article 01
 VICTORIA EQUATION - THE DARK SIDE OF THE ELECTRON

Javier Silvestre
eeatom.blogspot com

Abstract

Following postulates focus application on atomic electrons which, by balancing and swinging of electronic extremes around pivot or initial position, achieve electron cloud with specific positions and momentums and always maintaining initial energy with electronic extremes energy sum (equi-energetic state or ES).

First Victoria Equation applications serve to make an initial approximation to atomic radius, to show 2 electronics extremes radial distribution from which velocities and momentums are derived, as well as to know nuclear radius distance and energy of both electronic extremes as function of parameter called birth wavelength division.

KEYWORDS

Electron, Atomic model, Victoria Equation, Electronic Extreme (EE), Equi-energetic state (ES), electron pivot position, EE swinging, birth wavelength and birth wavelength division.

INTRODUCTION

This is first article of 24 dedicated to atomic model based on Victoria equation (Articles index is at end). Two electronic extremes with its swinging move away and approach alternately with respect to atomic nucleus and this provide electron delocalization (electron cloud). This swinging movement is performed in energetic equilibrium between both electronic extremes. Energetic equilibrium prevents orbit movement from being accompanied by energetic loss due to irradiation to outside. Following postulates are provided prior to Victoria Equation.

1) Initial Postulates for Victoria Equation

P01 Swinging movement of two electronic extremes around pivot or initial position.

Electron distributes its energy in two electronic extremes (EE) that are placed on both pivot position sides: one oscillates nearer and with more energy (B intern electronic extreme or EE_{B}) and another more remote and with less energy (A extern electronic extreme or EE_{A}).

Where suffix indicates electronic extreme considered and i suffix is used to both electronic extremes $\left(\mathrm{EE}_{\mathrm{i}}\right)$. All abbreviations are compiled at article end.

P02 Equi-energetic State (ES)

Electronic extremes energy sum is always equal to initial energy. This fact causes that there are ES infinite number in which, if one EE varies its energy, the other EE must compensate it with same modulus and opposite sign. If E represents energy, then (1) where E_{A} is A electronic extreme energy, E_{B} is E_{B} energy and E_{o} is initial or output energy.

$$
\text { (1) } E_{o}=E_{A}+E_{B}
$$

At the output time, EE_{i} have same energy $\left(\mathrm{E}_{\mathrm{A}}=\mathrm{E}_{\mathrm{B}}\right)$ and nucleus distance is pivot or initial position (ro). Therefore, and considering P01, EE relative position is given by (2) where r is nucleus distance.

$$
\text { (2) } r_{B} \leq r_{O} \leq r_{A}
$$

P03 ES Energy

E_{0} is initial energy and is Ionization Energy (IE) measured experimentally whenever electron is in ground state. E_{A} and E_{B} are not currently measurable.

P04 Inter-electron repulsion absence by negative charge saturation (NIN I)

Negative charge saturation always occurs for:

$$
\text { electron number } \leq \mathrm{Z} \text { (with } \mathrm{Z}=\text { Atomic number) }
$$

Among electrons in charge saturation there are no repulsion forces between them and in Victoria Equation there is no repulsion terms. NIN stands for "Negative in Negative" as electron in electron placed orderly and its meaning is expanded as this theory progresses.

P05 Energy Balance

Energy balance applies Bohr Model to EE. If Ek_{i} and Ep_{i} are kinetic and potential energy respectively for each EE, Energy balance is (5):

$$
\begin{gathered}
\text { (3) } \mathrm{E}_{\mathrm{A}}=E{k_{\mathrm{A}}}^{+} E p_{\mathrm{A}} \\
\text { (4) } \mathrm{E}_{\mathrm{B}}=E{k_{\mathrm{B}}}^{+E p_{\mathrm{B}}} \\
\text { (5) } \mathrm{E}_{\mathrm{o}}=E{k_{A}}+E p_{\mathrm{A}}+E k_{\mathrm{B}}+E p_{\mathrm{B}}
\end{gathered}
$$

P06 Initial Energy wavelength divisions

If r_{AB} is considered to be difference in nucleus distance between EE_{A} and EE_{B} (6), then ES satisfy that $\lambda_{\text {Birth }}\left(\lambda_{\text {Birth }}\right.$ (or simply, λ) is birth wavelength and is defined in P08) divided by a number called division (d) is equal to r_{AB} (7).

$$
\text { (6) } r_{A B}=r_{A}-r_{B}
$$

$$
\text { (7) } \frac{\lambda}{d}=r_{A B}
$$

(8) is obtained from (6) and substituting r_{AB} with (7):

$$
\text { (8) } r_{B}=r_{A}-\frac{\lambda}{d}
$$

Initial position ($r_{A}=r_{B}$) occurs when $\mathrm{d} \rightarrow \infty$ and electronic extremes drift away as d decreases.

P07 Electronic Extremes charge

First step for EE creation is supposed to be electron charge division into two semi charges.

