article 4
 FELIZ II THE PRUDENT: PROBABILITY RADIAL CLOSURE WITH HIGH ORDER VARIABLE CF

Javier Silvestre
eeatom.blogspot com

Abstract

Electronic extreme Probability $\left(\mathrm{P}_{\mathrm{i}}\right)$ as orbital turn time [3] is obtained with its orbital circumference (c_{i}) [2] divided by its velocity (v_{i}) [1]. Regardless of PEP, whether 1 for 1s Hydrogen or 2 for rest, is verified that First Feliz Solution and its variable C_{F} with first-order approximation changes monotonous P_{A} increase when r_{A} increases [3].

Probability radial closure objective is achieved by using Second Feliz Solution with high order variable C_{F} (Theoretically to order infinite). Second Feliz Solution factors importance is studied and its relationship with d, division in which electronic extreme is found, is checked. As consequence, variable C_{F} behaviour differs to division near 1, intermediate and high.

KEYWORDS

Infinite order C_{F}, Second Feliz Solution, Electronic Extreme Probability, Probability radial closure, Victoria Equation.

INTRODUCTION

This is $4^{\text {th }}$ article of 24 dedicated to atomic model based on Victoria equation (Articles index is at end). Similarity with orbital concept and electronic density is achieved with order-1 C_{F} that is included in orbital circumference (c_{i}) calculation [3]. Pythagorean triangle sides are: c_{i} [2], circular orbital height $\left(\mathrm{H}_{\mathrm{i}}\right)$ [2] and radial distance $\left(\mathrm{r}_{\mathrm{i}}\right)$ [1]. Three sides are created by division in which electronic extremes are found [1-3]. A extern electronic extreme $\left(\mathrm{EE}_{\mathrm{A}}\right)$ is indicated with a suffix $\left(\mathrm{r}_{\mathrm{A}}, \mathrm{H}_{\mathrm{A}}\right.$ or $\left.\mathrm{c}_{\mathrm{A}}\right)$, B intern with b suffix (r_{B}, h_{B} or c_{B}) and i suffix is used to both electronic extremes (EE_{i}). All abbreviations are compiled, in conjunction with those included in [1], [2] and [3], at article end.

A electronic extreme Probability $\left(\mathrm{P}_{\mathrm{A}}\right)$ closure is almost reached with First Feliz Solution and its order- $1 \mathrm{C}_{\mathrm{F}}$. However, probability observed is not cancelled at high radial distance ($\mathrm{r}_{\mathrm{A}} \approx 5.5 \mathrm{~A}$) that is provided by minimum division ($\mathrm{d}_{\mathrm{A}}=1$) (Figure 1). P_{i} noncancellation is best observed in P_{A}. Figure 1 is made with Carbon outermost electron data used in [3]:

Victoria Equation E_{o} is Carbon outermost electron ionization energy (IE) [4]. PEP is equal to 2 according to P025.
As in [3], 1 and 70 are used for z and MON respectively.
In addition, this fact of no enclosing A electronic extreme is maintained at greater radial distance as is $r_{A} \approx 52$ A (hypothetical $\mathrm{d}=0.2$) (Figure 2), implying not insignificant P_{A} at high distances to nucleus. Therefore, although First Feliz Solution and its variable C_{F}
with first-order approximation has been an advance with respect constant C_{F}, complete probability enclosure must be achieved with Second Feliz Solution.

P29 Second Feliz Solution: Feliz II The Prudent. High-order Variable $\mathbf{C}_{\mathbf{F}}$

As introduced in P25 Feliz First Solution [3], Variable C_{F} with first-order approximation (1) is determined by division (d) in which electronic extremes is found
and by two factors: PEP (P) and MON (M). Order-1 C_{F} variability is provided by wavelength division (d) since P and M are constants for a given electronic lobe.

$$
\text { (1) } \mathrm{C}_{\mathrm{F}-\text { Firstorder }}=2+\frac{\mathrm{P} * \mathrm{M}}{\mathrm{~d}^{\mathrm{P}}}
$$

Total enclosure for A electronic extreme low division ($\mathrm{d} \approx[1-2]$) is achieved with Second Feliz Solution. This objective is reached by orbital circumference (c_{i}) compaction at low d (2). c_{i} is compressed with Order- $\mathrm{J} \mathrm{C}_{\mathrm{F}}$ and in which x goes from 1 to J . If $\mathrm{J}=1$, implies that x can only be equal to 1 and consequently, (2) is transformed into (1). x is positive integer.

