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This study suggests the mechanism for atomic motion in quantum liquids at low temperatures 

where the lifetime of the states that are responsible for atomic motion becomes macroscopically 

long.  This mechanism is an analog to the motion of crowdions in the one-dimensional Frenkel-

Kontorova model. Soliton-like atomic motion along linear directions, and the circular motions 

provide a means of explaining many macroscopic phenomena occurring at the transition of 
4
He 

to a superfluid state, such as the behavior of rotating superfluid helium and the flow potentiality 

of the superfluid phase. The thermodynamics of rotating 
4
He is considered under the assumption 

that Bose-Einstein condensate is not the ground state of Bose-Einstein liquid. An experiment is 

suggested in order to validate our approach.  
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1. Introduction 

A great body of research has been done to date, lending support to the view that in classic 

liquids, including at low temperatures, an elementary act of atomic motion has a collective 

character (the term “string-like diffusion is commonly accepted in English-language 

publications)  [1-8]. The results reported in the just cited references were obtained via numerical 

computer experiments which are rather difficult to perform in the region of low temperatures 

where quantum effects manifest themselves.  

Theoretical research into quantum liquids [9–11] done from first principles, where the gas of 

noninteracting particles is taken as a zeroth-order approximation, cannot be recognized 

fundamentally as mathematically rigorous, because the parameters of density and interaction 

force were far from their values in real liquids. Therefore, the advancement of condensed-matter 

physics benefited greatly from heuristic approaches; for instance, as early as 70 years ago 

L.D.Landau [10] postulated a two-fluid model to obtain phenomenological equations which, 

subsequently, were never excelled in universality of the description of superfluid 
4
He. 

Furthermore, the phenomenological Ginzburg-Landau equation describing superconducting 
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fluids in metals is used in practice much more frequently than all the other equations which are 

obtained from first principles.   

It is our belief that the main difficulties encountered in describing liquids are due to the 

improper choice of a zeroth-order approximation in the form of the gas of noninteracting 

particles. This approximation describes reasonably well the equilibrium thermodynamic 

parameters of a fluid in which the phonon modes are of first importance. But the processes of 

atomic motion are very inconvenient to describe in terms of phonons. One is led to suggest that 

to describe a condensed state required that the main element of a given phenomenon be guessed 

right, i.e. the ground state from which the energy of elementary excitations is reckoned. We 

suggest an explanation for the mechanism of mass motion in quantum liquids in which the 

ground state of Bose-Einstein liquid is represented not by Bose-Einstein condensate with zero 

momentum but by a chaotic network of linear chains of a macroscopic scale along which 

crowdions travel without friction. Next, we consider the effects arising in the event of discarding 

the assumption that the superfluid phase is identical with Bose-Einstein condensate. 

 

2.The hypothesis about the physics of the superfluid phase 

The objective of this paper is to describe qualitatively the microscopic mechanism of 

superfluidity in Bose-Einstein liquids, drawing on currently available theoretical and 

experimental data. The motivation for this study is that fundamental studies of superfluidity 

examined the possible energy spectrum of excited states of superfluid liquid rather than the 

physics of the ground state. This may well lead to paradoxical conclusions. In, for example, [10, 

p 115] we can find L. Landau's reasoning: “An important property of the superfluid flow is its 

potentiality: 

       0srotV ,     (1) 

where Vs is the superfluid phase velocity. This property is the macroscopic expression of the fact 

that elementary excitations with a long wavelength (i.e. with small momenta) are phonons”. But 

phonon (oscillatory) and roton (rotational) motions cannot transport the mass and, hence, atomic 

motions cannot be described within the frames of excitations of these types! The assumption that 

the superfluid phase is Bose-Einstein condensate (a coherent quantum state with zero 

momentum) does not permit the hypermobility of atoms in the ground state to be explained. 