P08 De Broglie Hypothesis in particle with more than one wave I - Birth moment

$\lambda_{\text {Birth }}$ or λ (Birth wavelength) used in (7) and (8) is obtained by applying De Broglie hypothesis and considering Bohr orbits energetic balance. De Broglie relation must be adapted to P 07 , i.e. to the waves that are born from same particle and energy.

Kinetic energy (9) and relation between electron energy and kinetic energy in Bohr orbits for one electron without EE is given in (10):

$$
\text { (9) } E k=\frac{1}{2} m_{c} v^{2}
$$

(10) $\mathrm{Ek}=-\mathrm{E}_{o}$

First step in birth moment is P07 which implies that EE energy is E_{0} half and thus affecting birth wavelength ($\lambda_{\text {Birth }}$ or hereinafter λ) multiplying it by $2^{1 / 2}$ (12) with respect to classic wavelength $\left(\left(\lambda_{c}\right)(11)\right.$.

$$
\begin{aligned}
& \text { (11) } \lambda \mathrm{c}=\frac{\mathrm{h}}{\mathrm{~m}_{\mathrm{e}} \mathrm{~V}}=\frac{\mathrm{h}}{\mathrm{~m}_{\mathrm{e}} \sqrt{\frac{-2 \mathrm{E}_{\mathrm{o}}}{\mathrm{~m}_{\mathrm{e}}}}}=\frac{\mathrm{h}}{\sqrt{-2 \mathrm{Eom}_{\mathrm{e}}}} \\
& \text { (12) } \lambda_{\text {BIRTH }}=\lambda=\frac{\mathrm{h}}{\mathrm{~m}_{\mathrm{e}}}=\frac{\mathrm{h}}{\mathrm{~m}_{\mathrm{c}} \sqrt{\frac{-\mathrm{E}_{\mathrm{o}}}{\mathrm{~m}_{\mathrm{e}}}}}=\frac{\mathrm{h}}{\sqrt{- \text { Eom }_{\mathrm{e}}}}
\end{aligned}
$$

P09 Electron mass distribution in EE

After birth moment wavelength (λ) in P08, electron is divided into two equal mass fragments (13) where m_{i} is EE mass and m_{e} is electron mass.

$$
\text { (13) } \mathrm{m}_{\mathrm{i}}=\frac{\mathrm{m}_{\mathrm{e}}}{2}
$$

P10 Planck's constant adapted to EE ($\mathbf{h}_{\mathbf{i}}$)

Planck's constant adapted to EE (h_{i}) is quotient between Planck's constant (h) and waves number that are born from same energetic particle (14). Energetic particle is a particle subdivided into several particles that are in energetic equilibrium (fulfilling P02).

$$
\text { (14) } h_{i}=\frac{h}{\text { waves }_{\text {ENERGETICPARTICLE }}}
$$

h_{i} in electron with two electronic extremes is (15) and therefore, h is equal to h_{i} sum (16).

$$
\begin{aligned}
& \text { (15) } \mathrm{h}_{\mathrm{i}}=\frac{\mathrm{h}}{2} \\
& \text { (16) } \mathrm{h}=\sum_{\mathrm{i}=1} \mathrm{~h}_{\mathrm{i}}
\end{aligned}
$$

P11 De Broglie Hypothesis in particle with more than one wave II - λ_{i} and relation with $\lambda_{\text {Birth }}(\lambda)$ and λ_{C}.

After charge division with $\lambda_{\text {Birth }}(\lambda)$, electron is subdivided into two equal mass fragments $\left(\mathrm{m}_{\mathrm{i}}\right)(13)$ with its associated wavelength $\lambda_{\mathrm{i}}\left(\lambda_{\mathrm{A}}\right.$ or $\left.\lambda_{B}\right)(17)$ whose Planck's (h_{i}) considers electronic extremes (15).

$$
\text { (17) } \lambda_{i}=\frac{h_{i}}{m_{i} v_{i}}
$$

Electronic extreme velocity (v_{i}) (18) takes into account (9), (10) and (13):

$$
\text { (18) } v_{i}=\sqrt{\frac{2 E k_{i}}{m_{i}}}=\sqrt{\frac{-4 \mathrm{E}_{\mathrm{i}}}{m_{e}}}
$$

λ_{i} (17) can rewrite (19) by changing m_{i}, h_{i} and v_{i} with (13), (15) and (18) respectively, where λ_{i} is $E E$ wavelength at any time with energy $=E_{i}$.

$$
\text { (19) } \lambda_{\mathrm{i}}=\frac{\mathrm{h}}{2 \sqrt{-\mathrm{E}_{\mathrm{i}} \mathrm{~m}_{\mathrm{e}}}}
$$

λ_{i} equation (19) is like classic wavelength (λ_{C}) (11), but divided by $2^{1 / 2}$. In fact, when $\mathrm{d} \rightarrow \infty$, then $\left(\mathrm{E}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}=\mathrm{IE} / 2(\mathrm{P} 08)$ and consequently is obtained Birth $\lambda_{\mathrm{i}}\left(\lambda_{\mathrm{i} \text {-Birth }}\right)(20)$

$$
\text { (20) } \lambda_{i-\text { Birth }}=\frac{h}{2 \sqrt{\frac{- \text { IE }}{2} \mathrm{~m}_{\mathrm{c}}}}=\frac{\mathrm{h}}{\sqrt{-2 \mathrm{IE} \mathrm{~m}}}
$$

