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Abstract	

As	a	fractal	structure	emerges	–	repeating	a	simple	rule	–	it	appears	to	share	direct	
properties	familiar	to	classical	economics,	including	production,	consumption,	and	
equilibrium.	Fractal	geometry	is	found	universally	and	is	said	to	be	one	of	the	best	
descriptions	of	our	reality	–	from	clouds	and	trees	to	market	price	behaviour.	This	
paper	investigated	whether	the	mathematical	principles	behind	‘the	market’	–
marginalism	–	is	an	aspect	or	manifestation	of	a	fractal	geometry	or	attractor.	Total	and	
marginal	areas	(assumed	to	stand	for	utility)	and	the	cost	of	production	were	graphed	
as	the	fractal	grew	and	compared	to	a	classical	interpretation	of	diminishing	marginal	
utility	theory	and	the	market	supply	and	demand.	PED	and	PES	were	also	calculated	
and	analysed	with	respect	to	(iteration)	time	and	decay.		It	was	found	that	the	fractal	
attractor	demonstrates	properties	and	best	models	classical	economic	theory,	and	from	
this,	it	was	deduced	that	the	market	is	a	fractal	attractor	phenomenon	where	all	
properties	are	inextricably	linked.	The	fractal,	at	equilibrium,	appears	to	be	a	
convergent	–	zeta	function	–	series,	able	to	be	described	by	Fourier	analysis	and	
involves	Pi,	i,	e,	0,	and	1	(of	Euler’s	identity)	in	one	model.	It	also	demonstrated	growth,	
development,	evolution	and	Say’s	Law	–	production	before	consumption.	Insights	from	
the	fractal	on	knowledge	and	knowing	are	also	revealed,	with	implications	on	what	
exactly	‘science’	is	and	what	‘art’	is.	A	connection	between	reality	and	quantum	
mechanics	was	identified.	It	was	concluded	marginal;	classical	economics	is	an	aspect	
of	fractal	geometry.			
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1 INTRODUCTION 

The	marginal	approach	of	economics	is	the	foundation	of	classical	economics:	it	forms	

the	‘supply/demand’	framework	fundamental	to	our	understanding	of	‘markets’	–	of	all	

types	and	scales	(macro	and	micro).	It	is	described	and	presented	in	all	elementary	

economics	textbooks.	It	focuses	on	the	extra	of	a	select	variable	from	another	output	

unit.	It	deals	with	economic	‘problems’	surrounding	the	production	and	consumption	of	

things	and	defines	the	value	and	prices	of	these	‘things’	through	the	equilibrium	of	the	

two.		

As	convincing	as	marginal	economics	is	–	and	its	ramifications	–	it	often	does	not	sit	

well	with	general	society	as	a	‘solid’	explanation	of	reality	and	is	almost	always	met	

with	resistance	where	it	tests	‘our’	morality.	For	this	reason,	it	is	rejected	by	the	so-

called	‘natural	sciences’	and	those	on	what	is	termed	the	extreme	left,	who	see	it	as	

human	creation	and	something	to	be	controlled.	Market	lead	‘capitalism’	is	assumed	

wrong,	so	markets	and	marginalism	must	be	wrong;	governments	of	this	thinking	

should	intervene	in	a	system	–	often	with	dire	consequences.	Separate	and	parallel	to	

the	marginal	revolution,	a	mathematical	geometry	was	developing	that	is	equally	said	

to	‘best	describe	reality’;	it	is	fractal	geometry.			

This	investigation	presented	and	tested	whether	this	–	now	modern	–	geometry	

matches	classical	marginal	economics	–	and,	if	so,	unifying	economic	theory	with	our	

reality.		The	hypothesis	being	reality	–	as	described	by	‘classical’	marginal	economics	–	

is	an	aspect	of	‘the	(geometry	of	a)	fractal’.		The	intangible	marginal	‘market’	is	an	

actual	–real	–	geometry.	By	the	fractal,	economic	theory	is	real	and	valid.	Through	the	

fractal,	reality	will	be	unified	with	problems	associated	with	physics:	the	‘standard	
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model’	–	namely	(small	scale)	quantum	mechanics	and	(large	scale)	cosmology.	The	

fractal	is	a	window	on	reality.		

For	this	hypothesis	to	be	true,	the	fractal	will	have	to	demonstrate	all	the	proposed	

features—all	found	in	a	general	economics	textbook—including	diminishing	utility	

with	an	exponential	function,	total	utility,	production,	and	production	cost,	equilibrium,	

and	foundational	concepts	of	elasticity.		

1.1 Fractals	

Fractals	are	described	as	emergent	objects	that	develop	and	grow	with	iteration.	In	

reality,	examples	are	found	in	the	shape	of	clouds	and	trees.		Fractals	possess	a	

property	of	scale-invariance	–	if	viewed	from	a	fixed	position	–	regular	irregularity	

(same	but	different)	at	all	scales,	and	are	classically	demonstrated	by	the	original	

Mandelbrot	Set	[1],	and	more	simply	by	the	Koch	Snowflake	(Figure	1,	A	and	B	

respectively).		Fractals	point	to	a	duality	of	the	predictable	and	the	unpredictable,	the	

order	and	the	chaos.		

	

Figure 1. (Classical) Fractals. (A) The boundary of the Mandelbrot set; (B) The Koch Snowflake fractal from 

iteration 0 to 3. Reference: (A) [2]; (B) [3]. 
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The	classical	fractal	shape—as	demonstrated	in	the	Koch	Snowflake—emerges	as	a	

result	of	the	iteration	of	a	simple	rule:	repeating	the	process	of	adding	triangles.		

To	investigate	the	marginal	properties	of	fractal	attractors,	the	fractal	Koch	Snowflake	

was	chosen	for	its	(unrealistic	but	useful)	quantitative	property	of	regular	regularity	

(same	but	same)	at	all	scales.	All	triangles	in	the	Koch	snowflake	are	assumed	to	be	the	

same,	so	we	can	do	math	with	their	areas	while	maintaining	the	fractal	emergent	

properties.	In	an	ultimate	example	of	‘ceteris	paribus,	’	the	Koch	Snowflake	can	best	

quantify	what	is	‘irregular’	on	fractals	by	isolating	these	‘chaotic’	irregularities.		

1.1.1 Vertical and Horizontal Fractal Perspectives 

The	fractal	may	be	viewed	from	two	perspectives:	horizontal	–	from	a	fixed	observation	

point	either	within	or	outside	the	fractal;	and	vertical	–	a	perspective	looking	or	

‘zooming’	into	the	fractal	object	(as	demonstrated	by	a	fractal	zoom).	These	horizontal	

or	vertical	perspectives	align	with	the	definition	of	the	fractal	same	but	different	at	all	

scales.	Horizontal	is	the	assumption,	scope	and	rational	of	this	examination	and	refers	

to	the	other	(variety)	of	observed	objects	(triangle	bits)	at	the	fixed	or	current	

observation	point	(or	scale).	It	points	to	the	classical	–	diminishing	utility	–	theory.	The	

vertical	fractal	perspective	is	to	‘fractal-zoom’	into	the	set.	Here,	the	same	pattern	(or	

rule)	will	be	observed	at	all	scales.	By	zooming	into	the	set,	economic	concepts	of	

consumption,	production,	or	competition	may	be	reasoned	or	observed	to	exist	at	all	

scales	of	an	organism,	from	the	cell's	scales	to	the	scale	of	the	global	ecology	or	

economy.		

1.2 Marginal	Analysis	

The	concept	of	marginal	refers	to	changing	a	variable	unit	after	changing	another	

variable	and	is	described	in	all	elementary	economics	textbooks.		Marginalism	
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originates	with	the	solution	of	the	St.	Petersburg	Paradox,	of	which	both	Leonhard	

Euler	and	Daniel	Bernoulli	offered	solutions.		

1.2.1 Marginal Utility  

The	fundamental	marginal	model	is	the	consumption	Marginal	Utility	model	shown	in	

Figure	2	below,	where	the	Total	Utility	(TU)	is	the	sum	of	all	the	Marginal	(extra)	Utiles.	

When	plotted	on	a	graph,	the	negative	sloping	marginal	utility	(MU)	curve	diminishes	

as	the	TU	curve	increases	at	a	decreasing	rate	with	respect	to	the	quantity	consumed.	

When	the	TU	decreases,	it	follows	the	MU	goes	negative.	This	negative	utility	will	be	

tested	with	the	potential	of	being	reinterpreted.		

	

Figure 2. Marginal and Total Utility Model. Total Utility rises (to a limit) at a decreasing rate as the 

Marginal Utility diminishes (converges). The marginal utility goes negative where the total is decreasing [4]. 

While	the	St.	Petersburg	paradox’s	solution	is	said	to	be	the	origin	of	marginal	utility	

theory,	its	parallel	and	contemporary	problem,	‘the	Basel	Problem’	(attempted	by	

Bernoulli	and	finally	solved	by	his	colleague	Euler),	is	of	interest	in	this	investigation.	

The	geometric	series	presented	in	the	Basel	Problem	with	limits	and	convergence	and	

its	solution	with	Pi	have	direct	similarities	in	fractal	emergence.	Does	the	fractal	offer	
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insight	into	the	Basel	problem	and	the	occurrence	of	Pi	in	statistical	normal	distribution	

equations?							

1.2.2 Marginal Analysis and the (Koch Snowflake) Fractal  

In	this	investigation,	marginal	analysis	of	the	growth	of	the	development	of	the	Koch	

Snowflake	fractal	attractor	was	undertaken;	to	test	whether	the	fractal	demonstrates	

marginal	utility	(or	benefit),	the	area	of	the	triangle	was	substituted	for	utility	and	

then	analysed	as	the	area	changed	as	the	fractal	grew	(and	developed).		

1.2.3 Supply and Demand Curves  

The	positive	sloping	marginal	cost	(MC)	curve	–	the	extra	cost	from	another	unit	

produced	–	derives	the	supply	curve,	and	the	MU	curve	derives	the	downward-sloping	

demand	curve.		Together,	where	both	curves	intersect	–	as	shown	in	Figure	2	–	they	

define	the	‘market	clearing’	price.		

	

Figure 3. Classical Economics Supply and Demand Model. Price and Quantity of good x. The 

market equilibrium price is assumed to be where supply is equal to demand.  
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This	intersect	is	also	known	as	the	equilibrium	price.	At	the	equilibrium	

price,	consumer	and	producer	surplus	(the	community	surplus)	is	

maximised.		

2 Methods	

The	classical	Koch	snowflake	fractal	was	used	to	create	a	quantitative	data	series	of	the	

fractal	attractor.	A	spreadsheet	model	was	developed	to	trace	area	expansion	with	

iteration	[5].		

1. Consumption	Utility	and	Observation,		

2. production	(cost)	and,		

3. Lorenz	distribution,	and	

4. elasticity	(of	demand).	