$$
\text { (2) } \mathrm{C}_{\mathrm{F}-\text { Jorder }}=2+\sum_{\mathrm{x}=1}^{\mathrm{J}} \frac{\mathrm{x}^{2} * \mathrm{P} * \mathrm{M}}{\mathrm{~d}^{\mathrm{d}^{* P}}}
$$

Although (3) indicates that infinite J can be reached, is sufficient to work with order-10 CF , i.e. $\mathrm{J}=10$, to simulate infinite J .

$$
\text { (3) } \mathrm{C}_{\mathrm{F}-\text { Infinite order }}=2+\sum_{\mathrm{x}=1}^{\infty} \frac{\mathrm{x}^{2} * \mathrm{P} * \mathrm{M}}{\mathrm{~d}^{x^{* P P}}}
$$

(4) is P_{i} function of r_{i} and d obtained in [3] with included Infinite-order C_{F}.

$$
\text { (4) } \mathrm{P}_{\mathrm{i}}=\frac{\hbar}{2 \mathrm{f}\left(2+\sum_{\mathrm{x}=1}^{\infty} \frac{\mathrm{x}^{2} * \mathrm{P} * \mathrm{M}}{\mathrm{~d}^{x^{* P}}}\right)^{\frac{r_{i}}{\mathrm{Z}}}}
$$

As example, 3-order Variable C_{F} is given by (5):

$$
\text { (5) } \mathrm{C}_{\mathrm{F}-\text { Third order }}=2+\frac{\mathrm{P} * \mathrm{M}}{\mathrm{~d}^{\mathrm{P}}}+\frac{4 * \mathrm{P} * \mathrm{M}}{\mathrm{~d}^{2 \mathrm{P}}}+\frac{9 * \mathrm{P} * \mathrm{M}}{\mathrm{~d}^{3 \mathrm{P}}}
$$

Table 1 shows how C_{F} varies as J increases. J ranges from 1 to 5 and then jumps to 10 . J gain only influences when d is low and approaches 1 . Even at low d as $d=2, C_{F}$ increase is practically null when J is enhanced and goes from $\mathrm{J}=5$ to $\mathrm{J}=10$.

Table 1 - Impact of J increase on C_{F}

d	$\mathrm{C}_{\mathrm{F}} 1$	$\mathrm{C}_{\mathrm{F}} 2$	$\mathrm{C}_{\mathrm{F}} 3$	$\mathrm{C}_{\mathrm{F}} 4$	$\mathrm{C}_{\mathrm{F}} 5$	$\mathrm{C}_{\mathrm{F}} 10$
1	142,00	702,00	1962,00	4202,00	7702,00	53902,00
1,1	117,70	500,19	1211,43	2256,40	3605,81	13088,72
1,2	99,22	369,28	791,26	1312,21	1877,48	4252,80
1,3	84,84	280,91	541,95	816,55	1070,44	1770,15
1,4	73,43	219,20	386,54	538,33	659,33	894,40
1,6	56,69	142,14	217,24	269,39	301,22	337,07
1,8	45,21	98,56	135,60	155,93	165,73	173,05
2	37,00	72,00	91,69	100,44	103,86	105,70

2,5	24,40	38,74	43,90	45,36	45,73	45,84
3	17,56	24,47	26,20	26,54	26,60	26,61
4	10,75	12,94	13,25	13,28	13,28	13,28
5	7,60	8,50	8,58	8,58	8,58	8,58
6	5,89	6,32	6,35	6,35	6,35	6,35
7	4,86	5,09	5,10	5,10	5,10	5,10
8	4,19	4,32	4,33	4,33	4,33	4,33
10	3,40	3,46	3,46	3,46	3,46	3,46
12	2,9722	2,9992	2,9997	2,9997	2,9997	2,9997
14	2,7143	2,7289	2,7290	2,7290	2,7290	2,7290
16	2,5469	2,5554	2,5555	2,5555	2,5555	2,5555
20	2,3500	2,3535	2,3535	2,3535	2,3535	2,3535
30	2,1556	2,1562	2,1562	2,1562	2,1562	2,1562
40	2,0875	2,0877	2,0877	2,0877	2,0877	2,0877
50	2,0560	2,0561	2,0561	2,0561	2,0561	2,0561
60	2,0389	2,0389	2,0389	2,0389	2,0389	2,0389
70	2,0286	2,0286	2,0286	2,0286	2,0286	2,0286
80	2,0219	2,0219	2,0219	2,0219	2,0219	2,0219
90	2,0173	2,0173	2,0173	2,0173	2,0173	2,0173
100	2,0140	2,0140	2,0140	2,0140	2,0140	2,0140
150	2,0062	2,0062	2,0062	2,0062	2,0062	2,0062
200	2,0035	2,0035	2,0035	2,0035	2,0035	2,0035
250	2,0022	2,0022	2,0022	2,0022	2,0022	2,0022
300	2,0016	2,0016	2,0016	2,0016	2,0016	2,0016
350	2,0011	2,0011	2,0011	2,0011	2,0011	2,0011
800	2,0002	2,0002	2,0002	2,0002	2,0002	2,0002
$1 \mathrm{E}+13$	2,0000	2,0000	2,0000	2,0000	2,0000	2,0000