At birth moment, both electronic extremes have same $\lambda(21)$ since $\left(E_{A}\right)_{d \rightarrow \infty}=\left(E_{B}\right)_{d \rightarrow \infty}=$ IE/2.

$$
\text { (21) }\left(\lambda_{A}\right)_{d \rightarrow \infty}=\left(\lambda_{B}\right)_{d \rightarrow \infty}=\lambda_{i-\text { Birth }}
$$

At the same time, $\lambda_{i-B i r t h}$ is also equal to λ_{C} (22) since h divided by 2 (15) in numerator is compensated because IE (P08) and me (13) are also divided by 2 in denominator with an $1 / 2$ exponent.

$$
\text { (22) } \lambda_{\mathrm{C}}=\lambda_{\mathrm{i} \text {-Birth }}
$$

Finally, at birth moment, $\lambda_{\text {Birth }}(\lambda)(12)$ is correlated with $\left(\lambda_{A}\right)_{d \rightarrow \infty}$ and $\left(\lambda_{B}\right)_{d \rightarrow \infty}$ by rightangled triangle relation (23):

$$
\text { (23) } \lambda_{\text {BIRTH }}=\lambda=\sqrt{\left(\lambda_{A}\right)_{d \rightarrow \infty}^{2}+\left(\lambda_{B}\right)_{d \rightarrow \infty}^{2}}
$$

Table 1 summarizes expressions and relations of three states involved in EE birth. P indicates Postulate where is entered and No. recalls equation number.

Table 1. Wavelength of three states involved in Electronic extremes birth				
State	Symbol	P	No.	Expression
Classic or standard λ	λ_{C}	8	11	$\frac{\mathrm{~h}}{\sqrt{-2 \mathrm{Eom}_{\mathrm{e}}}}$
Birth λ	$\lambda_{\text {Birth or }} \lambda$	8	12	$\frac{\mathrm{~h}}{\sqrt{-\mathrm{Eom}_{\mathrm{e}}}}$
Birth λ_{i}	$\lambda_{\text {i-Birth }}$	11	20	$\frac{\mathrm{~h}}{\sqrt{-2 \mathrm{Eom}_{\mathrm{e}}}}$
Relations	$(22) \lambda_{\mathrm{C}}=\lambda_{\mathrm{i} \text {-Birth }}$ (23) $\lambda_{\text {BRITH }}=\lambda=\sqrt{\left(\lambda_{A}\right)_{\mathrm{d} \rightarrow \infty}^{2}+\left(\lambda_{\mathrm{B}}\right)_{d \rightarrow \infty}^{2}}$			

Equal relations between $\left(\mathbf{v}_{\mathbf{i}}\right)_{\mathrm{d} \rightarrow \infty}$ and $\left(\mathbf{p}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}$ with electron

Considering (1), (9), (10) and (13) and consequently at birth moment, both electronic extremes have same energy (24.A), $\left(\mathrm{v}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}$ is equal to v_{e} where v_{e} is electron velocity with previous electron to its division in electronic extremes.

$$
\begin{gathered}
(23 . \mathrm{B})\left(\mathrm{E}_{\mathrm{A}}\right)_{\mathrm{d} \rightarrow \infty}=\left(\mathrm{E}_{\mathrm{B}}\right)_{\mathrm{d} \rightarrow \infty}=\mathrm{IE} / 2 \\
(23 . \mathrm{C})\left(\mathrm{v}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}=\left(\frac{2\left(\mathrm{Ek}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}}{m_{\mathrm{i}}}\right)^{1 / 2}=\left(\frac{-\mathrm{IE}}{m_{\mathrm{i}}}\right)^{1 / 2}=\left(\frac{-2 \mathrm{IE}}{m_{e}}\right)^{1 / 2}=\mathrm{v}_{\mathrm{e}}
\end{gathered}
$$

This fact in turn causes equality at birth moment between electron momentum and sum of electronic extremes momentums since velocity is the same (23.C) and electronic extreme mass is half of electron mass (13). Therefore, particle momentum or electron momentum $\left(p_{e}\right)$ does not change with its fragmentation in two electronic extremes (23.D):
(23.D) $\mathrm{p}_{\mathrm{e}}=\mathrm{m}_{\mathrm{e}} \mathrm{V}_{\mathrm{e}}=\sum \mathrm{m}_{\mathrm{i}}\left(\mathrm{v}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}=\mathrm{m}_{\mathrm{A}}\left(\mathrm{v}_{\mathrm{A}}\right)_{\mathrm{d} \rightarrow \infty}+\mathrm{m}_{\mathrm{B}}\left(\mathrm{V}_{\mathrm{B}}\right)_{\mathrm{d} \rightarrow \infty}=2 \mathrm{~m}_{\mathrm{i}}\left(\mathrm{v}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}=\mathrm{m}_{\mathrm{e}} \mathrm{V}_{\mathrm{e}}$

