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Abstract

This submission is more or less an amateur exposition on a specific
elliptic curve, discussing counting points over finite fields as well as con-
structing an associated L-function and pinning down the affiliated special
value L(E, 1) for the elliptic curve E primarily discussed throughout this
piece. The techniques and tools presented can be carried over to infinitely
many elliptic curves partitioned into 2 sets depending on ’twists’ of 2 spe-
cific curves; one of which happens to be the curve previously, and vaguely,
mentioned.
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1 Counting Points

Let 1Em(X,Y ) and 2En(X,Y ) be the elliptic curves defined by the equations

1Em(X,Y ) =Y 2 − (X3 +m)

2En(X,Y ) =Y 2 − (X3 − nX)

wherem and n are non-zero integers. They will simply be referred to as E when
defining stuff about elliptic curves and labelled without their corresponding
subscripts given the right context. The objective in this section ”Counting
Points” is to find the number of integer solution pairs (a, b), called ”points”,
satisfying

1E(X,Y )1 ≡0 (mod p)

for every prime p. The techniques and tools used for this specific curve can be
carried over to 1Em as well as 2En for infinitely many m,n. From here until
the concluding remarks, E will refer to an elliptic curve of the former kind.
The solutions are taken from Z2 after reduction mod p. To elaborate in detail,
if the pairs

(a, b)

(c, d)

are entry equivalent mod p, then they are considered identical points. The
notation E(q) will be used in place of

E(q) =E(a, b)

q =(?1, ?2)

where q refers to an arbitrary pair in F2
p. The number of distinct solutions will

be denoted as the set cardinality

| E/p |=| {(X,Y )
∣∣E ≡ 0 (mod p) ∧ (X,Y ) ∈ F2

p} |

And finally, p will be a prime. Sometimes, stated somewhere right below the
title of a section, p will be a specific kind of prime.

1.1 Solution forE1

Take m to be 1 for now. The general case will reveal after the instance m = 1
is solved.
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The primes p = 2, 3 are small enough to compute E1/p by hand. It’s a good
idea to compute E1/p by hand for a couple p before trying to tackle the general
prime p. 2 and 3 are small enough to do this with. Since this is all done in a
sub-section titled ”Solutions for E1”, E will mean E1 while we’re here.
For p = 2, the possible solutions to E = 0 must be among the set

{(0, 0), (0, 1), (1, 0), (1, 1)}

A quick computation shows that there only 2 solutions;

E/2 ={(0, 1), (1, 0)}

For p = 3, the possible solutions must be among the set

{(0, 0), (1, 0), (−1, 0), (0, 1), (1, 1), (−1, 1), (0,−1), (1,−1), (−1,−1)}

Before going ahead and putting these through E and seeing if they satisfy the
equation consider how the polynomial X3 + 1 factors in Fp[X];

X3 + 1 =X3 + 3X2 + 3X + 1− 3(X2 +X)

≡ (X + 1)3 (mod 3)

Since X will be an integer, we can reduce the equation to

Y 2 − (X + 1) ≡ 0 (mod 3)

simplifying things even further. When Y = 0, the only solution for X is −1 and
when Y = ±1, the only solution for X is 0. Thus the elements of E/3 are

E/3 ={(0,−1), (1, 0), (−1, 0)}

So far, it seems like

| E/p |=p

is the rule of thumb (purposefully misleading).

1.1.1 About half of all the primes

Consider all the primes of the form 3k + 2. The multiplicative group(
Z/pZ

)× 'Zp−1

=Z3k+1
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where Zl is the cyclic group of order l. Mapping every element to it’s cube in
this group is an automorphism. Translations in Fp,

x 7→x+ 1

are isomorphisms. This implies E can be rewritten as

E =Y 2 − Z

where Z, used as a variable and not alluding to a cyclic group, can truly be seen
as a linear term in this context of X being an integer and E under reduction mod
p; an implication that every Y has a unique solution Z. Since there are p residue
classes, there are exactly p pairs of solutions. This leads to the conclusion(

p = 3k + 2) =⇒ (| E/p |=p)

1.1.2 The other half of all the primes

When p is of the form 3k + 1, which will always be the case for this sub-
sub-section, cubing shrinks the field Fp. This can be seen by inspecting the
multiplicative group (