Three C_{F} zones are defined by (3) and corroborated with Table 1 and Figure 3. Figure 3 is C_{F} logarithmic representation as function of division logarithm. C_{F} logarithmic representation is performed for better visualization of the entire C_{F} range (C_{F} in Table 1 is from PEP to over $5.4 \cdot 10^{4}$).

1) Division $\rightarrow \infty$

The various summands (3) from $\mathrm{x}=1$ to $\mathrm{x}=\mathrm{J}$ are nullified because division is in denominator. Therefore, regardless of J order, (3) always tends to be equal to PEP when $d \rightarrow \infty$ (6). This fact is verified in Table 1 and also in Figure 3 where all curves tend asymptotically to: $\log (\mathrm{PEP})=\log (2) \approx 0,30103$. Approximately, zone 1 is found in \log (division) > 1 .

$$
\text { (6) }\left(\mathrm{C}_{\mathrm{F}-\text { Any } \mathrm{Order})}\right)_{\rightarrow \infty}=2
$$

2) Intermediate division

Greater x factors (3) increase in importance as division approaches 1. Equally roughly, zone 2 is located in range: $0<\log (\mathrm{d})<1$. Since there is no single factor, curves separation according to their greater or less J is observed in Figure 3. Separation
between curves becomes more evident as division decreases because high x factor importance grows.

Figure $3-\log \left(\mathrm{C}_{\mathrm{F}}\right)$ vs $\log (\mathrm{d})$ - Impact of \mathbf{J} increase on $\mathbf{C F}$

3) Division $=1$ - Second Feliz Solution Division Limit

If $d=1$, (3) is simplified (7). As (7) has no variable terms, can be transformed into (8) which tends to infinite $\mathrm{C}_{\mathrm{F}} . \mathrm{Si}_{\mathrm{F}} \rightarrow \infty$, then $\mathrm{ci} \rightarrow 0$, and consequently $\mathrm{Pi} \rightarrow 0$ (10) (where (9) is EE Probability definition seen in [3]). Consequently, minimum division is 1 because already has zero probability. In terms of Infinite-order C_{F} application, and although mathematically Victoria Equation can be solved for $\mathrm{d}>0$, d must be greater that 1 to make probabilistic sense.
(7) $\left(\mathrm{C}_{\mathrm{F}-\text { Infiniie order }}\right)_{\mathrm{d}}=1=2+\sum_{\mathrm{x}=1}^{\infty} \mathrm{x}^{2} * \mathrm{P} * \mathrm{M}$
(8) $\left(\mathrm{C}_{\mathrm{F}-\text { Infinite orderer }}^{\mathrm{d}} \mathrm{=}=2+\infty^{2} * \mathrm{P} * \mathrm{M}=\infty\right.$
(9) EE Probabilit $y=P_{i}=\frac{c_{i}}{V_{i}}=\frac{\lambda_{i}}{2 \pi C_{F} V_{i}}$

$$
\text { (10) } \mathrm{P}_{\mathrm{i}}(\mathrm{~d}=1)=\frac{\lambda_{\mathrm{i}}}{2 \pi \mathrm{v}_{\mathrm{i}}} \frac{1}{\infty}=0
$$

Radial distance (r_{i}) in X axis and Probability $\left(\mathrm{P}_{\mathrm{i}}\right)$ with first-order C_{F} in Y axis are represented in Figure 1 and 2. In these figures, probability opening maintenance at high r_{A} is shown. First-order C_{F} and C_{F} with higher J order are included in Figure 4. Figure 4 radial distance is limited to 6 A in order to include division 1 with $\left(\mathrm{r}_{\mathrm{A}}\right)_{\mathrm{d}=1}=5,508099 \mathrm{~A}$. Nomenclature used is C_{F} (Compaction Factor) followed by number (J order), and letter A or B (electronic extreme). Selected J order is 1, 2, 3, 5 and 10.