In contrast, velocity must be considered joint ($\mathrm{v}_{\mathrm{i} \text {-joint }}$) for any other division ($\mathrm{d} \neq \infty$) if equality with v_{e} and p_{e} must be achieved:

$$
\begin{aligned}
& \text { (23.E) } \mathrm{v}_{\mathrm{i}-\text { joint }}=\left(\frac{2\left(\mathrm{E}_{\text {KA }}{ }^{`}+\mathrm{E}_{\text {KB }}\right)}{\mathrm{m}_{\mathrm{A}}+\mathrm{m}_{B}}\right)^{1 / 2}=\left(\frac{2\left(\mathrm{E}_{\text {KA }}{ }^{\circ}+\mathrm{E}_{\text {KB }}\right)}{\mathrm{m}_{e}}\right)^{1 / 2}=\mathrm{v}_{\mathrm{e}} \\
& \text { (23.F) } p_{i-\text { joint }}=\left(m_{A}+m_{B}\right) v_{i-j \text { joint }}=p_{c}=m_{c} V_{e}
\end{aligned}
$$

Alternate mechanisms for transit electron to electronic extreme might be possible and cause differences in geometry and probability that can be compensated with modifications in compaction factor that is developed in later articles.

P12 Possible division (d) values

d must be positive (24) since its quotient with λ ($\lambda_{\text {Birth }}$) equals to r_{AB} (7) and both are positive magnitudes.

$$
(24) d>0
$$

Further probability studies imply that $0<\mathrm{d} \leq 1$ have Probability $=0$ and if those studies are accepted d interval could be (24.B.):

$$
\text { (24.B.) } d>1
$$

P013 ES and d relation

Equi-energetic states (ES) (P02) number is theoretically infinite because each division creates a new ES (7).

P14 Effective nuclear charge in ns electron external lobe

If electron charge $\left(\mathrm{q}_{\mathrm{e}}\right)$ is -q and EE charge $\left(\mathrm{q}_{\mathrm{i}}\right)$ is -0.5 q (25) (P08), effective nuclear charge (z) in electrons remains to be determined.

$$
\text { (25) } q_{i}=\frac{q_{\mathrm{e}}}{2}
$$

In the simplest model, first electron (1s) interacts with all protons and z is equal to Atomic Number (Z). Nucleus loses one charge with this first electron. Therefore, second electron interacts with Z-1 nuclear charge and so on, third electron with Z-2, fourth electron with Z-3... Until the outermost electron interacts with only Z=1.

However, the simplest model only occurs with external lobe of ns electron. Consequently, 2 s electron in is outermost lobe has $\mathrm{Z}_{2 \mathrm{~s}}=\mathrm{Z}-2$ and, for example, $\mathrm{Z}_{2 \mathrm{~s}}$ for $\mathrm{Li}(\mathrm{I})$ and $\mathrm{B}(\mathrm{III})$ is 1 and 3 respectively. 3s electron Argon has $\mathrm{Z}_{3 \mathrm{~s}}(\mathrm{Ar})=\mathrm{Z}-10=18-10=8$.

Subsequently, z is formulated for other electrons and internal lobe of ns electron as z coupling between them. This idea is part of NIN continuation introduced in P04.

2) Victoria Equation

Victoria Equation is obtained after initial postulates. (5) development with kinetic and potential energies of Bohr orbits is (26) and only difference is electron substitution for electronic extreme (EE):

$$
\text { (26) } \mathrm{E}_{\mathrm{o}}=-\frac{\mathrm{Kzq}_{\mathrm{P}} / \mathrm{q}_{\mathrm{e} A}}{\mathrm{r}_{\mathrm{A}}}+\frac{\mathrm{m}_{A} K z \mathrm{q}_{\mathrm{p}} / \mathrm{q}_{\mathrm{e} N} \mathrm{~J}}{2 \mathrm{~m}_{A} \mathrm{r}_{\mathrm{A}}}-\frac{\mathrm{Kzq}_{\mathrm{p}} / \mathrm{q}_{\mathrm{eB}} /}{\mathrm{r}_{\mathrm{B}}}+\frac{\mathrm{m}_{\mathrm{A}} \mathrm{Kzq}_{\mathrm{p}} / \mathrm{q}_{\mathrm{eB}} /}{2 \mathrm{~m}_{A} \mathrm{r}_{\mathrm{B}}}
$$

m_{i} is simplified and considering relation between q (where q_{i}, q_{e} and q_{p} are EE, electron and proton charge respectively):

$$
/ \mathrm{q}_{\mathrm{i}} /=\frac{/ \mathrm{q}_{\mathrm{f}} /}{2}=\frac{\mathrm{q}_{\mathrm{p}}}{2}=\frac{\mathrm{q}}{2}
$$

F common factor (27) is extracted (28). F is a constant multiplied by z .