2.1 Assumptions	and	Units	of	Measure	

2.1.1 Units 

It	should	be	noted	that	in	this	scale-invariant	model,	there	is	no	standard	or	fixed	scale	

of	measurement.	To	address	the	scale	invariance	of	the	fractal,	area	and	lengths	are	

measured	in	centimetres,	written	as	cm.		

2.1.2 Iteration Time and Quantities  

Iteration	is	directly	related	to	time	and	was	assumed	to	be	iteration	time.	The	quantity	

of	triangle	(bits)	was	directly	associated	with	iteration	time	(i).		

2.1.3 Price 
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As	price	is	assumed	to	be	the	value	assigned	to	a	(marginal)	unit	of	utility	in	classical	

economics,	in	this	model,	price	is	assumed	to	be	equal	to	the	area	of	the	(marginal)	

triangle	bit.			

2.2 Koch	Snowflake	Consumption	(Marginal)	Analysis	Table		

The	following	method	refers	to	the	model	developed	in	the	spreadsheet	model	

(reference	tab	1	marginal	fractal).	A	table	of	13	columns	was	created,	and	graphs	were	

produced	from	the	results.	The	following	are	the	methods	used	to	calculate	each	

column.	

2.2.1 Column 1, Iteration Number 

The	model	was	iterated	to	the	15th	iteration	(i15).	

2.2.2 Column 2, Triangle Base Length 

Each	successive	small	triangle's	side	length	(l)	is	1/3	of	that	in	the	previous	iteration.	

The	initial	l	was	set	to	1.51967128766173cm.	

2.2.3 Column 3, Quantity of Triangles 

The	quantity	triangles	(of	the	previous	iteration)	are	multiplied	by	four	at	each	

iteration	time.	

2.2.4 Column 4, Total Quantity of Triangles 

The	number	of	triangles	(column	3)	was	totalled	at	each	iteration.	

2.2.5 Column 5, Individual Triangle Area 

Area	(A)	was	calculated	from	the	following	formula:	(1)	

	 (1)	

	 																										

A = l
2 3
4
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The	area	of	the	first	triangle	(i0)	was	approximated	to	an	arbitrary	area	of	100	cm-2.		

2.2.6 Column 6, Individual Triangle Total Area 

At	each	iteration	time,	the	area	of	individual	triangles	(column	5)	was	totalled.	

2.2.7 Column 7, Marginal Area  

This	is	the	additional	or	extra	area	(Marginal	Area)	added	to	the	total	area	of	the	Koch	

snowflake	at	each	iteration.	It	is	the	number	of	triangles	at	each	iteration	multiplied	by	

the	area	of	the	respective	individual	triangle.		

2.2.8 Column 8, Total Area 

This	is	the	cumulative	total	area	of	the	snowflake	as	it	iterates.	It	is	calculated	by	

summing	the	marginal	areas	in	column	7	at	each	iteration	time.	

2.2.9 Column 9, Individual Marginal Cost 

The	marginal	cost	was	assumed	to	be	the	reciprocal	to	the	MA	column	6.	This	field	is	

calculated	by	finding	the	reciprocal	of	the	column.	

2.2.10 Column 10, Marginal Cost 

The	marginal	cost	curve	describes	–	by	the	increased	quantity	of	triangles	produced	as	

the	fractal	iterates	–	the	cost	to	produce	the	fractal	–	i.e.	the	energy	and	time	spent	at	

each	additional	iteration	time.	Rather	than	develop	a	production	equation,	which	is	

possible,	the	reciprocal	of	the	Marginal	Area	was	used	by	assuming	there	is	a	direct	

relationship	between	the	area	produced	and,	inversely,	the	cost	to	produce	the	area.	

Other	factors,	such	as	technology	and	means	of	production,	are	assumed	to	be	=	0.		

2.2.11 Column 11, MA – MC 

This	is	to	calculate	the	area	of	the	snowflake,	the	‘consumer	surplus.	Positive	numbers	

were	summed.		
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2.2.12 Column 12, Total Cost 

The	total	cost	(TC)	is	calculated	by	summing	the	marginal	cost	at	each	iteration.	

2.2.13 Column 13, TC-TA 

TC-TA	is	calculated	by	subtracting	total	costs	from	total	area.		

2.3 Production		

The	fractal	must	be	inverted	to	demonstrate	growth	and	production:	the	new	triangle	

bits	were	assumed	to	remain	constant.	Methods	of	this	production	perspective	of	the	

fractal	have	been	published	in	two	previous	papers.	The	results	have	implications	for	

our	understanding	of	the	accelerating	expansion	of	the	cosmos,	income	(Lorenz)	

distribution	and	plants.				

2.4 Elasticity		

Classical	economics	elasticity	–	a	variable's	sensitivity	to	a	change	in	another	variable	–	

was	calculated	on	the	fractal	using	a	standard	formula	and	described	as	a	change	in	

area	to	a	change	in	iteration	time	(or	quantity	of	triangles).		

2.4.1 Standard Equation 

	

	

(2)	

Where	P	represents	the	Area	and	Q	is	the	quantity	of	the	triangle	at	each	respective	

iteration	time.		

2.4.2 Arc Method 
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(3)	

	

2.4.3 Mid Price.   

	

	

(4)	

3 RESULTS		

The	results	of	the	total	experiment	are	broken	into	three	sections:		

1. Consumption	and	Observation,		

2. production	(cost),	and		

3. elasticity.	

The	results	can	be	found	on	the	spreadsheet	model	[5].	Figures	4	to	6	show	graphically	

the	Total	Area,	Marginal	Area	and	Cost	and	Equilibrium.	

3.1 Consumption	(Utility)	and	Observation	

3.1.1 Total Area (TA) and Marginal Area (MA) 

The	Koch	snowflake	fractal	TA	curve	began	with	an	area	value	of	100	cm-2	at	iteration	0	

and	thereafter	increased—converged—to	a	limit	of	160	cm-2.	
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Figure 4. Composite Fractal Equilibrium: TA, MA and MC. As the (Koch Snowflake) fractal iterates, the total 

area increases from an arbitrary value of 100 to a limit approximating 160, and the ‘marginal’ area decreases 

(was convergent) from an arbitrary value of 100 towards – but never reaching – 0. The cost of the product 

increased by reciprocalizing the area. The shape equilibrium of the fractal was reached where the MC was equal 

to the MA – at around iteration-time (i) 5.  cm = centimetres. 

The	MA	curve	was	downward	sloping	and	convergent,	beginning	with	an	area	value	of	

100	cm-2	at	iteration	time	0,	decreasing	exponentially	and	approximating,	but	never	

reaching	0.		

Figure	5	shows	the	Koch	snowflake	fractal	MA	curve	function;	the	following	equation	

describes	it:	

y	=	14.815e-0.811x (5)	

where	y	is	the	Area	and	X	is	the	iteration	time	(relating	directly)	to	the	quantity	of	

triangle	bits.			
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Figure 5 Fractal Equilibrium – close-up. As the (Koch Snowflake) fractal iterates, shape equilibrium (the 

intersect) is reached where the MC is equal to the MA at approximately iteration 5 and area of 1. i = iteration 

time; cm = centimetres. 

A	log-log	diagram	of	the	dataset	was	produced	(see	appendix	Figure	10)	and	described	

as		

y	=	81.168x-0.592 (6) 

	

3.1.2 Marginal Cost (MC) 

The	MC	curve	in	Figure	4	began	from	a	value	near	0	and	increased	exponentially.	From	

Figure	5,	the	fractal	MC	curve	function	is	described	by:	

y	=	0.0675e0.8109x (7)	

	The	same	function	was	written	as	a	log-log	(see	appendix	Figure	8):		

y	=	0.0123x0.5918 (8) 

3.1.3 MA and MC Equilibrium 
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Figure	5	shows	the	MA	and	MC	curves	together:	they	intersect	at	approximately	5	

iteration	times,	where	the	Area	is	equal	to	1	cm-2.	Iteration	is	discrete:	there	is	no	

iteration	5.	3.	The	numbers	may	explain	why	equilibrium	is	not	exactly	at	iteration	5:	at	

iteration	5,	the	cost	area	and	area	are	not	exactly	1.		

3.1.4 Total Area (TA) and Total Cost (TC) 

Figure	4	below	shows	the	TA	–	TC	is	maximised	at	a	value	of	158	cm-2	at	iteration	time	

5.			

	

Figure 6 Total Cost and Total Area. The difference between the rising TA and its inverse, the TC, is maximised 

at five iterations. i = iteration time; cm = metres.  

3.2 Elasticity	

The	results	for	‘price	elasticity	of	demand’	are	as	follows.		

3.2.1 Standard Elasticity Equation 

The	denominator	was	constant	over	all	iteration	times	at	-1.25,	and	the	numerator	

constant	at	3,	with	a	resulting	elasticity	of	-2.4.				

3.2.2 Arc Method and Mid-Price  
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PED	values	calculated	by	the	arc	and	mid-price	methods	were	-1.32	and	-5.4,	

respectively.		
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4 DISCUSSIONS	

While	this	analysis	of	the	(Koch	Snowflake)	fractal	attractor	is	directed	at	classical	

economics,	due	to	the	universality	of	the	fractal,	it	may	also	have	direct	implications	on	

epistemological	(knowledge	and	information)	studies	and	the	possibility	of	our	

understanding	of	the	physical	world,	including	the	quantum	mechanics.	Keeping	with	

the	main	aim	of	this	investigation,	implications	to	marginal	economics	will	first	be	

discussed,	followed	by	–	or	often	intertwined	within	–	other	insights.	Just	like	the	

fractal	itself,	the	insights	developed	here	are	not	at	all	‘linear’	but	complex:	so,	the	order	

or	flow	of	insights	is	complicated	and	may	not	be	in	line,	but	they	will	be	covered.		

This	investigation	complements	previous	studies	by	the	author	on	other	aspects	of	the	

fractal:	

1. the	fractal	was	inverted	to	measure	observations	from	a	fixed	position	within	a	

fractal;	this	revealed	points	recede	exponentially,	and	insights	were	pointed	to	

growth	and	observations	of	the	Cosmos,	plant	(tree)	growth	and	economics	the	

increase	in	value	of	a	good	with	respect	to	time	[6]	and	[7];		

2. and	area	distribution	of	the	fractal,	offering	a	possible	explanation	for	the	

Lorenz	distribution	[8].		

This	investigation	leads	me	to	examine	the	isolated	fractal	–	already	it	has	been	‘seen’	

to	have	similarities	to	the	way	quantum	mechanical	systems	are	described.		

As	trivial	as	this	may	sound,	even	as	I	write	this	work,	I	am	aware	I	am	‘producing’	

something	for	my	readers	to	‘consume’;	when	iterated,	they	will	‘know’	–	this	is	a	

fractal.		
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4.1 Ceteris	Paribus	–	Fractal	Isolation	

Ceteris	Paribus	–	holding	all	other	things	constant	–	is	a	central	assumption	behind	

economic	models	and	analysis,	and	indeed	–	arguably	–	all	science.		Laws	derived	from	

this	method	are	called	ceteris	paribus	laws.	It	is	an	assumption	that	allows	scientists	to	

study	the	pattern	of	the	object	in	question:	without	it,	the	'cause'	to	the	'effect'	would	

not	be	discernible	-	or	would	be	confused	in	the	'chaos'	of	factors.	