Difference, which between 1-order and 2-order C_{F} is clearly visible, declines markedly as J is increased. In fact, change between $\mathrm{J}=5$ and $\mathrm{J}=10$ is not nearly appreciable in Figure 4. To be able to observe it, Figure 4 zoom has been done in low d_{A} zone (Figure 5) which is the zone where the most noticeable effects of J changes are. In addition, low d_{A} zone should decrease its probability to meet Second Feliz Solution. B intern electronic extreme (EE_{B}) also modifies its P_{B} by increasing J . EE_{B} does not have the problem of extending probability to infinite as r_{A} can do. In addition, P_{B} is much lower when d_{B} is small and makes appear to be zero when $d=1$ for any J (Figure 4). P_{i} scale has been reduced by 30 with regard to Figure 5 (zoom for low d_{A}) to be able to observe reductions produced by J increase in low d_{B} zone (Figure 6).

Figure 5-2p ${ }^{2}$ C: P_{i} vs r_{i} with C_{F} of order 1,2,3,5 and 10-Zoom for low d_{A}

Figure 6-2 $\mathbf{p}^{\mathbf{2}} \mathbf{C}$: P_{i} vs r_{i} with C_{F} of order 1,2,3,5 and 10 - Zoom for low d_{B}

Maximum Probability area is expanded in Figure 7. In this figure, division with minor r_{A} represented is $d_{A}=33$. Each new point is one division unit plus. J change has little effect because maximum P_{i} is located in high division $\left(d_{A} \approx 30\right) . C_{F}$ is 2.1555 if $J=1$ and 2.1562 for $\mathrm{J}>1$. For this reason, $\mathrm{J}=1$ curve has slightly higher probabilities and its maximum is softly displaced. These effects are more pronounced if maximum P_{i} is located at low division because difference in C_{F} is higher as J increases (Table 1). $2 \mathrm{p}^{2}$ Maximum Probability is not exactly equal to [5] and [6] because MON and z are approximate until "Birth by probability coupling", introduced in [3], is exposed in later
articles. Even so, difference between Figure 7 ($\approx 74 \mathrm{pm}$) versus [5] and [6] (65 pm) is low.

Figure 8-2 $\mathbf{p}^{2} \mathrm{C}$: P_{i} vs r_{i} with $\mathrm{PEP}=\mathbf{2} \mathrm{z}=1$ and different MON

MON decrease causes displacements towards greater probabilities in any division because is in C_{F} numerator (2) or (3) and (9). In addition, P_{i} increase in any division provides that Maximum Probability is also displaced towards higher r_{A} (Figure 8). MON is only introduced by P26 [3], but its value is not established at this theory moment.

$$
\downarrow \mathrm{MON} \rightarrow \downarrow \mathrm{C}_{\mathrm{F}} \rightarrow \uparrow \mathrm{c}_{\mathrm{i}} \rightarrow \uparrow \mathrm{P}_{\mathrm{i}}
$$

When MON is modified, Maximum Probability displacement has internal limit equal to $\left(\mathrm{r}_{\mathrm{i}} \mathrm{d}_{\mathrm{d} \rightarrow \infty}\right.$ (11) [1] because:

- Maximum Probability is in EE_{A}.
- MON does not modify $\left(\mathrm{r}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}$ since is not included in Victoria Equation.

$$
\text { (11) }\left(\mathrm{r}_{\mathrm{A}}\right)_{\mathrm{d} \rightarrow \infty}=\left(\mathrm{r}_{\mathrm{B}}\right)_{\mathrm{d} \rightarrow \infty}=\left(\mathrm{r}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}=\frac{-\mathrm{fz}}{2\left(\mathrm{E}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}}=\frac{-\mathrm{fz}}{\mathrm{E}_{\mathrm{o}}}=\frac{-\mathrm{F}}{\mathrm{E}_{o}}
$$

- This limit is achieved when MON $\rightarrow \infty$. P_{i} vs. r_{i} curve as MON increases (see curve with $\mathrm{MON}=1000$) is transformed to that obtained with $\mathrm{PEP}=1$ [3].

When MON decreases, Maximum Probability is in lower d_{A} if is taken into account:

- MON is not in Victoria Equation and therefore MON change does not modify relationship between division and r_{i}.
- Maximum Probability is displaced towards higher r_{A} that require lower d_{A}.