Z/pZ
)× 'Zp−1

=Z3k

For example, take w to be a generator for the group. The endomorphism φ,
defined as

φ : α 7→α3

map the elements 1, wk, and w2k all to 1, where k is coming from p = 3k + 1.
Quick reminder; k will always come from a quotient.
Rather than relying on an approach using transformations of the curve, it is a
good idea to lay down some facts;

(E(q) ≡ 0) =⇒
(

(Y 2 − 1 is a perfect cube) ∧ (X3 + 1 is a perfect square)
)

Although both of the nested statements are simple transformations, it is impor-
tant to take note of their significance.
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By introducing a character χ on Z/pZ

χ : Z/pZ→{1, ζ3, ζ23}
χ : w 7→g(w)k

g : w 7→ζp−1
ζl =e

2πı
l

it is possible to determine whether the equation

x3 ≡t (mod p)

is solvable and how many solutions it has using χ. Indeed, if t is of the form x3

modulo p, then the quantity c(t) defined as

c(t) = 1 + χ(t) + χ2(t)

takes on the values

c(t) =

{
3 if x3 − t is solvable in Fp
0 if x3 − t is not solvable in Fp

Let’s attempt to evaluate the quantity | E/p |, defined as

| E/p |=
∑
y∈Fp

(
1 + χ(y2 − 1) + χ2(y2 − 1)

)

and briefly compare it to what | E/p | would look like for the general m

| E/p |=
∑
y∈Fp

(
1 + χ(y2 −m) + χ2(y2 −m)

)

to eliminate the need of doing this all over again. Keep the second one in
mind while working on m = 1.
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The value of the characterχ(r), for an integer r, can be given as

χ(r) =τ(χ̄)−1 ·
∑
l∈Fp

χ̄(l)ζl·r

where the quantity dividing the sum is defined as

τ(ψ) =
∑
l∈Fp

ψ(l)ζlp

for a multiplicative character ψ. Going back to | E/p |, we have

| E/p |=
( ∑
y∈Fp

1
)

+
( ∑
y∈Fp

χ(y2 − 1)
)

+
( ∑
y∈Fp

χ2(y2 − 1)
)

=p+
(
τ(χ̄)−1 ·

∑
(y,l)∈F2

p

χ̄(l)ζl·(y
2−1)

p

)
+
(
τ(χ)−1 ·

∑
(y,l)∈F2

p

χ(l)ζl·(y
2−1)

p

)
Let’s slowly dissect this together; the sum∑

(y,l)∈F2
p

f(l, y)

is interpreted as the double sum∑
1≤y≤p

∑
1≤l≤p

f(l, y)

which is finite. Rather than sum over l in the interior sum then proceed to y,
a reversal of the order for the sums lastly defining | E/p | gives

| E/p |=p+
(
τ(χ̄)−1 ·

∑
1≤l≤p

χ̄(l)ζ−lp
∑

1≤y≤p

ζl·y
2
)

+
(
τ(χ)−1 ·

∑
1≤l≤p

χ(l)ζ−lp
∑

1≤y≤p

ζl·y
2
)

=p+
(
τ(χ̄)−1

∑
1≤l≤p

χ̄(l)ζ−lp · J(l)
)

+
(
τ(χ)−1

∑
1≤l≤p

χ(l)ζ−lp · J(l)
)

where, J(l) is the sum

J(l) =
∑

1≤r≤p

ζr
2·l
p

=1 +
∑

1≤r≤p
r is square

2ζrp
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Note that r is a perfect square modulo p, the appearance of the factor of 2
stems from (−r)2 = r2, and the quantity 1 added to the sum is from the p2.
This can be rewritten as

J(l) =
∑

1≤r≤p

(1 + ψ(r))ζr·lp

=
( ∑

1≤r≤p

ζr·lp

)
+
( ∑

1≤r≤p

ψ(r)ζr·lp

)

where ψ is the non-trivial quadratic character of modulus p. The usage of
(1+ψ(t)) counts the solutions in characteristic p to the equation x2 = r, similarly
to the quantity c(t) defined earlier.
Before moving ahead, recall the appearance of J in the sum(

τ(χ̄)−1
∑

1≤l≤p

χ̄(l)ζ−lp · J(l)
)