The	fractal	in	isolation	demonstrates	this	ceteris	paribus	is	a	property	of	reality:	if	there	

are	no	other	factors	(or	other	fractals)	in	the	image	–including	the	Koch	Snowflake	

fractal	–	the	isolation	leads	to	a	problem	of	no	scale	or	known	position,	it	leaves	the	

observer	lost,	or	not	able	to	know.		In	reality,	this	ceteris	paribus	can	be	found	in	

locations	or	situations	with	no	reference	points,	no	discernible	scale,	and	where	one	

feels	literally	lost.	The	best	example	in	economics	may	be	the	concept	of	trade	and	

exchange:	they	are	universal,	observed	at	the	microcellular,	even	the	molecular,	to	all	

macro	levels	of	life.	The	idea	is	the	same	but	different:	only	when	the	scale	is	revealed,	

the	difference	is	revealed.			

I	will	return	to	this	and	discuss	it	further	under	the	knowledge	section	5	below.		

4.2 Marginal	Economics	

This	fractal	model	does	not	use	any	arbitrary	numbers,	as	presented	in	elementary	

economics	textbooks,	to	model	marginal	theory	(other	than	the	initial	set	arbitrary	

reference	area	and	the	unit	of	measure	used	(cm-2)	set	in	the	model).	It	demonstrates	

many	classical	economics	fundamentals.		

4.2.1 Total Utility and Diminishing Utility Demonstration 
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The	fractal	is	the	perfect	demonstration	of	diminishing	marginal	utility.		In	Figure	2,	we	

can	see,	in	accordance	with	marginal	theory,	that	the	total	area	of	the	(Koch	Snowflake)	

fractal	increases	–	at	a	decreasing	rate	–	after	iteration,	while	the	marginal	area	of	the	

fractal	diminishes.	Conversely,	it	may	now	be	interpreted	the	model	diminishing	

marginal	utility	is	a	perfect	demonstration	of	the	(universal)	fractal	and	is	best	

described	by	fractal	geometry.	Examples	are	truly	universal	to	this	phenomenon;	it	may	

be	more	interesting	to	identify	where	it	is	not.	It	applies	to	value:	the	first	of	anything	

will	command	the	highest	value	–	all	else	being	equal;	after	that,	the	value	diminishes.		

Examples	of	the	high	value	placed	on	the	may	be	the	first	to	walk	on	the	moon,	the	first	

rock	stars,	classic	aircraft	–	classic	anything,	the	special	positions	of	pilots,	etc.	These	

examples	will	always	hold	value	over	their	followers.		As	the	quantity	increases,	the	

value	of	all	the	above	diminishes.	The	Internet	has	today,	at	the	time	of	writing,	

increased	the	quantity	of	information.	Consequently,	there	is	a	proliferation	of	

information	–	information	that	was	once	of	great	value,	has	now	become	relatively	

trivial.		

Due	to	the	continuous	‘vertical’	nature	of	the	fractal	(fractal	zooming:	not	addressed	

directly	in	this	paper),	all	events	(such	as	the	moon	landing,	for	example)	have	

developed	and	evolved	from	earlier	beginnings;	they	are	not	standalone	events	or	

objects;	they	have	complexity.	They	are	a	continuation	of	an	infinite	(production)	

process.	And	by	this,	there	will	be	more	‘exciting’	events	to	come—but	none	like	the	

first.		

This	model	shows	prices	(the	value	assigned	to	the	marginal	area	value)	ranging	from	

an	arbitrary	value	of	100,	decreasing	towards	0:	it	is	asymptotic.	The	MA	curve	shows	a	

superposition	of	all	areas:	it	is	an	area	(or	bit)	possibility	curve	assuming,	just	as	with	

http://en.wikipedia.org/wiki/Marginal_utility
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classical	economics,	all	other	variables	affecting	the	MA	or	MU	are	held	constant	

(ceteris	paribus).		Here,	the	area	represents	the	price.	Notwithstanding	the	possibility	

of	Veblen	goods,	Giffen	goods	and	the	like	where	the	law	of	demand	is	contradicted,	this	

fractal-derived	downward-sloping	MA	curve	shows	the	law	of	demand	is	inextricably	

linked	to	a	market	structure	and	is	an	aspect	of	fractal	geometry.	If	bits	or	prices	were	

the	same	size,	the	fractal	would	not	emerge.						

4.2.2 Consumption and the Demand Curve 

The	negative	sloping	MA	curve	demonstrates	the	classical	economics	demand	curve	

and	the	relationship	between	price	and	quantity	demanded.	The	demand	curve	may	

now	be	explained	by	the	fractal	and	interpreted	as	one	aspect	of	a	fractal	phenomenon.		

In	accordance	with	marginal	theory,	this	‘demand	curve’	is	an	exponential	function.	

When	converted	to	a	linear	log-log	function	(see	equation	6),	the	function	can	be	

described	in	the	traditional	form:		

QD =	a	-	bP	 (9)	

where	QD	is	the	quantity	demanded	of	good	x;	a	is	the	x-axis	intercept;	b	is	the	slope	of	

the	curve;	and	P	is	the	price	of	good	x.	Notice	that	the	MA	curve	is	asymptotic;	it	does	

not	cut	the	x-axis	(See	Appendix	Figure	10).		

The	‘non-price	determinants	of	demand’—income,	the	prices	of	substitutes	and	

complements,	and	so	on—are	all	tropisms	of	the	real	fractal	structure.		

4.2.3 ‘Marginal’ History and the Basel Problem 

The	convergent	MA	curve	and	the	TA	curve	increasing	to	a	limit	match	how	a	Zeta	

function	(power	or	Zipf’s	law)	is	described.	This	fractal	demonstration	shows	that	this	
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is	no	coincidence.	The	fractal	attractor	is	a	Zeta	function	and	thus	describes	utility	

theory.		

The	mathematics	of	the	utility	is	said	to	have	begun	with	Daniel	Bernoulli’s	solution	to	

the	St.	Petersburg	paradox:	this	may	be	so,	but	I	suggest	it	is	the	soon	later	‘Basel	

problem’	that	best	describes	the	geometry	of	marginal	utility.		Its	added	sums	and	

geometric	sequence	–	with	convergent	and	limit	–	model	our	understanding	of		

‘marginal’	and	total	utility.	The	Basel	problem’s	limit	–	or	solution	–	and	convergent	

properties	remarkably	resemble	the	limit	(1.6)	and	convergent	properties	of	the	(Koch	

snowflake)	fractal	attractor.	Daniel	Bernoulli	initially	thought	the	Basel	solution	to	be	

1.6	by	the	equation:		

1!
"
		.	 (10)	

		Leonhard	Euler	counted	this	with	what	is	said	to	be	one	of	the	most	remarkable	

solutions	in	mathematical	history:	

𝜋#

6 	
(11)	

	with	a	limit	equal	to	1.64	(2sf).		

4.2.4 Pi (p) 

While	Euler’s	solution	is	greater	than	the	limit	value	of	the	Koch	fractal	(it	is	close),	

there	is	a	fascinating	insight	from	the	emergence	of	the	fractal	that	may	shed	light	on	

what	it	is	that	makes	the	Euler	solution	so	remarkable:	the	Euler’s	solution	has	p	within	

it,	and	the	fractal	demonstrates	p	.	Pi	describes	cycles	and	rotating	or	spiralling	

propagation:	the	fractal	can	also	be	shown	to	spiral	as	it	propagates.	Full	discussion	of	

this	insight	is	outside	the	scope	of	this	investigation,	but	it	must	be	mentioned.		
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The	(Koch	snowflake)	fractal,	as	shown	in	Appendix	Figure	11	A,	B,	and	C	and	[9],	

propagates	as	a	spiral	–	it	rotates	as	it	diminishes	and	converges.		From	this	fractal	

property,	it	may	not	be	a	coincidence	that	the	fathers	of	utility	theory	described	the	

Basel	convergence	finding	𝜋	within	it.		TAs	demonstrated	here;	the	fractal	propagates	

with	rotation	or	spiralling	described	only	by	첰:	this	would	suggest	they	are	the	same.	

By	full	shape	emergence	(equilibrium),	its	have	rotated/spiralled	through	2𝜋	or	360o.	If	

we	look	at	an	alternative	fractal	structure,	the	tree,	the	distribution	of	branch	size,	

(assuming	no	irregularity	of	branches	as	assumed	with	triangles	on	the	Koch	

snowflake)	of	a	fully	developed	tree	has	–	from	the	trunk	to	the	most	minor	observable	

–	a	distribution	that	not	only	resembles	the	MA/MU/demand	curve	but	is	also	rotates.		

The	‘fathers’	were	–	unbeknown	to	themselves,	in	their	time	–	describing	the	fractal.		

4.2.5 Euler’s Identity Fractal Conjunction 

The	fractal	may	give	credence	to	Euler’s	Identity	

𝑒$p + 1 = 0	 (12)	

	–	is	said	to	be	the	most	‘beautiful’	equation	in	mathematics	[10].	I	conjecture	Euler’s	

identity	exists	as	an	aspect	of	universal	fractal	geometry.				

The	shape	equilibrium	of	the	fractal	is	reached	where	the	MA	equals	one	and	the	MA	–	

MC	(and	the	marginal	community	surplus)	=	0.	Triangle	bits	are	rotated	(as	

demonstrated)	to	achieve	this	equilibrium,	invoking	p		–	and	the	possible	use	of	

complex	numbers	–	imaginary	numbers,	i.	Euler’s	number	‘e’	is	derived	using	a	

convergent	series	similar	to	that	used	in	the	fractal.	I	do	not	think	the	occurrence	of	

these	fundamental	constants	at	fractal	equilibrium	is	a	coincidence	and	should	be	

further	investigated.	If	true,	it	will	have	significance	on	the	universality	of	mathematics.		
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4.2.6 Normal Distribution Equation 

Further	to	this	but	related,	p	also	shows	up	in	statistical	analysis,	namely	the	‘normal	

distribution	equation’.	This	p	may	also	be	explained	by	examining	the	rotational	

development	of	the	fractal.	Suppose	the	fully	developed	fractal	is	assumed	to	be	at	

shape	equilibrium.	In	that	case,	the	‘snowflake’	has	formed	–	by	around	5	or	6	iterations	

(as	demonstrated),	it	has	come	to	this	equilibrium	by	rotational/spiral	propagation.	If	

we	assume	a	full	population	of	bits	has	been	produced	in	these	5	or	6	iterations,	they	

and	particularly	their	orientation	have	spiralled	to	be	there	in	this	process.		Again,	this	

fractal	geometry	may	account	for	Pis'	presence	–	within	‘everything’	or	population.	This	

claim	may	not	be	conclusive	as	it	is	assumed	that	all	triangle	bits	are	identical	in	this	

model,	but	what	if	–	as	in	reality	and	with	‘natural’	tree	fractal	structures	–	every	bit	is	

intrinsically	different	from	one	other	by	its	complex	nature?	The	distribution	will	

arguably	form	a	bell-shaped	curve	(if	measuring	with	a	dependent	variable,	size,	for	

example).			