$$
\begin{aligned}
& \text { (27) } \mathrm{F}=\frac{\mathrm{Kq}^{2}}{2} \mathrm{z}=\mathrm{fz}=1,153538564 \bullet 10^{-28} \mathrm{z} \\
& \text { (28) } \mathrm{E}_{\mathrm{o}}=\mathrm{F}\left(-\frac{1}{\mathrm{r}_{\mathrm{A}}}+\frac{1}{2 \mathrm{r}_{\mathrm{A}}}-\frac{1}{\mathrm{r}_{\mathrm{B}}}+\frac{1}{2 \mathrm{r}_{\mathrm{B}}}\right)
\end{aligned}
$$

Development leads to equation (29):

$$
\begin{aligned}
& \mathrm{E}_{0}=\mathrm{F} \frac{-4 \mathrm{ra}_{\mathrm{A}}{ }^{2}+2 \mathrm{rar}_{\mathrm{B}}{ }^{2}-4 \mathrm{r}_{\mathrm{A}}{ }^{2} \mathrm{r}_{\mathrm{B}}+2 \mathrm{r}_{\mathrm{A}}{ }^{2} \mathrm{r}_{\mathrm{B}}}{4 \mathrm{r}_{\mathrm{A}}{ }^{2} \mathrm{r}_{\mathrm{B}}{ }^{2}} \\
& \mathrm{E}_{0}=\mathrm{F} \frac{-2 \mathrm{r}_{A} r_{B}^{2}-2 \mathrm{r}_{\mathrm{A}}^{2} \mathrm{r}_{\mathrm{B}}}{4 \mathrm{r}_{\mathrm{A}}^{2} \mathrm{r}_{\mathrm{B}}^{2}}=-\mathrm{F} \frac{2 \mathrm{r}_{\mathrm{A}} \mathrm{r}_{\mathrm{B}}\left(\mathrm{r}_{\mathrm{A}}+\mathrm{r}_{\mathrm{B}}\right)}{4 \mathrm{r}_{\mathrm{A}}^{2} \mathrm{r}_{\mathrm{B}}{ }^{2}} \\
& \text { (29) } \mathrm{E}_{\mathrm{o}}=-\mathrm{F} \frac{\mathrm{r}_{\mathrm{A}}+\mathrm{r}_{\mathrm{B}}}{2 \mathrm{r}_{\mathrm{A}} \mathrm{r}_{\mathrm{B}}}
\end{aligned}
$$

(29) has 2 unknowns (r_{A} and r_{B}) that are reduced to one (30) by (8) corresponding to P06 Initial Energy wavelength divisions.

$$
\text { (30) } E_{o}=-F \frac{r_{A+}\left(r_{A}-\frac{\lambda}{d}\right)}{2 r_{A}\left(r_{A}-\frac{\lambda}{d}\right)}
$$

Developing parentheses and taking denominator to left side of (30) is obtained:

$$
2 \mathrm{E}_{o \mathrm{r}_{A}}{ }^{2}-\frac{2 \mathrm{E}_{\mathrm{or}} \lambda \lambda}{\mathrm{~d}}=-2 \mathrm{Fr}_{\mathrm{A}}+\frac{\mathrm{F} \lambda}{\mathrm{~d}}
$$

Victoria Equation equals zero is given by (31).

$$
\text { (31) } 2 \mathrm{E}_{0} \mathrm{~A}_{\mathrm{A}}^{2}+\left(2 \mathrm{~F}-\frac{2 \mathrm{E}_{\mathrm{o}} \lambda}{\mathrm{~d}}\right) \mathrm{r}_{\mathrm{A}}-\frac{\mathrm{F} \mathrm{\lambda}}{\mathrm{~d}}=0
$$

(31) is second degree equation with r_{A} as unknown for each division assigned and λ is related to E_{o} (12). Therefore, r_{A} solutions for each division correspond to second degree equation resolution (32).

$$
\text { (32) } r_{A}=\frac{-F+\frac{E_{o} \lambda}{d} \pm \sqrt{F^{2}+\frac{E_{o}{ }^{2} \lambda^{2}}{d^{2}}}}{2 \mathrm{E}_{o}}
$$

Negative sign preceding square root is selected (33) because positive sign implies r_{B} is negative and other consequences without physical sense (Expanded in Annexe 1).

$$
\text { (33) } r_{A}=\frac{-F+\frac{E_{0} \lambda}{d}-\sqrt{F^{2}+\frac{E_{o}{ }^{2} \lambda^{2}}{d^{2}}}}{2 E_{o}}
$$

$\lambda_{\text {Birth }}(\lambda)$ is related to E_{o} by (12). r_{A} Victoria equation with great symmetry is deduced by λ substitution and E_{o} terms grouping (34).

$$
\text { (34) } r_{A}=\frac{-\mathrm{F}-\frac{\mathrm{h} \sqrt{-\mathrm{E}_{\mathrm{o}}}}{\mathrm{dm}_{\mathrm{e}}^{1 / 2}}-\sqrt{\mathrm{F}^{2}+\frac{\mathrm{h}^{2}\left(-\mathrm{E}_{o}\right)}{d^{2} \mathrm{~m}_{\mathrm{e}}}}}{2 \mathrm{E}_{\mathrm{o}}}
$$