PEP explanation is similar to the view with MON since is also C_{F} (2) or (3) and does not affect Victoria Equation [1], but its effect is inverse. As with MON, PEP is in C C_{F} numerator, but its preponderant effect is located in denominator ($\mathrm{d}^{\times \text {PEP }}$). PEP value is defined as 1 or 2 by P27 [3], but in Figure 9, PEP=3 and PEP=4 are shown by way of example.

$$
\downarrow \mathrm{PEP} \rightarrow \downarrow \text { Numerator and } \downarrow \downarrow \text { Denominator of } \mathrm{C}_{\mathrm{F}} \rightarrow \uparrow \mathrm{C}_{\mathrm{F}} \rightarrow \downarrow \mathrm{c}_{\mathrm{i}} \rightarrow \downarrow \mathrm{P}_{\mathrm{i}}
$$

Figure 9-2 p^{2} C: P_{i} vs r_{i} with MON=70 $z=1$ and different PEP

z Effective nuclear charge is in r_{i} Victoria Equation (11) and is also in $\left(\mathrm{r}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}(12)$ and $\left(\mathrm{r}_{\mathrm{B}}\right)_{\mathrm{d} \rightarrow 0}$ (13) [1]. F included in (11) is equal to fz (14) [1]. According to (11-13), z decrease causes curve overall displacement to r_{i} closer to nucleus. In contrast, z does not affect $\left(r_{A}\right)_{d \rightarrow 0}$ because is equal to infinite (Birth wavelength (λ) divided by d). These facts imply that z influence provoking displacement to r_{i} closer to nucleus is present for all division and only effect is fading when $\mathrm{d} \rightarrow 0 . \mathrm{z}$ value is marked by P 14 [1], but only for external ns lobes. $2 \mathrm{p}^{2} \mathrm{C}$ lobe is not included in P14 because is not ns and different z values (1.25 10.850 .7 and 0.5) have been applied to see effect in Figure 10.

$$
\begin{aligned}
& \text { (11) } r_{A}=\frac{-F-\frac{h \sqrt{-E_{o}}}{{d m_{c}^{1 / 2}}_{1 / 2}}-\sqrt{F^{2}+\frac{h^{2}\left(-E_{o}\right)}{d^{2} m_{c}}}}{2 E_{o}} \\
& \text { (12) }\left(\mathrm{r}_{\mathrm{A}}\right)_{\mathrm{d} \rightarrow \infty}=\left(\mathrm{r}_{\mathrm{B}}\right)_{\mathrm{d} \rightarrow \infty}=\left(\mathrm{r}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}=\frac{-\mathrm{fz}}{2\left(\mathrm{E}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}}=\frac{-\mathrm{fZ}}{\mathrm{E}_{\mathrm{o}}}=\frac{-\mathrm{F}}{\mathrm{E}_{o}} \\
& \text { (13) }\left(\mathrm{r}_{\mathrm{B}}\right)_{\mathrm{d} \rightarrow 0}=\frac{-\mathrm{fz}}{2 \mathrm{E}_{\mathrm{o}}}=\frac{-\mathrm{F}}{2 \mathrm{E}_{\mathrm{o}}} \\
& \text { (14) } \mathrm{F}=\frac{\mathrm{Kq}^{2}}{2} \mathrm{z}=\mathrm{fz}=1,153538564 \bullet 10^{-28} \mathrm{z} \\
& \text { (15) }\left(r_{A}\right)_{d \rightarrow 0}=\frac{\frac{E_{0} \lambda}{d}-\sqrt{\frac{E_{0}^{2} \lambda^{2}}{d^{2}}}}{2 E_{o}}=\frac{\frac{-2 / E_{o} / \lambda}{d}}{2 E_{o}}=\frac{\lambda}{d}=\infty
\end{aligned}
$$

Figure $10-\mathbf{2 p} \mathbf{p} \mathbf{C}$: P_{i} vs r_{i} with $\mathbf{P E P}=\mathbf{2}$ MON=70 and different z

z variation effect is not as neat in P_{i} vs r_{i} curves as with MON (Figure 8) and PEP (Figure 9) and cross-curves are observed. This crossing is mainly due to curve displacement previously explained although there is also an effect on $P_{i}(16)$ obtained in [3].

$$
\text { (16) } \mathrm{P}_{\mathrm{i}}=\frac{\hbar}{\mathrm{C}_{\mathrm{F}} \mathrm{~m}_{\mathrm{c}} \mathrm{~V}_{\mathrm{i}}^{2}}
$$

a) Direct action on v_{i}^{2} :

EE Kinetic Energy (Ek i_{i}) and EE velocity (v_{i}) are related by (17) where $\mathrm{m}_{\mathrm{i}}=\mathrm{m}_{\mathrm{e}} / 2[1] \mathrm{v}_{\mathrm{i}}{ }^{2}$ (18) is obtained from (17)

$$
\begin{gathered}
\text { (17) } \mathrm{Ek}_{\mathrm{i}}=\frac{1}{2} \mathrm{~m}_{\mathrm{iv}}{ }^{2}=\frac{1}{4} \mathrm{~m}_{\mathrm{ev}}{ }^{2} \\
\text { (18) } \mathrm{v}_{\mathrm{i}}^{2}=\frac{4 \mathrm{Ek}_{\mathrm{i}}}{\mathrm{~m}_{\mathrm{e}}}
\end{gathered}
$$