4.2.7 Fourier Transform and the Demand Curve 

If	the	quantity	of	bits	per	iteration	time	is	understood	to	be	the	frequency	of	bits,	and	

the	area	of	bits	the	amplitude,	it	may	be	inferred	the	MA	curve	is	a	Fast	Fourier	

Transform	(FFT)	of	the	Koch	snowflake	–	a	compressed	summary	of	all	the	activity	in	

the	(fractal)	system.	If	so,	this	discovery	may	offer	insights	into	the	FFT	and	all	its	

applications	–	including	with	atomic	physics	(see	below).		It	also	implies	every	fractal	

attractor,	from	trees	to	waves	and	clouds,	may	be	described	as	a	Fourier	Transform,	

and	also	every	market,	at	any	scale:	the	complete	fractal	attractor	is,	therefore,	a	perfect	

example	of	a	Fourier	Transform	–	a	range	of	bit	frequencies	per	iteration	time,	all	in	

one	‘superposition’.	If	FFT	analysed	all	prices	in	a	market	and	all	quantities,	the	

convergent	pattern	would	repeat.			
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4.2.8 Insights into Quantum Mechanics 

To	form	an	MU	(MA)	curve	from	an	emergent	fractal	implies	bits	are	spiralling	as	it	

iterates	(see	4.1.4	above);	this	implies	a	wave:	a	superposition	standing	wave	of	

different	frequencies	at	different	amplitudes	(or	wavelengths).	The	demand	curve	is	a	

possibilities	curve	of	all	prices	and	quantities.	Still,	it	equally	describes	positions	on	a	

sinusoidal	wave	–	through	(iteration)	time	–	able	to	be	written	by	the	same	equations	

used	to	describe	quantum	mechanics	–	namely	the	Euler	Formula	(below).	For	this	

reason,	the	Euler	equation	is	argued	by	quantum	scientist	Richard	Feynman	as	‘the	

most	remarkable	formula	in	mathematics’.		

℮𝒊𝜽 =	𝑪𝑶𝑺𝜽	 +	𝑺𝑰𝑵𝜽	 (13)	

Through	the	fractal,	the	concept	of	marginalism	is	a	direct	window	into	

electromagnetism	and	the	quantum	world,	where	bits	(particles)	and	waves	of	different	

frequencies	are	in	(unobserved)	superposition,	with	non-location	until	‘observed’.		

4.2.9 Demand Curve as the de Broglie Wave Function 

According	to	the	de	Broglie	wave	function	(and	quantum	mechanics),	all	things	are	said	

to	(‘weirdly’)	have	a	wave	function—be	described	as	both	a	wave	and	a	particle.	In	this	

investigation,	the	fractal	makes	the	quantum	world	and	‘economic’	reality	act	as	one	

and	the	same.	From	this,	I	claim	the	answer	to	this	‘weird’	quantum	conundrum	is	that	

they	are	both	aspects	of	fractal	geometry.			

The	de	Broglie	wave	function	of	quantum	mechanics	is	directly	akin	to	–	if	not	by	

definition,	that	same	as	–	the	MU	curve.	The	equation	describes	it	

𝜆 =
ℎ
𝑝	

(13)	
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where	𝜆	is	the	wavelength,	ℎ	is	Planck’s	constant,	and	p	is	the	momentum	of	a	photon	

particle	(a	bit).	Drawn	on	a	diagram,	𝜆	against	p,	the	downward	sloping	‘demand	curve’	

like	curve	is	revealed.	The	resemblance	is	given	credence	when	the	𝜆	is	compared	to	

the	price	or	utility,	and	the	p	(momentum)	the	velocity	or	frequency	related	to	the	

quantity	demanded.	It	is	a	stretch,	but	through	the	fractal,	both	are	revealed	and	the	

relationship	is	the	crux	of	this	investigation:	it	should	at	least	open	further	

investigation.		

4.2.10 Negative Marginal Utility Misattributed 

For	the	Bernoulli	Euler	Basel	problem	model	to	be	the	fundamental	model	of	Utility	

theory,	the	marginal	utility	must	be	convergent	and	not	go	negative	as	described	in	

current	models.	The	fractal	addresses	this	problem	by	incorporating	production	cost.	

As	the	fractal	shows	us,	production	and	consumption	being	simultaneous	(this	will	be	

developed	later	in	the	discussions),	the	increasing	MC	after	fractal	equilibrium	(green	

in	Fig.	3)	can	account	for	the	claimed	'negative	marginal	utility'.	As	consumption	or	

iteration	increases,	production	costs	increase	to	a	cost	value	greater	than	the	marginal	

utility.	The	marginal	utility	does	not	need	to	go	negative,	as	there	is	never	consumption	

without	production.		

4.2.11 MA and TA and the ‘Diamond Water’ Paradox 

At	early	iteration	times,	the	MA	is	high	while	the	TA	is	low;	as	the	fractal	develops,	the	

TA	increases	and	is	maximised	where	the	MA	is	near	its	lowest.	This	is	in	total	

accordance	with	marginal	theory	and	supports	the	diamond	water	paradox.		

4.2.12 The Long Tail; Pareto 80-20 Rule 

The	downward-sloping	MA	curve	is	potentially	infinite	in	size	and	is	scale-invariant:	it	

will	not	change	its	shape	at	any	iteration	time.		The	MA	curve	is	a	‘power	law’	curve	and	
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demonstrates	Pareto’s	’80–20	rule:	80%	of	the	shape	is	experienced	with	only	20%	of	

the	iterations.	By	iteration	time	4	or	5,	the	shape	has	changed	and	formed	most	

noticeably	to	the	observer;	after	that,	extra	iterations	do	not	change	the	shape	of	the	

emerging	(snowflake)	object.	The	curve	shows	the	infinite	positions	of	triangles;	it	is	a	

superposition	curve.		It	is	the	perfect	demonstration	of	the	long-tail	demand	curve.		

4.3 Production	Cost	and	Supply	

While	the	snowflake	is	consumed,	it	is	at	the	same	time	–	simultaneously	–	produced.	

The	fractal,	on	its	own,	without	observation,	demonstrates	production.	The	Koch	

snowflake	fractal	is	an	emergent	object	produced	by	the	iteration	of	a	rule	(adding	

triangle	bites	to	the	earlier	triangle	bites)	as	described	in	the	methods.		By	iteration	

time	4	or	5,	a	Koch	snowflake	fractal	appears	complete	to	the	observer	(as	described	by	

consumption	in	the	section	above);	from	this	iteration	time,	the	cost	of	production	(the	

MC	in	Figure	2)	increases,	and	the	curve	rises.	The	MC	curve	measures	the	cost	

production	of	an	extra	iteration	in	terms	of	cm-2	s	per	iteration	time	(or	a	number	of	

triangles);	in	classical	economics,	this	cost	is	reduced	to	the	opportunity	cost	–	the	cost	

of	the	next	best	alternatives	and	it	can	equally	argue	to	be	relevant	to	fractal	

production.	The	MC	increases	exponentially:	this	is	consistent	with	the	derivation	of	the	

classical	economic	(short	run)	supply	curve,	and	when	plotted	on	a	linear	log-log	

diagram	of	the	function	(equation	8),	can	now	be	written	in	the	traditional		

Qs =	c	+	dP	 (14)	

where	Qs	is	the	quantity	supplied	of	the	good;	c	is	the	x-axis	intercept;	d	is	the	slope;	

and	P	is	the	price	of	good	x.	(See	appendix	figure	10)	

4.3.1 Technology and Other Production Factors 
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The	production	output	of	triangle	bits	depends	on	the	technology	used	(and	other	

factors	such	as	the	producer's	education):	from	a	thick	pen	to	a	thin	pen	to	draw	or	

from	freehand	to	an	electronic	computer.	When	technology	is	used,	more	iteration	can	

be	achieved;	the	observer	can	look	into	the	fractal	set	employing	fractal	zoom.	These	

other	‘non-price	determinants	of	supply’	are	all	tropisms	to	the	natural	structure.		

Anyone	attempting	to	draw	the	snowflake	fractal	by	hand	and	pen	(technology)	may	do	

so	easily	until	around	the	fourth	iteration;	after	that,	the	activity	becomes	difficult—the	

detail	will	not	be	seen,	and	the	cost,	measured	in	time	taken,	will	be	high.		

Technology	production	is	a	fractal	phenomenon	of	its	own;	it	will	develop	over	time,	

and	its	existence	will	give	feedback	on	the	original	fractal.	It	lowers	the	cost	of	

production,	making	it	easier	to	produce.			

4.3.2 Production and the Market Structure Market Structure – Monopoly to Competition 

The	emergence	of	the	fractal	demonstrates	the	market	structure	(as	shown	below	in	

Figure	8),	with	monopoly	pricing	and	power	at	early	iteration	times	and	a	competitive	

price	and	power	at	shape	equilibrium.		

4.4 Fractal	(Price)	Elasticity		

The	fractal	demonstrates	elasticity	and	offers	a	theory	of	the	origin	of	this	measure.	The	

fractal	reveals	elasticity	to	be	a	property	of	all	nature.	Discussing	the	different	

coefficient	values	of	the	Koch	snowflake	fractal	calculated	in	this	examination	from	the	

different	calculation	methods	is	not	the	scope	or	topic	of	this	paper;	however,	the	

calculated	coefficients	reveal	a	constant	elasticity	figure,	which	is	consistent	with	

standard	theory.		

4.4.1 Demand Curve Elasticity 
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As	the	MA	curve	(the	demand	curve)	is	an	exponential	curve,	it	has	a	constant	price	

elasticity	of	demand	(PED).	Using	the	same	exponential	data,	the	curve	becomes	a	

linear	curve	on	a	log-log	diagram:	the	PED	along	its	length	varies	from	infinity	(or	high)	

at	its	uppermost	end	to	0	at	its	lowermost	end.			This	change	in	the	elasticity	of	the	

fractal	attractor	suggests	a	universal	pattern,	not	only	for	economic	models	but	for	all	

knowledge.	There	is	a	‘sensitivity’	(elastic)	shape	(area)	to	change	at	early	iteration	

times	and	insensitivity	(inelastic)	at	later	iteration	times.		The	elasticity	is	largest	at	low	

iterations	due	to	the	highest,	most	outstanding,	marginal	Area	or	utility	before	iteration	

4	or	5.	At	early	iterations,	the	change	is	noticeable;	the	marginal	utility	is	similar	and	

high,	and	another	iteration	has	a	similar	high	utility;	conversely,	at	later	iterations,	the	

extra	utility	is	low	and	inelastic.	This	elasticity	change	with	time	is	inextricably	linked	

to	fractal	growth.		