What is the superfluid phase (SP)? If we cool 
4
He to a temperature, however low where the 

number of excitations of the ground state is negligibly small, then, just the same, it does not lose  

its superfluidity; that is to say that atomic motion is not generated by excitations. As was 

demonstrated by R. Feinman [9], describing atomic motion in a quantum liquid is not an easy 

matter. In fact, the two configurations for distinguishable particles in Fig. 1 are obtained one 

from another by displacing atoms; in the case of Bose-Einstein statistics, these configurations are 



both physically indistinguishable and pertain to one ψ function which is the solution to the 

Schrödinger equation for our quantum problem; it follows herefrom that within the framework of  

the stationary problem,  the question of the mechanism of  atomic motion cannot even be posed.  

 

 

 
  а)        b) 

 

Fig.1. Two identical pictures of atomic arrangement in the vessel. In the case of 

distinguishability of atoms, they may be numbered, and the physical state illustrated in Fig. (a) 

differs from that in Fig. (b). Both of these states without numbers would be physically 

indistinguishable. 

For the sake of simplicity, we shall   the 2D phase space will be represented in what follows. On 

the other hand, the mass transfer in a liquid may be described in terms of vacancy transfer. Let us 

consider two configurations differing in positions of vacancies in Fig. 2.  

 

 
  а)        b) 

 

Fig. 2. Two physically distinguishable situations of atomic arrangement in the vessel. They 

are deduced one from another by moving vacancies over a macroscopic distance (black circles 

indicate the vacancies). In Fig. (а), the vacancies are distributed more uniformly than in Fig. 

(b). 
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These two configurations are physically recognizable already, because the vacancies at the left  

are concentrated in one part of the vessel, and the vacancies at the right are clustered in the other 

part. From this it follows that there must exist be a mechanism for the transition of atoms from 

one configuration to the other and, this mechanism is associated  with atomic motion and, hence,  

this has a bearing on the superfluidity phenomenon. atomic motion; and thus it is somehow 

related to the superfluidity phenomenon. What actually happens is that superfluidity manifests 

itself when the system becomes unbalanced with the resultant atomic motion. 

We now consider the physical pictures in Fig. 2 in the configuration 3*N-dimensional (N is 

the number of atoms in a liquid) space. A point in the configuration space corresponds to each 

physical state. The presence of a local potential energy minimum gives rise to atomic oscillations 

(ordinary phonons). This implies that  a certain volume (a 3*N-dimensional sphere), rather than 

a point, in the configuration state corresponds to each physical state (Fig. 3) .  The radius of the 

sphere is not large: it is the atomic oscillation amplitude.  

            X1 

   
 

 

 

 

 

 

X2 

Fig. 3. The distance between spheres (the sphere’s radius R is equal to an average atomic 

motion due to oscillatory motions) in the configuration space being well over the radius. Each 

sphere consists of points with the system being there owing to oscillations with reference to a 

local minimum of potential energy. 

Atoms in liquids are labile and, hence, the system can pass from one point of the 

configuration space to another. Note that the points corresponding to the atomic configuration in 

Fig. 2(а) and 2(b) must be far apart, as the vacancies have moved over distances comparable to 

the size of the vessel. If we draw any line joining two different physical states, we see that its 

points are outside the spheres and cannot be described by ordinary phonons. The presence of 

oscillations with respect to a relatively optimal trajectory results in a transformation of the thin 

fiber exhibiting the transition from one point to another into the cylinder of finite diameter. The 

displacement over macroscopic distances is only possible with a very labile atom (vacancy) and 

R 

R 



without energy exchange with the remaining atoms. But this is possible only in the gas of 

noninteracting particles.. In the liquid state, motion of some atoms does not seem to be possible; 

this does contradict the very nature of a condensed state.  

On the other hand, there is a mechanism of atomic motion in a liquid which was predicted in 

investigations using the molecular dynamics method [1]. It implies string-like linear motions of 

many atoms. The string-like atomic motions observed in the computer experiment comprised, of 

course, only a few tens of atoms at most. In a classic liquid, because of the presence of large 

temperature fluctuations, such a wave of successive atomic displacements must be short-lived. 