Symmetry can be best observed if substitution (35) is made in (34) in order to obtain (36).

$$
\begin{gathered}
\text { (35) } n=\frac{h \sqrt{-E_{o}}}{d m_{e}^{1 / 2}} \\
\text { (36) } r_{A}=\frac{-F-n-\sqrt{F^{2}+n^{2}}}{2 E_{o}}
\end{gathered}
$$

Energy A Electronic Extreme (Energy A EE or simply E_{A}) (37) is derived from (26) and (27).

$$
\text { (37) } \mathrm{E}_{\mathrm{A}}=\mathrm{F}\left(-\frac{1}{\mathrm{r}_{A}}+\frac{1}{2 r_{A}}\right)=\frac{-\mathrm{F}}{2 \mathrm{r}_{A}}=\frac{-\mathrm{fz}}{2 \mathrm{r}_{A}}
$$

E_{B} is obtained as E_{A} (37) so can be expressed with i suffix that is used to both electronic extremes (38)

$$
\text { (38) } E_{i}=\frac{-F}{2 r_{i}}=\frac{-f z}{2 r_{i}}
$$

r_{B} can be formulated (39) considering relation between r_{A}, r_{B}, d and $\lambda_{\text {Birth }}$ (8) and r_{A} Victoria Equation (34)

$$
\text { (39) } r_{B}=\frac{-F-\frac{h \sqrt{-E_{o}}}{d m_{\mathrm{e}}^{1 / 2}}-\sqrt{F^{2}+\frac{h^{2}\left(-\mathrm{E}_{\mathrm{o}}\right)}{d^{2} \mathrm{~m}_{\mathrm{e}}}}}{2 \mathrm{E}_{\mathrm{o}}}-\frac{\lambda}{\mathrm{d}}
$$

E_{B} can be calculated with (38) and, if known E_{A}, more easily from P02 equi-energetic states (ES). E_{B} is obtained (39.B. from (1):

$$
\text { (39.B.) } E_{B}=E_{o}-E_{A}
$$

3) r_{i} and E_{i} when division $\rightarrow \infty$

r_{B} expression (39) is identical to r_{A} (34) when $d \rightarrow \infty$ since $-\lambda / d \rightarrow 0$. In addition, terms having d in denominator are also annulled (40):

$$
\text { (40) }\left(\mathrm{r}_{\mathrm{A}}\right)_{\mathrm{d} \rightarrow \infty}=\left(\mathrm{r}_{\mathrm{B}}\right)_{\mathrm{d} \rightarrow \infty}=\left(\mathrm{r}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}=\frac{-\mathrm{fz}}{2\left(\mathrm{E}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}}=\frac{-\mathrm{fz}}{\mathrm{E}_{\mathrm{o}}}=\frac{-\mathrm{F}}{\mathrm{E}_{0}}
$$

If $\left(\mathrm{r}_{\mathrm{A}}\right)_{\mathrm{d} \rightarrow \infty}=\left(\mathrm{r}_{\mathrm{B}}\right)_{\mathrm{d} \rightarrow \infty}$, Energy of both EE is the same (41) because z is equal.

$$
\text { (41) }\left(\mathrm{E}_{\mathrm{A}}\right)_{\mathrm{d} \rightarrow \infty}=\left(\mathrm{E}_{\mathrm{B}}\right)_{\mathrm{d} \rightarrow \infty}=\left(\mathrm{E}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}=\frac{-\mathrm{fz}}{2\left(\mathrm{r}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}}
$$

According to P02, EE energy sum is always equal to initial Energy (E_{o}), EE energy when $d \rightarrow \infty$ is equal to E_{o} half (42) and (43).

$$
\text { (42) } \mathrm{E}_{o}=\left(\mathrm{E}_{\mathrm{A}}\right)_{\mathrm{d} \rightarrow \infty}+\left(\mathrm{E}_{\mathrm{B}}\right)_{\mathrm{d} \rightarrow \infty}=2\left(\mathrm{E}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}=\frac{-\mathrm{fz}}{\left(\mathrm{r}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}}
$$

(43) $\left(\mathrm{E}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}=\frac{\mathrm{E}_{o}}{2}$

$\left(\mathbf{r}_{\mathbf{i}}\right)_{\mathrm{d} \rightarrow \infty}$ application: Radius approximate for outermost lobe in ns electrons to $\mathbf{n}=\mathbf{3}$

(40) provides EE radius when $\mathrm{d} \rightarrow \infty$ as quotient between -F and initial energy (Eo). F is proportional to f constant and to effective nuclear charge (z).
$\left(\mathrm{r}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}$ for outermost lobe in ns electrons is the only one that can be calculated by (40) at this time because z calculation is limited to these lobes as indicated in P14.