4.4.2 Price Elasticity of Supply 

As	with	the	log-log	MA	curve,	a	log-log	curve	of	the	MC	curve	will	produce	a	linear	

curve.	The	shape	elasticity	in	–	terms	of	time	–	is	elastic	at	the	lower	–	early	iteration	–	

end	of	the	curve	and	conversely	increases	through	to	inelastic	at	its	upper	end	–	later	

iteration.	Early	in	the	fractal	development,	it	is	easy	to	produce	(elastic)	–	the	producer	

is	responsive;	conversely,	it	is	increasingly	difficult	–	the	producer	is	less	responsive	–	

with	time.				

4.4.3 Elasticity, the Fractal and the Product Life Cycle  

The	product	life	cycle	follows	fractal	geometry.		In	the	early	stages,	the	product	is	

unique	with	high	value	(bit	size),	high	marginal	utility,	and	high	elasticity:	as	the	fractal	

shape	emerges,	the	bit	size	decreases,	the	marginal	utility	decreases,	and	the	elasticity	

decreases.			
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4.4.4 Elasticity and the ‘Product’ Life Cycle and Knowledge 

In	context	to	a	product	(or	knowledge)	life	cycle,	early	iteration	times	pertain	to	early	

stages	of	production	and	consumption	and	are	elastic	–	another	iteration	has	high	

marginal	utility	or	benefit	–	and	later	stages	conversely	are	inelastic,	‘boring’	with	low	

(marginal)	value;	another	iteration	will	not	change	the	experience.		This	interpretation	

is	contrary	to	standard	references,	with	early	stages	said	to	be	inelastic	in	demand	[12].		

4.5 Fractal	(Shape)	Equilibrium	–	Simultaneous	Production	and	Consumption	

So	far,	I	have	shown	that	the	production	and	consumption	of	fractals	are	inextricably	

linked	to	one	another.		The	simultaneous	diminishing	of	area	and	additional	production	

cost	(with	iteration-time)	will	balance	or	be	equal	at	–	and	around	–	5	iterations:	this	

intersection	may	be	referred	to	as	fractal	or	object	equilibrium	and	is	shown	clearly	in	

Figure	3	above.		At	this	point,	the	emergent	snowflake	structure	has	formed	and,	to	the	

observer,	is	complete.	Any	more	iterations	of	the	function	will	not	add	more	detail	to	

the	shape;	conversely,	fewer	iterations	will	diminish	the	shape	(more	on	this	when	

discussing	knowledge	and	the	fractal).	The	shape	at	an	iteration	time	less	than	the	

equilibrium	iteration	time	will	be	less	than	the	equilibrium	shape	–	at	this	point,	more	

can	be	gained	with	more	iterations.	Conversely,	at	iteration	times	greater	than	iteration	

equilibrium,	now	more	shape	detail	can	be	defined	by	an	observer,	and	more	iteration	

come	at	an	exponentially	increasing		(opportunity)	cost	(in	terms	of	time).			

Fractal	equilibrium	is	taken	from	a	static	observation	point,	outside	the	fractal	–	or	

from	within	the	fractal	looking	forward:	it	is	a	horizontal	view.		

4.5.1 Fractal Zoom 

The	equilibrium	is	a	relative	equilibrium:	further	probing—or	zooming—will	uncover	

more	detail,	making	the	observation	dynamic	rather	than	static.	Importantly,	the	same	
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(but	different)	shape	will	be	observed	if	there	is	zooming.	Zooming	is	a	vertical	

perspective.		

This	fractal	equilibrium	is	complete	symmetry,	the	superposition	of	a	rule,	and	we	

observe	this	in	all	objects	in	our	reality,	both	tangibly	and	intangibly.	Trees	and	

markets	are	examples.	

4.5.2 Seven ± 2  

From	a	fixed	viewpoint,	all	fractals	('attractors')	form	their	shape	(are	at	fractal	

equilibrium)	at	and	around	7	2	iterations.	Any	more	iterations	than	this	will	incur	a	

high	cost	and	no	extra	benefit.	The	5	iterations	to	develop	the	fractal	Koch	snowflake	in	

Figure	5	(above)	are	the	point	where	the	MA	and	cost	MC	intersect	and	where	the	

shape	of	the	snowflake	is	fully	developed.		

This,	I	believe,	is	a	demonstration	of	the		“Magical	number	seven,	plus	or	minus	two:	

some	limits	on	our	capacity	for	processing	information”,	first	posited	by	Miller	in	1958	

[11].		

This	number	can	also	be	observed	throughout	our	reality:	from	any	standpoint,	there	

will	be	around	4,5,6,7,or	8	levels	of	protrusion.	For	example,	from	where	I	am	writing,	I	

can	see	out	my	window	where	there	is	a	park	and	some	buildings.	The	building	is	the	

first	protrusion;	then	there	is	a	chimney	on	the	building,	then	brick	on	the	chimney,	

then	there	is—I	can	just	see—an	icicle	(it	is	winter):	4	levels	in	total.			

Similarly,	on	a	tree,	if	you	follow	the	branches	out	from	the	trunk	until	they	first	fork,	

then	follow	that	branch	until	they	fork	again,	and	then	go	on	repeating,	following	the	

'first'	branch	on	the	branch	until	you	cannot	see	any	more	branches,	you	will	find	you	

can	only	fork	7	±	2	times.	
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Iteration	5	is	the	optimal	or	perfect	viewing	iteration	of	the	(fractal)	Koch	Snowflake	

from	the	viewer’s	perspective.	I	believe	it	is	also	the	number	of	iterations,	or	feedback,	

needed	to	gain	market	equilibrium.	

Shape	equilibrium	may	also	be	significant,	with	‘6	degrees	of	separation’	between	

knowing	everybody	in	the	world.	I	have	heard	that	in	reality,	it	is	around	four	before	

the	link	ends	and	fades	away.	

4.5.3 Fractal Paradigm and Field 

The	iteration	time	‘0	to	fractal	equilibrium	iteration	time	–	7	±	2	–	iteration	times	may	

be	considered	a	fractal	paradigm:	a	time	from	a	fixed	position	where	no	more	

information	can	be	observed	beyond	this	range	with	current	technology	–	to	go	beyond	

a	fractal	paradigm	one	must	zoom	into	the	set.	An	implication	of	this	iteration	

information	‘paradigm’	is	the	scale	of	the	field	between	the	largest	and	smallest.	With	

respect	to	an	observation	at	the	smallest	bit	size	(7	iterations),	the	largest	bit	size	is	

extremely	large:	the	smallest	bit	size	is	some	99%	of	the	largest	bit	size;	and	conversely	

to	the	largest,	the	smallest	is	extremely	small.	This	large	‘field’	size	scale	can	be	

calculated	(is	outside	the	scope	of	this	study)	and	may	offer	insight,	along	with	the	

above	quantum	insights,	to	Lord	Ernest	Rutherford’s	empty	atom	–	which	is	described	

to	be	99.999999999%	empty	between	the	outer	electrons	and	the	inter	nucleus.		With	

respect	to	the	other	quantum	insights	inferred	from	the	fractal,	this	atomic	field	size	of	

the	fractal	matches	the	atomic	problem	and	this	‘demands’	further	research.					

This	property	of	the	fractal	is	inextricable	linked	to	all	other	properties	of	the	fractal	–	

namely	change	through	time	–	evolution.	The	each	new	paradigm,	the	same	will	be	

experienced,	but	there	will	be	difference.				
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4.6 Price	Determination	

In	classical	economics,	the	market-clearing	price	is	defined	as	‘supply	is	equal	to	

demand’:	this	fractal	model	demonstrates—and	derives—this	equilibrium	price.	The	

fractal	already	describes	the	behaviour	of	prices	through	time—where	market	prices	

are	well	understood	to	be	fractal	[1].	The	interpretation	proposed	in	this	paper	

suggests	the	determination	of	price	itself	is	also	fractal,	and	Mandelbrot’s	findings	are	

inextricable.			

4.7 Inflation	

Two	insights	may	be	taken	from	the	fractal	on	the	topic	of	price	inflation:	the	lack	of	

repetition	of	a	concept	of	‘inflation’	in	nature,	and	definitions	of	a	fractal	‘coastline’	

resemble	inflation	definitions.		

Economic	principles	are	shared	with	the	natural	science	of	biology;	for	example,	

income,	production,	consumption,	selection,	etc.	–	interestingly,	there	is	no	concept	of	

(price)	inflation	in	nature.	Inflation	appears	to	be	‘everywhere	and	always’	a	cultural	

phenomenon	alone.	In	a	cultural	context,	there	are	many	examples	of	inflation,	all	

pointing	to	a	devaluing	of	the	principal	object.	For	example,	adding	stars	to	hotel	

ratings:	increasing	the	standard	5	to	7	stars.		Product	inflation	may	be	when	a	

(cosmetic)	change	is	made	to	a	good	–	with	no	innovation	added	–	and	thus	results	in	

the	devaluing	of	the	(same)	previous	good.			

A	key	property	of	the	fractal	object	or	attractor	is	its	infinite	boundary.	The	claim	is	

made	–	based	on	this	property	–	that	all	objects	have	a	‘fractal	dimension’,	and	this	is	

classically	revealed	with	the	measurement	of	the	coastline	of	an	island.	The	fractal	

argument	says	the	length	of	a	coast	depends	on	the	measuring	instrument's	length:	the	

shorter	the	instrument	the	longer	the	length	of	the	coast.	I	claim	this	property	and	
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island	application	is	what	price	inflation	is	also:	where	the	measuring	instrument	is	a	

currency,	and	the	coastline	the	object	–	or	the	good	or	service	in	question.	As	the	

currency	is	debased	(resulting	in	a	shorter	measuring	instrument),	the	‘price’	value	of	

the	good	in	question	is	‘inflated’	–	even	if	the	good	in	question	has	not	changed	at	all.				

4.8 Say’s	Law	

The	fractal	directly	demonstrates	Say’s	law	–	production	comes	before	consumption.	

The	fractal	was	first	produced	and	then	viewed	or	consumed.		This	is	a	law	of	the	

fractal:	the	converse	cannot	be	true:	one	cannot	view	the	changes	without	the	changes	

first	being	produced.		This	observation	of	the	fractal	is	universal	to	all	objects	and	will	

be	returned	to	in	reference	to	knowledge	and	the	distinction	between	science	and	the	

arts	in	section	5.		

4.9 Trade	and	Exchange	

As	the	‘snowflake’	is	produced,	it	may	–	in	principle	–	be	traded	or	exchanged	with	a	

consumer	–	a	‘consumer’	external	to	the	model	in	question.	Without	this	transaction,	

production	would	only	be	on	its	own.	If	this	transaction	takes	place,	the	more	that	is	

produced	(iterated),	the	more	the	consumer	benefits	as	the	first	iteration	is	valued	

relatively	high	compared	to	those	after	that.	This	relationship	is	primal	and	universal	

and	gives	insight	into	the	economy	of	life	itself:	primordial	life	may	have	begun	on	these	

principles	–	production	followed	by	consumption.		