This is exactly what is observed in the numerical experiment. If we extrapolate this mechanism 

to a low-temperature region, we obtain the following situation.  

With decreasing temperature, the lower level begins to be filled up, and, since the system 

retains its mobility, atoms at this level are delocalized. The fact that the energy level of 

condensate εcon with atoms delocalized in one dimension may lie below the lowest energy level 

of atoms in an ordinary liquid εliq can be seen  from the expression for this value: 
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where  ΔX, ΔY, ΔZ   is the atom coordinate uncertainty (approximately equal to 0.1 of the 

interatomic distance) in an ordinary liquid. The dislocation in one of the coordinates causes the 

energy to attenuate.   

The manifestation of superfluidity is atomic motion along linear directions to macroscopic 

distances in the inertial reference systems (IS). Let us call such states the superfluid strings or the 

superstrings for brevity. Thus the superfluid 
4
He seems to be a normal liquid penetrated by 

superstrings, and their concentration is proportional to the SP density ρs. The possible trajectories 

in the phase space are shown in Fig. 4.  
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Fig.4. Adjacent spheres portray the configuration space points resulting from one-particle, 

usual atomic motions; spaced ones, from atomic motions over macroscopic distances, i.e. 

superfluid motions. The configuration space regions located within thick fibers are oscillations 

with respect to a relatively optimal trajectory of soliton motion along the superstirng. 

The proportion of atoms which oscillate routinely (the normal phase) and atoms involved in 

string-like motion (SP) will be proportional to the volume of corresponding regions in the phase 

space. Our assumption suggests that the number of superstrings in the differential of volume, dV, 

is proportional to ρs, and they move isotropically in different directions. In this case, it can be 

shown (reasoning is identical in phonon mechanism, say, to heat conduction [12]) that the sum 

vector of the superfluid phase velocity is expressed by the formula: 

    )(* ss gradV  ,      (3) 

where α is a coefficient from which  the condition  (1) immediately follows..  

It is surprising but there is a mathematical apparatus to describe atomic motions driving the 

mass transfer in linear objects interacting with the environment, namely the Frenkel-Kontorova 

model [13]. Importantly, with a nonlinear potential of interatomic interaction and nonlinear 

interaction with the environment, the ground state may be a chain with a moving!!! soliton. 

Notice that the motion of the soliton which transfers the mass along a string is the ground state 

(with minimum energy), not the excited state, i.e. from the state of rest. Therefore, the mass 

transfer does not imply the transfer of excess (with respect to the ground state) energy and 

entropy. 

3. Corollaries of the assumption about the string-like structure of the superfluid phase 

Superstrings must be rectilinear at the microscopic level, because the presence of bendings 

would point to the momentum or angular momentum exchange with the normal phase. The 

rectilinearity of strings, the isotropy of their directions and the dependence of their concentration 

on density ρs, which, in turn, may depend on space coordinates, render the fulfillment of the 

condition (1) possible.  

The origination intensity of superstrings in the selected 
4
He volume depends on local 

temperature, because the relation between normal density and SP density is a function of 

temperature [14]. Therefore, with the local nonequilibrium heating of the volume, the number of 

emerging superstrings will be smaller than that in the ambient 
4
He volume, and for a while the 

number of incoming superstrings will exceed that of exiting ones. This will produce a thermo-

mechanical effect [11, p.38]: the mass inflow to the heated volume increases. And vice versa, if 

using superinterstices we succeed only in transferring the mass  as superstrings, we will see a 

mechanocaloric effect: a volume with predominant incoming superstrings cools down. 

And the last, most mysterious and intriguing phenomenon is the rotation of 
4
He which cools 

down below the λ point (the point of transition to a superfluid state). In the noninertial system 



(NS) rotating with the vessel, the observer can observe the following picture: the liquid at rest, 

when cooling below the λ point, starts rotating. The observed effect might take place only if SP 

appears in the vessel’s center and moves at some speed to the periphery. In this case, the Coriolis 

force would specify the right direction of the SP rotation. As will be shown later in the text, it is 

an entirely reasonable assumption. If it is assumed, as done above, that SP has a zero momentum 

(Bose-Einstein condensate), the origin of its rotation is inexplicable.  