Comparison between $\left(\mathrm{r}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}$ for outermost lobe in ns electron and theoretical atomic radius as maximum charge density in the outermost electron shell of the atom [1] should only serve as a rough approximation (Table 2) since following points are highlighted:

Table 2. Radius for outermost lobe of ns electrons when $\mathrm{d} \rightarrow \infty$				
Z	n	z	Symbol	(ri) ${ }_{\text {d } \rightarrow \infty}$
1	1	1	H	$5,29177 \mathrm{E}-11$
2		2	He	2,64613E-11
3	2	1	Li	1,33535E-10
4		2	Be	7,90704E-11
5		3	B	5,69446E-11
6		4	C	4,46543E-11
7		5	N	3,67750E-11
8		6	O	3,12764E-11
9		7	F	2,72152E-11
10		8	Ne	2,40899E-11
11		1	Na	$1,40099 \mathrm{E}-10$
12		2	Mg	9,57724E-11
13		3	Al	7,59271E-11
14		4	Si	6,37974E-11
15	3	5	P	5,53619E-11
16		6	S	4,90601E-11
17		7	Cl	4,41336E-11
18		8	Ar	4,01496E-11

a) $\left(\mathrm{r}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}$ is maximum probability density only in Hydrogen case. For all other cases, $\left(\mathrm{r}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}<$ maximum probability density and this situation is aggravated as outermost electron shell n increases.
b) $\left(\mathrm{r}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}$ for outermost lobe in ns electrons is therefore only applicable to compare H , Li or Na atoms with [1] because [1] is referred to atoms. For example in Table 2, O is referred to $\mathrm{O}(\mathrm{VI})$ which is 2 s electron with $\mathrm{E}_{0}=\mathrm{IE}=-138,1189 \mathrm{eV}$ [2] (All Ionization Energies are from [2])
c) Following articles explain how remaining electrons are located by geometric and probabilistic coupling with ns electron which in terms of geometric and probabilistic coupling is called origin electron.

Table 2 representation is in Figure 1. Application of these points justifies that, although values are not those indicated in [1], both curves have same morphology. Comparison between [1] and EE Probability is made again when geometry, probability and coupling of Electronic Extremes are defined in later articles.

4) r_{i} and E_{i} when division $\rightarrow 0$

This case is opposite to the previous one when $d \rightarrow \infty$ and $\lambda / d \rightarrow 0$. Now, $d \rightarrow 0$ and then correlation term between r_{A} and r_{B} is $\infty(\lambda / \mathrm{d} \rightarrow \infty)$.

For r_{A}, starting from (33) and making $\mathrm{d} \rightarrow 0, \mathrm{~F}$ terms are annulled by those that include d in denominator (44). Low probabilities in minor divisions and even zero probability when $\mathrm{d}=[0-1]$ are treated in later articles.

$$
\text { (44) }\left(\mathrm{r}_{\mathrm{A}}\right)_{\mathrm{d} \rightarrow 0}=\frac{\frac{\mathrm{E}_{0} \lambda}{d}-\sqrt{\frac{\mathrm{E}_{0}^{2} \lambda^{2}}{d^{2}}}}{2 \mathrm{E}_{o}}=\frac{\frac{-2 / \mathrm{E}_{0} / \lambda}{d}}{2 \mathrm{E}_{o}}=\frac{\lambda}{d}=\infty
$$

This simplification of eliminating F terms can not be done with r_{B} since r_{B} calculation (8) and (39) has an additional term ($-\lambda / \mathrm{d}$) that annuls simplification made when $\left(\mathrm{r}_{\mathrm{A}}\right)_{\mathrm{d} \rightarrow 0}$ (44). This fact might suggest that $\left(\mathrm{r}_{\mathrm{B}}\right)_{\mathrm{d} \rightarrow 0} \rightarrow 0$, but actually causes important term to return to F , but now with a critical difference: F in square root is accompanied by term that tends to infinite and is negligible compared to F that is not in square root. Consequently, $\left(\mathrm{r}_{\mathrm{B}}\right)_{\mathrm{d} \rightarrow 0}$ is given by (45):

$$
(45)\left(r_{\mathrm{B}}\right)_{\mathrm{d} \rightarrow 0}=\frac{-\mathrm{F}}{2 \mathrm{E}_{0}}
$$

(46) includes F value (27) in (45):

$$
\text { (46) }\left(\mathrm{r}_{\mathrm{B}}\right)_{\mathrm{d} \rightarrow 0}=\frac{-\mathrm{Kzq}^{2}}{4 \mathrm{E}_{o}}=-5,76769 \bullet 10^{-29} \frac{\mathrm{z}}{\mathrm{E}_{o}}
$$

(45) and (46) mark EE_{B} maximum penetration or minimum distance between nucleus and electron. This development implies that electron, or more properly EE_{B}, approaches nucleus but does not touch and maximum that penetrates is $\left(\mathrm{r}_{\mathrm{i}} \mathrm{d}_{\mathrm{d} \rightarrow \infty}\right.$ half (40). Greater penetration must be studied separately with Secondary Swinging Movement (SSM) (Expanded in Annexe 1).

5) Victoria Equation Application to H, Li and Ar: Energy, radius and division.