4.10 Growth,	Development,	Evolution,	and	Sustainability			

Simultaneous	with	production:	The	snowflake	develops	as	the	quantity	of	triangle	bits	

increases	with	iteration	time.	Growth	and	development	are	inextricably	linked	and	are	

an	aspect	of	fractal	production.		
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4.10.1 Growth 

This	snowflake	structure	at	equilibrium	does	not	demonstrate	growth	but	only	

structure:	systems	do	not	have	activity	at	the	largest	iteration	0	bit	size	first;	in	fact,	it	is	

the	complete	opposite;	they	grow	from	the	newly	added	bits.		The	focus	is	placed	on	the	

newly	added	bits	to	demonstrate	and	describe	growth,	and	to	show	this	fractal	must	be	

inverted.		As	a	bit	is	added	(or	the	specific	quantity	of	bits	for	any	iteration	time),	the	

previous	bit	size	must	expand	or	grow	in	size;	this	is	growth,	and	it	is	exponential.	I	

have	termed	this	fractspansion,	and	in	my	earlier	papers	[6],	I	posited	dark	energy	and	

the	growth	of	plants	may	be	best	described	by	this	fractspansion.		

An	important	insight	from	shape	equilibrium	is	that	growth	has	limits—the	total	area	

of	the	fractal	is	finite	and	will	grow	at	a	decreasing	rate.		

4.10.2 Development  

Development	is	related	to	the	complexity	of	the	fractal	structure.	The	iterating	fractal	

demonstrates	the	duality	of	growth	and	development;	they	are	inextricably	linked.	For	

example,	as	a	fractal	tree	grows,	so	it	develops.		

4.10.3 Evolution  

A	fractal	demonstrates	change	over	time	and	so	demonstrates	evolution	–	the	change	or	

development	of	an	object	over	time.	Evolution	is	demonstrated	in	the	fractal	–	by	

zooming	(into	time)	and	observing	the	‘different’	(or	irregular)	of	the	‘same’	(or	

regular)	shape	(or	object).	Evolution	is	universal	to	the	fractal,	and	indeed,	taken	from	

what	we	can	observe,	the	universe	itself	appears	to	be	evolving.	The	fossil	record	is	a	

record	of	‘living’	things	through	time.		Evolution	and	development	are	the	same	

principle	and	may	be	indistinguishable	from	each	other	without	a	(time)	scale	
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reference.	The	tree	becomes	the	tree	of	life.	It	is	'nested'	development	–	within	

evolution.	

The	fossil	record	traces	or	records	these	changes	through	time	–	the	fossil	record	is,	in	

fact,	a fractal	record:		'cataloguing'	the	infinity	of	('different')	combinations.	

It	has	been	implied	by	many	leading	biologists	and	mathematicians	'that	evolution	has	

(often)	found	fractal	ways’	or	‘has	used	fractal	ways'.	This	is	misleading.	Evolution	is	a	

property	of	the	fractal	and	part	of	the	geometry.	Evolution	is	always,	and	everywhere,	

fractal.		Evolution	can	be	observed	in	the	fractal	and	is	a	core	component	of	the	

mechanics	of	the	fractal	as	a	universal	repeating	pattern	or	algorithm.	In	principle,	as	

the	fractal	is	infinite,	so	too	is	evolution.	

Development	may	be	seen	as	a	'short	run'	or	short-term	observation,	for	example,	the	

development	or	emergence	of	an	economy	or	a	person—demonstrated	by	the	fractal	

from	iteration	time	0	to	fractal	equilibrium—iteration	6.		

Evolution	may	be	seen	as	a	long-run	observation,	tracing	the	'development'	of	

the	object,	the	tree,	through	(greater)	time.	It	is	best	demonstrated	by	the	fractal	zoom.	

Evolution	shows	the	'chaos',	the	complexity,	or	the	influences	on	the	'developed'	object.		

Are	there	limits	to	evolution	in	the	same	way	there	are	limits	to	growth? 	Yes,	and	no.	In	

the	same	way	that	there	are	limits	to	(fractal)	growth	and	development,	the	object	will	

evolve	to	a	formed	shape,	but	no,	because	there	will	always	be	change,	an	infinity	of	

changes,	and	never	one	object	is	the	same.	

The	Koch	snowflake	fractal	does	not	show	evolution	as	the	triangle	bits	are	all	and	

infinitely	identical;	however,	if	a	change	was	made	to	a	bit	–	a	red	dot	added,	as	

demonstrated	in	the	appendix	figure	11	–	and	iterated	evolution	is	demonstrated,	and	

is	a	wave	phenomenon	–	pulsing	through	time.			
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4.10.4 Sustainability  

Sustainability	is	generally	defined	as	‘maintaining	the	environment	or	the	economy	

today	without	compromising	future	generations’.	The	fractals	may	demonstrate	

sustainability,	but	equally	or	conversely,	they	do	not	and	reveal	that	it	is	impossible—

nothing	can	be	maintained	infinitum.	

To	reveal	how	the	fractal	offers	insight	into	‘sustainability’	we	need	to	distinguish	

between	the	‘same’	and	the	‘different’	in	the	fractal	definition.	

The	'same'	or	the	'regular'	part	of	the	fractal	definition	suggests	that	patterns,	rules,	and	

knowledge	all	repeat	at	all	scales;	this	part	is	sustainable	or	constant.	This	feature	of	

fractals	is	explained	by	strange	attractors	found	in	the	study	of	chaos	and	fractals	–the	

repeating	of	a	rule	or	law.		

The	'same'	component	is	revealed	within	the	study	of	biology	in	the	form	of		

'evolutionary	convergence'	or	'analogous	structures’,	and	the	best	example	may	be	

winged	flight	–	where	it	is	repeated	through	time:	the	'different'	represents	the	many	

forms	of	flight:	the	mammal,	reptile-bird,	or	insect.	There	appears	to	be	a		‘line	of	

fractality’	where	flight	by	the	wing	repeats	at	all	scales	through	time.	Today,	we	can	add	

the	human-developed	aircraft	wing	to	this	group,	and	with	this,	the	many	types	of	

human	wings.		Another	example	of	sustainable	patterns	can	be	found	with	the	plants:	

woody	steamed	plants	–	what	we	term	a	tree	–have	repeated	in	all	the	evolutionary	

phylum.		

The	definition's	'different'	or	'irregular'	part	alludes	to	change,	roughness	and	

unsustainable.	It	alludes	to	evolution,	or	change	over	time	–	of	the	‘same’.	This	

component	part	of	the	fractal	definition	does	not	demonstrate	sustainability	–	there	is	

constant	(irregularity)	change.	To	have	evolution,	there	must	be	extinction,	there	must	

http://en.wikipedia.org/wiki/Convergent_evolution
http://en.wikipedia.org/wiki/Analogy_(biology)
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be	change	–	whether	‘we’	like	it	or	not.	This	‘law’	or	function	we	call	evolution	will	

never	become	extinct	until	life	becomes	extinct,	and	so,	in	this	respect,	it	is	sustainable:		

4.11 Consumer,	Producer,	and	Community	Surplus	

Consumer	surplus	can	be	demonstrated	by	the	fractal:	it	is	the	area	under	the	MA	curve	

described	by	Euler	Basel	solution	formula	10	above.		The	Producer	Surplus	is	the	area	

above	the	MC	curve,	and	the	community	surplus	equals	(approximately)	the	Basel	

solution	–	160	m-2	minus	the	MC,	a	value	of	157	m-2.	This	shows	shape	equilibrium	is	

achieved	before	the	(cost	of	the)	limit.	Community	surplus	is	maximised	at	shape	

equilibrium	or	where	the	area	of	the	snowflake	object	is	at	its	maximum	from	the	

perspective	of	an	observer.		

4.11.1 Intervention 

Just	as	with	classical	economic	theory,	any	intervention	(a	price	minimum	or	

maximum)	will	limit	either	the	production	or	consumption	of	the	fractal,	creating	

surpluses	and	shortages.	The	consequences	of	such	intervention	are	evident	in	

markets,	but	they	may	also	affect	knowledge	issues.			

4.11.2 Golden Ratio? 

The	ratio	of	the	Koch	Snowflake's	original	area	(100	m-2)	to	its	final	emergent	area	is	

1.6:1.	This	ratio	is	close	to,	but	not	exactly,	the	golden	ratio.		

4.11.3 TA-TC 

It	is	also	noted	that	at	equilibrium,	TA-TC	is	maximised	–	as	shown	in	Figure	6.		

4.12 Trade	and	Exchange	

As	the	‘snowflake’	is	produced,	it	may	–	in	principle	–	be	traded	or	exchanged	with	a	

consumer	–	a	‘consumer’	external	to	the	model	in	question.	Without	this	transaction,	
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production	would	only	be	on	its	own.	If	this	transaction	occurs,	the	more	that	is	

produced	(iterated),	the	more	the	consumer	benefits	as	the	first	iteration	is	valued	

relatively	high	compared	to	those	after	that.	This	relationship	is	primal	and	universal	

and	may	give	insight	into	the	economy	of	life	itself:	primordial	life	may	have	begun	on	

these	principles	–	production	followed	by	consumption.		

4.13 Short	Run	Long	Run	

The	fractal	may	demonstrate	the	economic	Short	Run	and	the	Long	Run. The	

development	and	growth	of	the	fractal	from	iteration	1	to	the	equilibrium	iteration	may	

be	seen	as	the	fractal	Short	Run.	The	Short	Run	is	the	effect	of	the	rule,	the	branching	or	

the	adding	of	triangles. The	Long	Run	is	the	end	state,	the	total	‘superposition’	of	all	

the	infinite	possibilities	of	the	rule.	 

4.14 Micro-Macro	Distinction	

Fractal	scale	invariance	is	evident	in	the	supply	and	demand	diagrams	drawn.		

This	is	a	property	of	the	fractal:	from	a	distance,	without	looking	at	the	labels	and	such,	

the	models	look	the	same.	There	is	downward-sloping	demand	(and	both	for	many	

reasons)	and	upward-sloping	supply,	with	price	and	output	on	the	axis.	

The	property	of	not	being	able	to	discern	the	scale	of	the	fractal	object—when	viewing	

a	fractal	in	isolation—offers	direct	insight	into	the	macro	and	the	micro.	In	a	perfect	

fractal,	there	should	be	no	difference.	The	resultant	greater	fractal	clearly	points	to	the	

macro	and	the	self-similar	fractal	shapes—within	this	greater	shape—the	micro.	At	all	

scales,	the	rule	to	create	this	shape	is	the	same.		