$\mathrm{Ek}_{\mathrm{i}}(19)$ is known by potential and kinetic energy relation of Bohr orbit balance applied to $E E$ [1]. Also in [1], E_{i} is indicated (20) and $E k_{i}$ is reformulated (21) when (19) and (20) are considered.

$$
\begin{gathered}
\text { (19) } E k_{i}=-\frac{E P_{i}}{2}=-E_{i} \quad \text { with } E_{A}+E_{B}=E_{o} \\
\text { (20) } E_{i}=-\frac{K z q^{2}}{4 r_{i}}=-\frac{f z}{2 r_{i}} \\
\text { (21) } E k_{i}=-E_{i}=\frac{f z}{2 r_{i}}
\end{gathered}
$$

Proportionality $P_{i} \propto 1 / v_{i}{ }^{2}(16)$ is consistent with also being proportional to $E k_{i}$ inverse (17) and $\mathrm{r}_{\mathrm{i}} / \mathrm{z}$ (21) as summarized in (22):

$$
\text { (22) } P_{i} \alpha \frac{1}{V_{i}^{2}} \alpha \frac{1}{E k_{i}}=\frac{2 r_{i}}{f_{z}} \alpha \frac{r_{i}}{z}
$$

Figure 11 shows behaviour of P_{i} with $\mathrm{z}=1 / 2$ and $\mathrm{z}=1$ (23), where (23) is probabilities ratio depending on z chosen.
(23) ($\left.\mathrm{P}_{\mathrm{i}}\right)_{\text {ratio }}=\frac{\left(\mathrm{P}_{\mathrm{i}}\right)_{\mathrm{z}}=1 / 2}{\left(\mathrm{P}_{\mathrm{i}}\right)_{\mathrm{z}=1}}$

- P_{i} when $z=1 / 2$ is not twice that when $z=1$, although P_{i} is inversely proportional to z (22), because r_{i} must be taken into account.
- Separation between two P_{i} quotient curves complies that the one provides by two EE_{A} is above 1 and that provided by EE_{B} is below 1 because P_{i} is inversely proportional to $E k_{i}$ and energy balance (19) must be fulfilled [1].
- r_{i} is proportionate by r_{i} Victoria Equation and has points where this equation is simplified $\left(\left(\mathrm{r}_{\mathrm{B}}\right)_{\mathrm{d} \rightarrow 0} \quad\left(\mathrm{r}_{\mathrm{A}}\right)_{\mathrm{d} \rightarrow 0}\right.$ y $\left(\mathrm{r}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}$ are deduced in [1]) and whose solutions can be substituted in (22) to justify the trends in Figure 11:
- $\left(\mathrm{P}_{\mathrm{B}}\right)_{\mathrm{d} \rightarrow 0}$ is proportional to $\left(-\mathrm{E}_{\mathrm{o}}\right)^{-1}$ and has no z influence (24), implying that probabilities quotient (23) tends to 1 . Similarly, $\left(\mathrm{P}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}$ is z independent (25) and its Pi ratio (23) is equal to 1 .
- Situation turns to z influence for the rest of situations, being emphasized when $\left(\mathrm{r}_{\mathrm{A}}\right)_{\mathrm{d} \rightarrow 0}(26)$. Starting from probabilities ratio (23) and $\left(\mathrm{P}_{\mathrm{A}}\right)_{\mathrm{d} \rightarrow 0}(26)$, probabilities ratio equal to ratio of its inverted z is obtained (27).

