if the r-coloring of the k-element subsets of [n]
refers to a model of resource size k fitting a data sequence of size n where r defines
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the types of relationships the models can have to the data. This is not the way
that Ramseys theorem was used here. Instead, r is a measure of the accuracy
of the model. Ramseys Theorem has been the inspiration for a rich branch of
number theory that could be expected to yield significant results that apply to
machine learning in general, not just in analyzing overfitting. It is useful because
the results apply to the data being presented regardless of the particular nature of
the learning problem, so they define some universal properties of data presentation
that are unavoidable.

We have defined learning problems to be composed of cases that partition the set
of data and of models, where the learning function finds a minimum of a function
over a finite domain. Although this seems to be as general as learning can get, it
is possible to generalize this paradigm in a number of ways.

For example, the cases do not have to be a partition of the problem. The as-
sociation of models and data to a case could be probabilistic, for example. This
might mean that the best G measure is found empirically, instead of being prede-
fined. This means using machine learning to find best machine learning algorithm,
creating a bootstrap effect of using metalearning to minimize overfitting through a
whole family of related learning problems.

This paper has been an attempt to give a theoretical explanation for experimental
results on overfitting. The intriguing results on oversearching provided the impetus
to look in a critical manner at the basic definition of what it means to overfit
data. It is hoped that a theoretical analysis of the overfitting and oversearching
will serve to point the way to new experimental tests, such as the creation of a
taxonomy of resources that can be used to express model spaces or the development
of general methods of defining criteria of overfitting that capture the varying notions
of expressive accuracy.
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