From	a	different	perspective,	the	‘same’	–	from	the	fractal	definition	'same'	but	

'different'	at	all	scales	–	may	point	to	the	mathematical	rule	that	is	repeated,	and	the	
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‘different’	to	the	many	different	examples	of	shapes	created	from	this	rule.	To	help	

explain,	the	word	tree	will	be	used	as	an	example:	a	tree	is	the	‘same’,	but	it	implies	

there	are	many	trees	–	many	types	and	species	–	an	‘infinity’	of	trees.		These	‘same’	

rules	in	economics	–	wealth,	trade,	selection,	reproduction,	and	specialisation	‘Trade	

and	exchange’	are	present	not	only	in	classical	economics	but	also	in	cellular	biology	

[13]	and	even	chemistry	theory.	This	is	true	in	the	other	natural	sciences,	physics,	for	

example,	where	the	same	are	immutable,	scale-invariant,	and	scientific	laws.	

If	the	complete	shape	of	the	macro	is	made	up	of	these	rules,	and	the	micro	and	the	

macro	are	connected	inextricably	through	these	rules,	all	rules	of	the	micro	must	be	

present	in	the	macro.	If	this	is	not	true,	and	the	‘thread	of	fractality’	is	broken,	it	may	

count	as	falsification.	As	an	example,	if	CO2	is	claimed	to	change	the	climate	in	the	

macro,	it	should	also	change	the	weather	in	the	micro.	There	is	no	literature	on	

whether	C02	changes	the	weather.		

4.14.1 Defining Science 

The	process	of	discerning	these	scale-invariant	universal	rules	(or	laws)	is	known	as	

science	and	is	represented	by	mathematics.				

4.15 Fractal	Decay	

If	the	emergence	is	‘played’	in	reverse,	the	fractal	demonstrates	decay:	from	a	complex	

object	to	a	simple	object	with	respect	to	time.	As	time	passes,	the	detail	will	diminish	

and	leave	the	original	core	triangle	bit.	Fractal	decay	is	the	reverse	of	fractal	

development	and	is	also	logarithmic.	In	the	diagram	below	(figure	7),	this	decay	is	

displayed.		
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Figure 7 Fractal Decay Demonstration. From iteration 0 to 5, the fractal develops and grows; conversely, it 

decays from iteration 5 to 0. Elasticity and marginal costs and benefits reverse in reflection through a line of 

symmetry (the point of decay).  
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4.15.1 Observed (Demand) Decay 

As	iteration	time	passes,	the	fractal	will	decay	if	the	fractal	discontinues	to	grow	and	

develop,	losing	its	detail	at	first	–	the	marginal	benefit	curve	(and	MC	curve)	is	

relatively	inelastic	at	these	near-shape	equilibrium	iterations.		With	decay,	the	‘value’	

or	size	of	the	marginal	triangle	bit	(marginal	benefit)	increases	with	time	–	a	reverse	of	

the	diminishing	utility	–	while	the	total	area	(TA)	decreases.	At	the	beginning	of	the	

decay,	the	change	is	inelastic	with	respect	to	time	and	area,	and	elastic	as	time	

progresses.	To	observers,	this	results	in	larger	and	larger	value	of	things	past	–	as	time	

passes	–	and	coupled	with	elasticity’s,	the	sensitivity	of	change	increases	with	time.		

4.15.2 Decay- Cost 

From	a	production	cost	perspective,	the	decaying	marginal	cost	(price)	is	largest	at	

beginning	time	of	the	decay	(at	shape	equilibrium)	and	decreases	with	time.	The	

elasticity	of	the	MC	as	shape	equilibrium	is	initially	inelastic,	and	increases	to	elastic	as	

time	passes.	This	may	be	interpreted	as	the	‘pain’	of	the	change.		The	decay	cost	is	

largest	but	inelastic	(insensitive/	unchanging)	closest	to	the	beginning	time	and	more	

elastic	(sensitive)	as	iteration	time	passes.			

4.15.3 Half-life 

The	decaying	fractal	demonstrates	(Lord	Rutherford’s)	radioactive	half-life:	the	decay	

of	detail	is	an	exponential	function.	And	oddly	similar	to	Rutherford’s	atomic	

discoveries,	the	fractal	snowflake	is	transmuted	–	decayed	–	to	a	single	triangle	bit.		

4.16 Iteration-time	

Something	must	be	said	about	the	key	mechanism	to	the	fractal	emergence:	the	regular	

‘beat’	or	iteration	of	discrete	‘bits’	forming	an	object	and	propagating	as	a	wave.	This	

beat	–	the	production	of	‘particles’	–	is	how	light	is	explained,	where	photons	are	
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explained	to	propagate	–	as	a	wave	–	at	light	speed.	This	process	may	offer	insight	into	

time.	Further	discussion	is	beyond	this	investigation	but	must	be	addressed.		

This	property	may	also	offer	insight	into	the	regularity	of	gene	mutations	in	the	genome	

(the	genetic	clock),	allowing	us	to	date	genetic	mutations,	which	may	also	be	explained	

by	fractal	iteration.		

4.16.1 Perception of Time 

As	the	fractal	iterates	through	time,	changes	to	the	shape	are	greatest	at	early	

iterations.	This	may	explain	how	time	is	perceived	to	run	faster	for	younger	age	groups	

than	for	those	older,	given	that	our	perception	of	time	is	influenced	by	changes.			

4.17 Information:	Perfect	and	Asymmetric	Information			

Figure	8	below	shows	the	development	of	the	fractal	Koch	Snowflake:	shape	

equilibrium	(Perfect	Knowledge),	but	absolute	information	is	not	demonstrated,	as	the	

fractal	is	‘infinite’.	This	insight	alone	gives	weight	to	‘to	more	we	discover,	the	more	

questions	are	opened’.	Perfect	Knowledge,	or	‘perfect	information'	is	achieved	only	

with	free,	open,	competitive,	or	unobstructed	feedback	–	this	is	consistent	with	Joseph	

Priestley’s	early	work	on	utilitarianism	in	the	1790’s		

Any	obstruction	to	'iteration'	in	achieving	this	equilibrium	–	due	to	what	may	

be	termed	a	knowledge	monopoly	–	will	produce	an	incomplete	fractal	shape	(as	shown	

in	the	upper	panel	of	the	diagram),	imperfect	knowledge,	or	asymmetric	

information.	Perfect	shape	(perfect	knowledge)	is	achieved	with	open	and	competitive	

unobstructed	feedback.	
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Figure 8. Koch Snowflake Fractal Imperfect Information, Knowledge Monopoly Demonstration. Shape 

equilibrium is met where marginal cost is equal to marginal benefit.  Knowledge monopoly where iteration is 

restricted: this will result in ‘knowledge profits’.  

4.18 Uniformitarianism	and	the	Fractal	

The	key	to	the	past	can	be	found	in	the	present.	

I	have	a	strong	interest	in	geography	and	geology,	and	it	was	here	where	I	first	read	of	

Hutton’s	uniformity;	I	soon	found	–	after	teaching	development	economics	–	that	this	

principle	may	be	universal	and	may	reveal	itself	in	economics.		

The	law	of	uniformitarianism	reveals	itself	in	the	fractal.	To	describe	a	fractal,	one	

would	eventually	cover	the	principle,	only	instead	of	reading	as	above	–	the	key	the	

past	can	be	found	in	the	present	–	it	would	read:	the	key	to	the	present	(scale)	can	be	

found	in	the	small	scale	–	or	conversely	the	large	scale,	assuming	ceteris	paribus	
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approach,	(holding	all	else	constant	or	frozen).	

In	the	tree	fractal	below,	the	new	(present)	cross-section	line	b-b	will	share	the	same	

(but	different)	pattern	as	the	earlier/older	(past)	cross-section	line	a-a.	Scale	is	the	only	

difference,	both	in	time	(age),	and	size.	

 

Figure 9. Uniformitarianism and the Fractal (Tree). The key to the past is in the present; the key to the past 

scale - cross section a-a - is in the present (new) scale b-b.   

Uniformitarianism	is	another	insight	and	property	of	the	fractal	–	the	same	but	

different	–	at	all	scales.	

For	example,	if	you	want	to	know	how	you	were	as	a	child,	all	you	need	do	is	see	the	

children	around	you;	the	same	may	be	said	for	growing	old.	This	may	sound	obvious,	

but	it	may	be	only	obvious	because	of	the	fractal	nature	of	the	universe.		

4.18.1 Application in Economics 

If	you	want	to	know	how	it	may	have	been	to	live	in	the	past	(social-economically	

speaking)—say,	the	Middle	Ages—all	we	need	to	do	is	search	for	a	developing	country	

in	the	present	that	has	poverty.	In	any	system,	one	would	not	have	to	find	another	
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country	to	demonstrate	this;	it	should	be	evident	everywhere:	every	(healthy)	system	

has	diversity—rich	and	poor,	young	and	old.		

A	fractal	thinker	should	see	the	child	–	in	the	first	application	–	and	the	developing	

country	–	in	the	second	–	as	the	same.	

5 Insights	to	Knowledge	

If	we	assume	the	snowflake	object	stands	for	knowledge	and	ideas,	the	fractal	

demonstrates	the	emergence	of	knowledge,	where	information	is	represented	as	the	

triangle	bits	making	up	the	snowflake.	At	the	foremost,	absolute	knowledge	is	

unachievable,	as	the	fractal	iteration	time,	and	thus	information	is	infinite;	but	it	is	clear	

that	a	shape	of	‘knowledge’	is	soon	formed	or	emerged.	

5.1.1 Perspectives – Polarities  

One	of	the	most	important	insights	from	the	fractal	stems	from	the	question,	'	What	

comes	first,	consumption	or	production?’	This	is	not	only	an	economics	question	but,	

indirectly,	a	question	of	knowledge	and	truth.	The	fractal	sheds	insight	into	reality	and	

offers	an	explanation	for	the	origin	of	life.	However,	the	answer	will	always	come	in	the	

form	of	two	perspectives,	in	polarities.		

5.1.2 Consumption – Observation  

The	‘consumption	side’	refers	to	the	observing	and	enjoying	–	or	not	–	of	the	emergent	

object.	It	refers	to	the	beauty	and	the	aesthetics	of	the	emergent	snowflake.	It	is	an	

interpretation.	It	is	void	of	any	time	or	history.	In	accordance	with	the	understanding	of	

the	MA	and	TA	curves,	figure	2	above,	every	iteration	adds	to	the	image.	It	has	no	

notion	of	production	or	observation	–	the	iteration	of	a	simple	rule	or	algorithm.	An	

explanation	of	the	object	will	be	external	to	the	production	rule;	it	will	be	ignorant	of	
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the	rule	and	may	come	in	the	form	of	an	image,	or	a	description.			It	may	be	that	this	

perspective	of	the	polarity	is	the	‘inductive’	side.	Knowledge	is	gained	from	gathering	

facts	and	extra	facts	to	build	up	a	general	picture.			