The last term, when l = p, is zero. There is no need to worry about when l is
an integer multiple of p. This allows us to remove the first sum∑

1≤r≤p

ζr·lp

from the definition of J . The substitution

J(l) =
∑

1≤l≤p

ψ(r)ζr·lp

=ψ(l) · τ(ψ)

can be safely used without changing the desired value | E/p |. Substituting
m back into summation and sompleting everything gives a closed form for our
desired quantity;

| E/p |=p+ ψ(−m)χ(−m)γ + ψ(−m)χ̄(−m)γ̄

where the quantity γ is given by

γ =
τ(ψ)τ(ψ · χ̄)

τ(χ̄)
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1.1.3 What is γ?

Given that the absolute value of a Gauss sum of modulus p and primitive char-
acter is

√
p, the absolute value

| γ |= | τ(ψ)τ(ψ · χ̄)

τ(χ̄)
|

=
√
p

along with the fact that γ is a sum with elements from the set

{1, ζ3, ζ23}

is indicative that γ is an integer in the ring Z(ζ3) as well as a prime with field
norm p. Squaring γ in quotient rings gives

γ2 ≡τ(ψ2)τ(ψ2 · χ̄2)

τ(χ̄2)
(mod 2)

≡− τ(χ)

τ(χ)
(mod 2)

≡1 (mod 2)

Since the ring

Z(ζ3)/
(
2Z(ζ3)

)
is a field with 4 elements, it can be concluded that γ is of the form

γ =a+ 2bζ3

for a, b integers and a odd since squaring is an automorphism in this ring which
fixes only 0 and 1 modulo 2. Furthermore, in the ring

Z(ζ3)/
(√
−3Z(ζ3)

)
Cubing γ gives

γ3 ≡τ(ψ3)τ(ψ3 · χ̄3)

τ(χ̄3)
(mod

√
−3)

≡τ(ψ)2

τ(χ3)
(mod

√
−3)

≡− (−1)
p−1
2 p (mod

√
−3)

≡− (−1)
p−1
2 (mod

√
−3)
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which implies γ is of the form

γ =− χ4(p)χ3(a+ 2b) · (a+ 2bζ3)

where χ4 and χ3 are the primitive Dirichlet characters of modulus 4 and 3
respectively. Plugging this back in gives

| E/p |=p− ψ(m)χ(m)χ3(a+ 2b)(a+ 2bζ3)− ψ(m)χ̄(m)χ3(a+ 2b)(a+ 2bζ23 )
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2 L-function and cusp form of E1

It is interesting to see what happens if one takes the quantity

ap = p− | E/p |

and weave it into an L-function in the following fashion;

L(E, s) =
∏

goodp

Lp(p
−s)−1

where Lp(X) is the polynomial

Lp(X) =1− apX + pX2

and ’good’ primes are primes not equal to p = 2, 3 for most E1’s, depending on
m. For now, m = 1 will be the case and p = 2, 3 will be completely ignored in
the Euler Product for L(E, s). For other m’s not a 6th power, this corresponds
to either a quadratic twist, a cubic twist, or a combination of both.
The Euler product for L(E) can then be simplified down to∏

π

(
1− χ3(π)

(Nπ)s

)−1
where the product runs over all Eisenstein Primes not equal to π = 2,

√
−3 and

the primes are 1 modulo 2. In other words, they are of the form

π =a+ b
√
−3

Expanding the L-function as a Dirichlet series gives

2L(E, s) =
∑

a+b
√
36=0

χ(a)
a+ b

√
−3

(a2 + 3b2)s

=2
∑
n≥1

cn
ns

Coincidentally, there happens to exist a peculiar generating function;

f(q) =
∑

(a,b)∈Z2

χ3(a)(a+ b
√
−3)qa

2+3b2

=2
∑
n≥1

cnq
n
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f(q) happens to satisfy

f(
−1

τ
) =− τ2f(τ)

where q is interpreted to be

q =e
πıτ
3

When talking about quantities such as f(
√
−3), it is implied that f(τ) is being

used rather than f(q). Rewriting f(q) and reexpressing it as a product of two
functions reveals why;

f(q) =
∑

(a,b)∈Z2

χ3(a)(a)qa
2+3b2

=
(∑
a∈Z

aχ3(a)qa
2
)
·
(∑
b∈Z

q3b
2
)