 

4. Thermodynamics of the superfluid phase rotation 

We now consider the motion in a plane perpendicular to the rotational vector ω. Let the 

velocity of soliton motion along a superstring be Vsol. In the inertial reference system (IS), 

superstrings must be rectilinear (Fig. 5a).  

 
  а)        b) 

 

Fig. 5. The top view of the cylinder vessel rotating with an angular velocity ω . Fig. а) shows 

superstring trajectories in the inertial reference system.  Fig. b) presents the same trajectories in 

the rotating reference system.  

In NS, the superstring issuing from the centre of rotation is curved (Fig. 5b), and such a curve is 

referred to as the Archimedean spiral [15]:   

        


 *)( solV
r   ,   

where θ is the polar angle, ω is the angular velocity of rotation, and r is the distance from the 

center of rotation to the soliton which runs along the string. It can be assumed that the excess (as 

compared to the rectilinear state) energy ΔE is proportional to the product of the curvature by the 

 



string length. Considering that the curvature is different at each point of the Archimedean spiral, 

we arrive at the integral: 
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where С is a dimensional constant, k(θ) is curvature, dl(θ) is the arc length, and d is the diameter 

of the vessel with 
4
He. Substituting the known expressions for  curvature and arc length into the 

dependencies on the θ angle [15] gives: 
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Thus the excess energy of an isolated superstring at θ0<<1 will be proportional to θ0
2
. The 

number of superstrings is naturally proportional to ρs. Hence the free energy expression as used 

in the theory of second-order phase transitions [16] acquires an additional term: 

     

2**  sAF       (5) 

It follows from this formula that the field adjacent to the ρs-order parameter is the angular 

velocity squared and that the phase transition to the superfluid state of rotating helium must 

become a first-order transition. To find a critical angular velocity ωk beyond which SP becomes 

involved in the rotation, it is necessary to calculate  a constant A from 
4
He physical parameters 

or use the qualitative assessments made below.   

 

5. Estimating a critical rotation velocity at which superfluid phase starts to rotate 

Experimental evidence [11] shows that when a critical velocity ωk is exceeded, the SP 

tangential velocity distribution in the cylinder vessel is described by the equation: 

      
rm

V
*


  ,       (6) 

where m is the mass dimension parameter, r is the distance from the center of rotation, and is 

the Planck constant. Note that with this velocity–radius dependence as is the case for linear 

displacements, the condition (1) is satisfied. Hence, condensate atoms can be driven by two 

mechanisms, and these atomic motions in a liquid were detected via computer simulations [1–8].  

The distribution of normal phase velocities during solid (liquid stationary) rotation is 

described by the formula: 

       rV *   .     (7) 

With such a distribution, in the rotating reference system there appears a centrifugal potential:  



     22 **)( rmrUц        (8) 

Potential (8) produces an excess pressure in liquid to which SP is very sensitive (disappears 

altogether at an excess pressure of only 28 atm). We can suggest that the appearance of SP at the 

λ point is nonuniform in volume: the smallest potential is in the center of the rotating vessel, just 

where SP starts up. Besides, potential (8) has acquired an important feature [17]: particles 

(solitons) in this potential move along trajectories of two types only: rectilinear (with zero 

angular momentum) and closed elliptic (with nonzero angular momentum) (Fig. 6). Quantization 

of the angular momentum for elliptic trajectories leads to the law of tangential velocity 

distribution (6), but there is also a nonzero radial Vr component determined from the energy 

conservation law. Beyond the critical angular velocity, SP starts to move in elliptic trajectories; 

here the vessel-volume-averaged Vr is zero; the tangential component Vθ is described by formula 

(6). Tests [18] confirm our viewpoint: the transition between states with a different SP angular 

momentum is fast (avalanche-like), but not instantaneous, as coherent motion proceeds along an 

isolated superstring. In a standard interpretation of SP, where the entire rotating volume is a 

coherent state, there must be no intermediate angular momentum values. Furthermore, 

noteworthy are the tests [19] which give evidence of the circular motion of 
4
He atoms, 

confirming the existence of the superfluid phase at the atomic level, whereas Bose-Einstein 

condensate requires macroscopic scales. 