5.1.3 Production Explanation- Understanding 

Production	refers	to	the	rule	of	production	of	the	emergent	object;	how	is	it	the	object	

produced?		The	explanation	of	the	production	is	the	iteration	of	a	simple	rule.	This	

simple	rule	may	be	seen	as	a	general	rule,	and	further,	after	studying	and	proving	by	

iteration,	it	is	defined	as	a	–	universal	at	any	scale	–	law	without	which	no	emergent	

object	will	be	produced.	With	an	explanation,	a	law	or	an	algorithm,	the	object	may	be	

able	to	be	reproduced.	This	is	not	possible	from	a	consumption	observation.		

As	this	side	is	the	polarity	of	consumption,	it	follows	this	production	side	must	be	the	

‘deductive’	perspective,	where	a	general	rule,	or	code	is	identified	to	explain	the	object.		

5.1.4 Equilibrium 

Shape	equilibrium	is	the	simultaneous	meeting	of	both	consumption	and	production.	

Explanation	is	equal	to	observation.	By	iterating,	using,	studying,	researching,	and	

experiencing,	the	fractal	reaches	what	may	be	termed	shape,	knowledge,	or	fractal	

equilibrium.	This	is	the	shape	viewed	from	an	observer	outside,	and	not	within,	the	

fractal.	Fractal	equilibrium	is	reached	at	or	around	5	plus	or	minus	2	iterations	–	but	

this	is	dependent	on	a	number	of	factors	including	the	distance	between	the	observer	

and	the	fractal.	

As	if	by	law,	though	these	different	perspectives	–	production	and	consumption	–	

appear	to	be	simultaneous	and	equal	at	equilibrium,	they	are	quite	separate	from	one	

another.	Truth	is	found	when	the	two	are	simultaneously	in	equilibrium.	To	reiterate,	

the	fractal	can	be	observed	–	consumed	while	at	the	same	time	having	its	production	



46	

explained,	but	only	one	of	these	perspectives	is	true.	When	attempting	to	explain	the	

object,	only	one	is	true.	When	experiencing	the	object,	only	one	perspective	is	true.		

5.1.5 Duality 

Every	property	of	the	fractal	is	coupled	with	a	dual	opposite	or	symmetry.		

This	begins	with	the	fundamental	definition:	same	but	different	at	all	scales.		The	‘Same’	

(or	regular)	component	is	what	is	known	as	a	rule	–	and	thus,	this	is	the	basis	of	

Euclidian	mathematics;	the	‘different’	(or	irregular)	component	is	the	chaos	–	the	

diversity	of	the	rule.		Growth	and	development,	production	and	consumption,	supply	

and	demand,	and	so	on.		

This	duality	insight	leads	to	a	fundamental	property	of	the	fractal	that	is	beyond	the	

scope	of	this	‘classical’	reality-based	investigation;	it	is	the	quantum	mechanical-like	

behaviour	of	the	isolated	fractal.	These	many	insights	will	be	addressed	in	another	

paper.		

5.1.6 On Ceteris Paribus and Knowledge 

It	is	in	the	intangible	area	of	‘knowledge	claims’	where	this	problem	of	monotonic	scale	

invariance	of	the	fractal	is	most	evident:	discerning	truth	when	there	is	nothing	‘to	go	

on’,	only	a	pattern.		Though	from	the	repeating	of	the	pattern,	the	repeating	at	all	scales,	

all	looking	the	same,	with	this,	there	will	always	be	the	polarity	between	the	aesthetic	

consumption	view	and	the	logical,	scientific	production	view.		

The	takeaway	from	this	is	that	only	the	productive	side	gives	the	truth—it	will	allow	

accurate	prediction	and	reproduction	of	the	observation	or	pattern.	It	has	to	be	

understood	that	all	knowledge	is	fractal.	It	will	repeat,	and	if	it	does	not,	there	may	be	

something	wrong	with	the	claim.		
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5.2 Insight	to	Science	

If	knowledge	follows	a	fractal	structure,	one	can	expect	both	a	production	side	and	a	

consumption	side	of	it.	Claimants	of	knowledge	will	take	one	of	these	sides	with	the	aim	

of	truth	but	may	be	unaware	of	which	side	they	have:	they	may	easily	confuse	the	two	

perspectives.	A	scientific	approach	is	most	certainly	a	production	side	explanation	and	

the	demand	for	surrealism.	Unless	their	claim	repeats	or	iterates	–	so	as	to	be	seen	

universally	at	all	scales	–	and	able	to	be	written	mathematically	as	an	equation	just	as	

the	production	of	the	Koch	snowflake,	the	claim	may	be	mistaken	for	an	observation	

consumption	perspective.	Even	talking	about	the	fractal	itself	stands	as	an	example;	

some	see	the	fractal	as	having	meaning	to	the	universe;	this	is	similar	to	quantum	

mechanics,	while	others	will	see	only	the	geometry	and	take	no	meaning	from	it.	The	

‘observation’	perspective	is	open	to	interpretation	and	debate	–	it	will	be	subjective	and	

may	lead	one	on	the	trail	of	truth,	while	the	scientific	production	perspective	is	

objective,	clean	of	opinion,	and	complies	with	reason.	The	significance	of	this	insight	

may	address	the	work	of	Professor	Alan	Musgrave	[14]	on	surrealism	where	(as	it	

appears	from	a	fractal	analysis)	knowledge	may	be	monopolised	by	the	observation	

side	when	explaining.	These	groups	will	claim	‘all	the	science	is	good	for	is	saving	the	

phenomenon’;	their	claims	will	be	parasitic	on	the	‘production’	or	scientific’	approach	

and	will	offer	no	explanation	on	is	own.	Their	claims	will	often	be	extraordinary.	

The	classic	example	of	this	scientific	polarity	is	the	Copernican	and	Aristotelian	

approaches	to	the	heliocentric	and	geocentric	interpretations	of	the	solar	system.		

There	is	only	one	explanation	that	fits	a	production	perspective,	and	this	is	the	

Copernican	Heliocentric;	all	other	perspectives,	after	the	aid	of	telescope	technology,	

were	mere	guesses	and	wrong.		Modern	polarities	are	quantum	mechanics	and	books	
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like	‘The	Secret’	–	where	quantum	mechanics	is	interpreted	to	have	some	‘meaning’;	

environmentalism	and	manmade	climate	change	vs.	natural	climate	change;	Darwin	vs.	

creationism;	and,	of	course,	Keynesian	vs.	Classical	Economics.	With	all	these	issues	we	

see	–	at	least	–	two	perspectives,	both	at	odds	with	each	other.	The	truth	will	be	found	

in	a	fractal	production	perspective.	Testament	to	this	is	the	geocentric-heliocentric	

debate	where	heliocentric	won	over	as	a	universal	truth.		While	the	Sun	appears	to	

move,	it	is,	in	fact,	the	planet,	the	Earth,	that	is	moving.		

6 Conclusions	

From	this	analysis	of	the	regular	(Koch	Snowflake)	fractal,	it	has	been	shown	–	and	it	

can	now	be	inferred	–	that	intangible	economic	behaviour	known	as	marginal	

economics	is	an	aspect	of	fractal	geometry	and	can	be	best	described	and	understood	

by	studying	and	analysing	the	fractal.	The	fractal	demonstrates	many	of	the	main	

principles	of	classical	economics,	including	marginal	and	total	utility,	marginal	cost,	

equilibrium,	price	determination,	elasticity,	growth	and	development,	and	Say’s	law	

where	to	view	–	or	consume	–	a	fractal,	it	must	first	be	produced.	The	fractal	object	is	

produced	by	the	iteration	of	a	‘simple’	rule.	Marginal	and	total	diagrams	graphing	the	

fractal	attractor’s	growth	and	development	–	through	time	–	match	textbook	diagrams,	

and	show	the	universality	of	the	fractal.	From	this,	the	fractal	reveals	direct	insights	

into	knowledge	and	knowing,	offering	a	theory	of	knowledge.		

All	fractals	exhibit	wave	properties	with	iteration	and	emergence;	wave	properties	are	

traditionally	described	by	electromagnetics	and	quantum	mechanics	mathematics:	

from	this,	the	fractal	is	a	candidate	to	reveal	an	answer	to	some	of	the	‘big’	questions	in	

physics.	It	was	found	the	fractal	can	also	be	described	by	these	mathematics	and	the	
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fractal	may	explain	the	occurrence	of	p	in	statistical	mathematics.	The	fractal	also	

demonstrates	a	property	long	sought	after	by	scientists:	it	simultaneously	possesses	

exponential	behaviour	(observed	in	the	logarithmic	demand	curve)	with	spiralling	

wave	behaviour	described	by	wave	mechanics.		It	was	claimed,	via	the	fractal,	that	the	

classical	demand	curve	is	a	convergent	(standing)	wave	function	known	in	quantum	

theory	as	the	de	Broglie	wave	function.	Through	the	fractal,	all	things	–	as	long	claimed	

by	quantum	scientists	–	indeed	have	wave	(function)	properties.		

While	the	study	used	the	Koch	snowflake	to	model	the	fractal,	an	insight	from	the	study	

revealed	that	just	like	the	structure	of	real	natural	(6-sided)	snowflakes	is	said	to	be	

derived	from	the	‘6-sided’	atomic	structure	of	the	H2O	molecule,	reality	itself	seems	to	

reveal	its	own	structure	in	the	macro—it	is	the	fractal.	This	structure	is	revealed	to	us	

in	what	we	call	marginal-classical	economics.			

If	economics	is	a	study	of	reality	and	fractal	geometry	matches	standard	economic	

knowledge,	our	reality	may	best	be	understood	by	understanding	the	geometry	of	the	

fractal.	Our	reality	is	one	aspect	of	a	universal	geometry	called	fractal	geometry.	
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7 APPENDIX	

7.1 Log	–	log	diagram		

	

Figure 10. Log. –log. (Linear) Koch Snowflake Fractal Equilibrium.   

Table 1. Arc and Point Price Elasticity. 
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Point	
Price	
Elasticity		

0	 1	 100	 -	 -	 -	 -	

1	 3	 33	 -1.69	 1.48	 -1.14	 -3	

2	 12	 15	 -1.76	 1.34	 -1.32	 -5.4	

3	 48	 7	 -1.76	 1.34	 -1.32	 -5.4	

4	 192	 3	 -1.76	 1.34	 -1.32	 -5.4	

5	 768	 1	 -1.76	 1.34	 -1.32	 -5.4	

6	 3072	 1	 -1.76	 1.34	 -1.32	 -5.4	
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7	 12288	 0	 -1.76	 1.34	 -1.32	 -5.4	

8	 49152	 0	 2	 2	 1	 -5.4	

	

	

Figure 11 Fractal Spiral with Emergence.  A shows the transverse wave propagation of a ‘red dot’ on a fractal 

Koch Snowflake to iteration (i) 6, and to superposition infinity (¥) . B shows the rotational aspect of the triangle 

bits and the respective bit size; rotating clockwise through 360o . C shows the Sin wave produced at each 

iteration-time – assuming bit size remains constant: the real is a logarithmic sinusoidal.   
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