=2θ(χ3, τ)θ(τ)

Where each θ-function is given respectively by the product of the two series.
The product of the two Theta functions can be expressed as an η-quotient;

θ(χ3, τ) · θ(τ) =
(η2( τ2 ) · η2(2τ)

η(τ)

)
·
( η5(τ)

η2( τ2 ) · η2(2τ)

)
=η4(τ)

Both expressions can be derived by massaging the Jacobi triple product in
the right way.
η(τ) can also be given by the product

η(τ) =e
πıτ
12 ·

∏
n≥1

(
1− e2πınτ

)
The existence of a modular form f(τ) implies the existence of a functional
equation on L(E). The completed L-function(π

3

)−s
Γ(s) · L(E, s) =Λ(s)

satisfies the reflection formula

Λ(s) =Λ(2− s)

which can be proven by the mellin transform of f(ıτ).
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3 A related Eisenstein Series

For reasons which will be revealed in the next section, consider the weight 1
Eisenstein series

g(τ) =
∑

(m,n)∈Z2\(0,0)

χ3(m)

m+ nτ

Although conditional convergence is an issue here, it is possible to make the
sum converge for all τ in the upper half plane.

3.1 Fourier series of g(τ)

To start off with finding the Fourier series of g(τ), it is best to begin with the
function

g0(z) =
∑
m∈Z

χ3(m)

m+ z

g0’s Fourier series can be found by treating the sum in the following way;

∑
m∈Z

χ3(m)

m+ z
=

2∑
l=1

χ3(l)
∑
k∈Z

1

3k + l + z

From here, the goal is to use the formula∑
m∈Z

1

m+ z
=πcot(π · z)

and cotangent’s Fourier series

πcot(π · z) =− πı− 2πı ·
∑
r≥1

e2πırz

to make sense of this series;

2∑
l=1

χ3(l)
∑
k∈Z

1

3k + l + z
=

2∑
l=1

χ3(l)

3

∑
k∈Z

1

k + l+z
3

=

2∑
l=1

(χ3(l)

3

)
· πcot

(
π · ( l + z

3
)
)
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The last expression can be used to give a Fourier series for g0 easily by using
the fourier series of cotangent;

g0(z) =
2π√

3
·
∑
r≥1

χ3(r)e
2πırz

3

This series for g0 can be used to find a series for g by considering the sum

g(τ) =
( ∑
m∈Z\0

χ3(m)

m

)
+
( ∑
n∈Z\0

g0(nτ)
)

The trick here to get a Fourier series of the form

g(τ) =
∑
n≥0

bn · e
2πınτ

3

is to rewrite the sum over g0(nτ) as∑
n∈Z\0

g0(nτ) =
∑
n≥1

(
g0(nτ) + g0(−nτ)

)

I’m going to leave out the proof of g0 being an even function since it is way too
elementary to be relevant. But it is true and it implies∑

n∈Z\0

g0(nτ) =2
∑
n≥1

g0(nτ)

=
4π√

3
·
∑
m,n≥1

χ3(m)e
2πımnτ

3

This gives the Fourier series

g(τ) =2L(χ3, 1) +
4π√

3
·
∑
m,n≥1

χ3(m)e
2πımnτ

3

=
2π

3
√

3
+

4π√
3
·
∑
m,n≥1

χ3(m)e
2πımnτ

3

where the quantity L(χ3, 1) is comes from

L(χ3, s) =
∑
n≥1

χ3(n)

ns
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3.2 Further inspection of the fourier series

What do the Fourier coefficients of g look like? Or more precisely; What do
they mean? Factoring the constant coefficient gives

g(τ) =
2π

3
√

3
·
(

1 + 6
∑
m,n≥1

χ3(m)e
2πımnτ

3

)
=

2π

3
√

3
·
(

1 + 6
∑
m≥1

rme
2πım

3

)

where rm is defined as

ζ(s) · L(χ3, s) =
∑
n≥1

rn
ns

Coincidentally, the L-function of the UFD

R =Z
(−1 +

√
−3

2

)

happens to coincide with the L-function whose Dirichlet Coefficients are rn!
And since R has unique factorization, we can work our way backwards from
this fact, remembering the norm of an element of R and the presence of the 6
units in R, to conclude the following on g;

g(τ) =
2π

3
√

3
·
∑

(m,n)∈Z2

e
2πı(m2−mn+n2)τ

3
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4 L(E, 1)