The angular velocity ωk is determined by considering the laws of conservation of energy and 

angular momentum, when elementary excitations are formed, similar to reasoning when 

determining a critical velocity of SP. We now turn our attention to the rotating reference system 

in which below the λ point SP rotates and, when exceeding the angular velocity of ωk rotation, it 

begins to decelerate. Let M be the angular momentum of the entire SP mass; I, the moment of 

inertia. A deceleration is accompanied by a decrease of M (the quantum of change is ), and an 

elementary excitation with the energy ε (p) occurs: 
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For the SP deceleration process to be energetically effective, the following condition must be 

satisfied: 

 )(* p  . 

The excitation energy is determined from the condition that the minimum supplementary 

momentum of a soliton ΔP moving in an elliptic orbit, which touches the edges of the vessel, is: 
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A qualitative estimate follows from this formula: 
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The estimates made in [9–11] give for ωk: 
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where the a parameter is of order of the interatomic distance. The discrepancy between our 

assessment (11) and the commonly accepted assessment (12) lies not only in the difference 

between numerical coefficients. It is possible to perform an experiment to prove or disprove the 

validity of our approach. Let 
4
He rotate in a vessel having the form of two coaxial cylinders: the 

outer boundary is dmax in diameter, and the inner boundary, dмin.  According to our view, in the 

cylindrical vessel there is an inner nucleus of radius dzero that is much larger than the interatomic 

distance (a calculation of this value will be the subject of further investigation), where SP is at 

rest (Fig. 6).  

 

Fig. 6. Elliptic SP trajectories in the cylinder vessel rotating at an angular velocity exceeding 

a critical velocity; the arrows indicate the direction of rotation. Also shown here is the outer 

diameter dмах and the inner, interphase, nucleus of radius dzero. The velocity distribution 

averaged over ellipses of all orientations is described by Formula (6). 

Should dmin be very small but much larger than the interatomic distance, then, according to our 

view, the ωk values will be independent of dmin at dмin < dzero. In the context of the existing views  

[9–11], ωk depends on dмin even at the smallest dмin. 

 

6. Conclusion 

The analysis of the mechanism of atomic motion in liquids suggests the conclusion that, first, 

most of the motions are of string-like character, and, second, this stringness has only a linear 



structure. At decreasing temperature (our unpublished paper relying on a 2D model and other 

authors' observations) the stringness only increases. With a further decrease in temperature, 

liquid must solidify or transform to a state in which string-like effects increase. During second-

order phase transitions, an order parameter with an almost zero average value has a macroscopic 

correlation length at the transition point [16]. It is quiet logical to assume that atoms involved in 

coherent string-like motions make up the superfluid condensate and are the desired order 

parameter, and this parameter acquires a macroscopic value at the phase transition point. The 

linear and rectilinear (at the microlevel) character of displacements explains: the fulfillment of 

equation (1); why the superfluid component is not involved in rotation at low angular velocities; 

that the field adjacent to the order parameter is the angular velocity squared (5) and, under the 

assumption of angular momentum quantization, estimates the critical angular velocity (11). 

As was emphasized in [7] string-like atomic motion can be observed not only in liquids, but 

also in a solid, disordered phase. The stringness requires an excess energy and a nonlinear 

potential of interatomic interaction. This implies that in the amorphous phase, at low 

temperatures, the mass transfer mechanism may have a string-like character, as is the case with 

in liquids. Hence, anomalous atomic mobility, known as supersolid, may be seen in the 

disordered solid 
4
He [20]. The only state without (by reason of energy) string-like atomic motion 

is the crystalline state. Experimental data testify that there is no supersolid in annealed samples 

having good crystal structure [21]. 
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