(24) $\left(\mathrm{P}_{\mathrm{B}}\right)_{\mathrm{d} \rightarrow 0} \alpha \frac{2\left(\mathrm{r}_{\mathrm{B}}\right)_{\mathrm{d} \rightarrow 0}}{\mathrm{fz}}=\frac{2}{\mathrm{fz}} \frac{(-\mathrm{fz})}{2 \mathrm{E}_{o}}=-\frac{1}{\mathrm{E}_{\mathrm{o}}}$
(25) $\left(\mathrm{P}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty} \alpha \frac{2\left(\mathrm{r}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}}{\mathrm{fz}}=\frac{2}{\mathrm{fz}} \frac{(-\mathrm{fz})}{\mathrm{E}_{\mathrm{o}}}=-\frac{2}{\mathrm{E}_{\mathrm{o}}}$
(26) $\left(\mathrm{P}_{\mathrm{A}}\right)_{\mathrm{d} \rightarrow 0} \alpha \frac{2\left(\mathrm{r}_{\mathrm{A}}\right)_{\mathrm{d} \rightarrow 0}}{\mathrm{fz}}=\frac{2}{\mathrm{fz}} \frac{\lambda}{\mathrm{d}} \alpha \frac{1}{\mathrm{z}}$
(27) $\left(\left(\mathrm{P}_{\mathrm{A}}\right)_{\text {ratio }}\right)_{\mathrm{d} \rightarrow 0}=\frac{\left(\mathrm{P}_{\mathrm{i}}\right)_{\mathrm{z}=1 / 2}}{\left(\mathrm{P}_{\mathrm{i}}\right)_{\mathrm{z}=1}}=\frac{1}{1 / 2}=2$
b) Indirect role on C_{F} : Although z is not included in $\mathrm{C}_{\mathrm{F}}, \mathrm{z}$ affects division position (r_{i}) and d is critical in C_{F}.

Finally, after introducing J, MON, PEP, and z modification effect, a research line to be developed corresponds to C_{F} structure alteration. An example is change of $x^{2}(2)$ by x^{3}
(28) in numerator of different terms. In Figure 12 is represented C_{F} with $\mathrm{J}=1$ and $\mathrm{J}=10$ and there are two possibilities with $\mathrm{J}=10$ that are using (2) or (28). In Figure 12 nomenclature, "CF $10 \operatorname{Exp} 3 \mathrm{~A}$ " is C_{F} with $\mathrm{J}=10$ and x^{3} (28) for A electronic extreme. Greater numerator implies acceleration towards higher compaction and therefore lower probabilities for the same d or r_{i}.

$$
\text { (28) } \mathrm{C}_{\mathrm{F}-\text { Jorder }}=2+\sum_{\mathrm{x}=1}^{\mathrm{J}} \frac{\mathrm{x}^{3} * \mathrm{P} * \mathrm{M}}{\mathrm{~d}^{\mathrm{x}^{*} \mathrm{P}}}
$$

Plane $\mathrm{c}_{\underline{i}}-\mathrm{H}_{i}$ Representation

Orbital representation or H_{i} vs c_{i} representation (Figure 13 and 14) adds orbital closure to representation with first-order C_{F} [3]. Figure 13 is performed on $1: 1$ scale and orbital closure is only intuited and for this reason, in Figure 14, H_{i} is enlarged and c_{i} is reduced by to be able to clearly observe orbital enclosure. P_{A} existence up to $\mathrm{d} \rightarrow 0$ (or $\mathrm{r}_{\mathrm{A}} \rightarrow \infty$) would imply that, by probabilities sum, P_{A} would be infinite when $\mathrm{r}_{\mathrm{A}} \rightarrow \infty$ and to avoid this, C_{F} with infinite J closes EE_{A} with $\mathrm{d}=1$ and therefore also EE_{B}.

From now, CF to be used is (2) and $\mathrm{J}=10$ is considered sufficient. (2) can be reformulated as (29) when $\mathrm{PEP}=\mathrm{P}=2$.
(29) $\mathrm{C}_{\mathrm{F}-10 \text { ordee }}(\mathrm{P}=2)=2+\sum_{\mathrm{x}=1}^{\mathrm{J}} \frac{\mathrm{x}^{\mathrm{P}} * \mathrm{P} * \mathrm{M}}{\mathrm{d}^{x^{* P}}}=2+\sum_{\mathrm{x}=1}^{\mathrm{J}=10} \frac{2 \mathrm{x}^{2} \mathrm{M}}{\mathrm{d}^{2 \mathrm{x}}}$

Following steps are going to be:
a) Shape and filling of orbital
b) Electronic coupling development (initiated in [3]) and that is NIN concept part. As indicated in [3], this extension is pending Probability concept conclusion that has been advanced in [3] and this article. Final step related to a) point is necessary to strengthen Probability concept and be able to continue with Electronic coupling.