The reason why g was introduced was to pin down the value of

2L(E, 1) =
∑

a,b∈Z2\(0,0)

χ3(a)(a+ b
√
−3)

(a2 + 3b2)1

This can be given as

2L(E, 1) =
∑

a,b∈Z2\(0,0)

χ3(a)

a+ b
√
−3

=g(
√
−3)

If the series

2π

3
√

3

∑
(m,n)∈Z2

e
−2π(m2−mn+n2)√

3

is used alone, all this can do is yield a series converging somewhat faster than
the regular Dirichlet series of 2L(E, 1). However, the following equality can be
shown by carefully breaking up the double sum right above and using products
of Jacobi theta functions;

g(τ) =
2π

3
√

3
·
( η5( 2τ

3 ) · η5(2τ)

η2( τ3 ) · η2( 4τ
3 ) · η2(τ) · η2(4τ)

+ 4
η2( 4τ

3 ) · η2(4τ)

η( 2τ
3 )η(2τ)

)
Which gives the ’closed’ form for 2L(E, 1) as a sum of η quotients evaluated at
τ =
√
−3;

2L(E, 1) =
2π

3
√

3
·
( η5( −2√−3 ) · η5(2

√
−3)

η2( −1√−3 ) · η2( −4√−3 ) · η2(
√
−3) · η2(4

√
−3)

+ 4
η2( −4√−3 ) · η2(4

√
−3)

η( −2√−3 )η(2
√
−3)

)
It is possible to accurately guess what L(E, 1) might be exactly from here. The
presence of

√
−3 in the η quotients, as well as the fact that the net sum of η

powers is 2 in each one implies the quantity

2L(E, 1)

( 2π
3
√
3
)· | η(−1+

√
−3

2 ) |2

is in fact algebraic. With the equality,

| η(
−1 +

√
−3

2
) |2=

4
√

3Γ3
(
1
3

)
(2π)2
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whose derivation can be found using this special case for the previously men-
tioned ring R,

| 2πı · η2(
−1 +

√
−3

2
) |2=exp(−6ζ ′R(0))

Mathematica’s RootApproximant[ ] makes a very good guess for the algebraic
quotient. Putting the hypothesized algebraic quotient and the transcendental
factor back together, it is extremely likely 2L(E, 1) can be given in the closed
form

2L(E, 1) =
Γ3
(
1
3

)
(2π) 6
√

108
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5 Concluding Remarks for m 6= 1 and 2En

When talking of other m, the same can be done as demonstrated in this exposi-
tion for plenty of 1Em. I haven’t worked out any other examples, but it would
be very easy to find L(1Em, 1) for m either a prime of the form 3k + 1 or a
product of primes of the form 3k+ 1. The quantity would look something along
the lines of

L(1Em, 1) =ε ·
∑

l∈Z/m′Z

χm′(l)g
(γ + l

m′
)

where m′ is the smallest integer such that m is an integer power of m′, χm′ is a
non-trivial primitive character of modulus m′ whose order divides 6, γ satisfies

γ ∈ Q(
√
−3) ∧ Im(γ) > 0

and ε is algebraic. ε involves some quotient containing a power of m′, τ(χm′),
and some Eisenstein Integer. They’re somewhere in the numerator and/or de-
nominator. There’s also the possibility the quantity, defined by a product of
Euler factors, ∏

p is bad

Lp(p
−1)

needs to be taken into consideration (cautiously) for ε, if needed.

In other words; ε is easy to compute and the quantity

L(1Em, 1)

L(χ3, 1)

is a finite linear combination, over a cyclotomic field, of η quotients evaluated
at γ.

I’m also too lazy to do anything for 2En except mention two things, which
can be taken however way you, the reader, want; as a pair of breif closing state-
ments or poorly worded exercises:

1)Very similar stuff can be done for whenever n is a prime of the form 4k + 1
or a product of primes of the form 4k + 1.

2) Express θ2(τ) and/or θ(τ)θ(2τ) as a weight 1 Eisenstein Series. One of
these plays the same role as g(τ). I’m not remotely motivated to confirm which.
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