Figure 14 - Figure 13 orbital representation with orbital closure detail

BIBLIOGRAPHY

[1] Javier Silvestre. Victoria Equation - The dark side of the electron. (Document sent to vixra.org)
[2] Javier Silvestre. Electronic extremes: orbital and spin (introduction). (Document sent to vixra.org)
[3] Javier Silvestre. Relations between electronic extremes: Rotation time as probability and first Feliz solution. (Document sent to vixra.org)
[4] Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team (2014). NIST Atomic Spectra Database (ver. 5.2), [Online]. Available: http://physics.nist.gov/asd
[5] S. Fraga, J. Karwowski, K. M. S. Saxena, Handbook of Atomic Data, Elsevier, Amsterdam, 1979.
[6] Desclaux JP. Relativistic Dirac-Fock expectation values for atoms with $\mathrm{Z}=1$ to $\mathrm{Z}=$ 120. Atom Data Nucl Data Tables 1973;12: 311-406.

Abbreviations List

Suffix indicates electronic extreme considered and i suffix is used to both electronic extremes $\left(\mathrm{EE}_{\mathrm{i}}\right)$. Following Table indicates abbreviations used in this theory and its use in article in question is marked with X. 4 is present article

Abbreviations Table							
Abbreviation	1	2	3		4	5	Meaning
$\alpha_{\text {NOA }}$						X	Nucleus-Orbit-Angle
$\mathrm{a}_{\text {o }}$			X				Bohr radius
AL						X	Angular Limit
c_{i}		X	X		X	X	EE Orbital circumference
C_{F}		X	X		X	X	Wavelength compaction factor
$\mathrm{C}_{\text {MON }}$						X	$\mathrm{C}_{\text {F without } \mathrm{C}_{\text {Poti }} \text { }}$
Сротı						X	Probabilistic Orbital Tide in Third Feliz Solution
$\mathrm{C}_{\text {poti-al }}$						X	Croti $^{\text {Angular Limit }}$
$\mathrm{C}_{\text {poti-gal }}$						X	$\mathrm{C}_{\text {POti }}$ Geometric Angular Limit
$\mathrm{C}_{\text {potildag }}$							Cpoti $^{\text {Lobe }}$ Always growing
d	X	X	X		X	X	Birth wavelength division or simply, division
EE	X	X	X		X	X	Electronic extreme
E_{0}	X	X	X		X	X	Initial, birth or output energy
E_{i}	X		X		X		EE energy
$\mathrm{Ek}_{\text {i }}$	X		X		X		EE kinetic energy
EP_{i}	X				X		EE potential energy
ES	X	X					Equi-energetic state
f	X		X		X	X	Constant in Victoria Equation
F	X		X		X	X	Constant f multiplied by z
GAL						X	Geometric Angular Limit

h	X	X	X		X	Planck's constant
ћ		X		X	X	Reduced Planck's constant
h_{i}	X		X			Planck's constant adapted to EE
H_{i}		X	X	X	X	EE Circular orbit height
IE	X	X		X	X	Ionization Energy
m_{e}	X	X	X	X	X	Electron mass
m_{i}	X		X	X		EE mass
J				X	X	C_{F} order in Second Feliz Solution (From $\mathrm{x}=1$ to J)
KP			X			Probability constant in Variable C_{F}
$\lambda_{\text {Birth }} \lambda$	X	X		X	X	Birth wavelength
λ_{c}	X					Electron classic wavelength
λ_{i}	X	X	X	X		EE wavelength
$\lambda_{\text {i-Birth }}$	X					EE wavelength when $\mathrm{d} \rightarrow \infty$
LAG					X	Lobe always growing
M			X	X	X	MON (Modified Orbital Number)
MON			X	X	X	Modified Orbital Number
NIN	X		X	X		Negative in Negative (Electron in electron concept)
OAM		X				Orbital Angular Momentum
OPA		X				Orbital Planes Axis
P_{i}			X	X	X	EE Probability
P			X	X	X	PEP (Principal Electronic Part)
PEP			X	X	X	Principal Electronic Part
q_{e}	X					Electron charge
q_{i}	X					EE charge
$\mathrm{q}_{\text {ip }}$	X					Proton charge
$\mathrm{r}_{\text {AB }}$	X					Difference in nucleus distance between EE_{A} and EE_{B}
ro	X					Nucleus distance when EE_{i} is in pivot or initial position
r_{i}	X	X	X	X	X	Distance between nucleus and EE
SAM		X				Spin Angular Momentum
SMM		X				Spin Magnetic Momentum
SSM	X		X			Secondary Swinging Movement
v_{i}	X	X	X	X	X	EE velocity
z	X	X	X	X	X	Effective nuclear charge
Z	X					Atomic number

ARTICLES INDEX		
Part	Number	Title
	01	Victoria Equation - The dark side of the electron.
	02	Electronic extremes: orbital and spin (introduction)
	03	Relations between electronic extremes: Rotation time as probability and Feliz I.
	04	Feliz II the prudent: Probability radial closure with high order variable C