Data included in Table 3 are used hereinafter.

Table 3. Data for ns electrons			
Symbol	n	z	E_{o} (Ionization Energies) (eV) [2]
	1	1	$-13,598434005136$
Li	1	3	$-122,4543538$
	2	1	$-5,391714761$
Ar	1	18	$-4426,2227$
	2	16	$-918,374$
	3	8	$-143,457$

Ei vs. ri

Divisions that are d range representative and show influence in curves have been selected. One division has been added to division 1 until reaching $d=12$. Subsequently, increase between divisions is greater (Table 4 for Hydrogen in Annexe 2). The smallest spacing in low divisions is performed because their energy variations are larger. This fact also causes important changes in r_{A}. Victoria equation is solved to obtain r_{A} (33) or (34). From there, $r_{B}(8), E_{A}$ and $E_{B}(38)$ are obtained. Figure 2 is E_{i} vs. r_{i} representation for Hydrogen and Figure 3 is Figure 2 zoom made in $d \rightarrow \infty$ vicinity.

Figure 3 - Ei vs ri for Hydrogen (Zoom around initial positivon $d \rightarrow \infty$)

Following observations of Table 3 and their two associated figures (Figure 2 and 3) are highlighted:
a) P01 Swinging movement of two EE around pivot or initial position $(d \rightarrow \infty)$. From pivot position, EE_{B} penetrates towards nucleus while EE_{A} moves away from nucleus with opposite energy differentials and with greater r_{i} variations.
b) P02 Equi-energetic states (ES). E_{A} and E_{B} is equal E_{0} can be checked for all divisions.
c) Minimum distance between nucleus and electron or EE_{B} maximum penetration according to (45) is (47) for Hydrogen and can be corroborated in Table 3 and Figures 2 and 3. This EE_{B} maximum penetration belongs to so-called Main Swinging Movement and continues hypothetically in Annexe 1.

$\log (d)$ vs. r_{i}

\log (division) vs. r_{i} may appear that axes are inverted if is considered that division is the one that implies r_{i} (33). The reason is that, with axes reversed, representation provides reminiscences to radial charge density (radial probability) (Figure 4). In order that these reminiscences do not lead to error, is important to note:
a) Division plays a prominent role in electron Probability, but is not Probability.
b) Maximum probability occurs when $\mathrm{d} \rightarrow \infty$, but only for Hydrogen (and in general for 1s electron). All other electrons have their maximum probability for r_{A} greater that $\left(\mathrm{r}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}$

Figure 5 shows Lithium 1s and 2 s . 2 s is only in $\mathrm{n}=2$ without internal lobe in $\mathrm{n}=1$ because P14 does not indicate its z for n=1. Argon 1s, 2s and 3s are in Figure 6. As in 2 s Li , outermost lobe is the only one represented. Initial Energy (E_{o}) is Ionization Energy (IE) and are given in Table 3. In Table 5, Radius when $\mathrm{d} \rightarrow \infty$ is compared with radii equated to the outermost maximum of the 1 -electron charge densities of electrons in the various shells in neutral atoms [3]

Figure 5 - EE radius (ri) and \log (division) for Lithium

Figure 6-EE radius (ri) and \log (division) for Argon

Table 5. Comparison between $\left(\mathrm{r}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}$ and [3]

Atom	Lithium		Argon		
Electron	1 s	2 s	1 s	2 s	3 s
$\left(\mathrm{r}_{\mathrm{i}} \mathrm{d} \rightarrow \infty(\mathrm{A})\right.$	0,176	1,335	0,029	0,125	0,401
r maximum charge densities (A) [3]	0,186	1,586	0,030	0,18	0,607

$\log (\mathbf{d})$ vs. \mathbf{E}_{i}

Figure 7 keeps axes inverted to compare with Figures 4 to 6. Although morphology is similar, main difference is that $\log (\mathrm{d})$ vs. E_{i} curve is symmetrical on both $\mathrm{E}_{\mathrm{d} \rightarrow \infty}$ sides. Symmetry is provided by P02. In contrast, $\log (\mathrm{d})$ vs. r_{i} is not symmetrical on both $\mathrm{r}_{\mathrm{d} \rightarrow \infty}$ sides.

Victoria Equation as \mathbf{r}_{i} function

Instead of arriving at Victoria Equation expression where unknown is r_{i} as d function (34) or (39), inverse situation can be the one sought, that is, unknown is d as r_{i} function. This equation (47) that allows calculation method with r_{i} defined has its application in Probability where, for example, is required to know probability around its maximum or to add probabilities of different electrons and to draw joint Probability vs. r_{i} curve. These studies are seen in later articles. Therefore (47) permits to know division associated with r_{i} and therefore r_{i} specific region can be studied.

$$
\text { (47) } d_{A}=\frac{E_{o} \lambda+\frac{F \lambda}{2 r_{A}}}{F+E_{o} r_{A}}
$$

Similarly, (48) is used for r_{B} :

$$
(48) d_{B}=-\frac{E_{o} \lambda+\frac{F \lambda}{2 r_{B}}}{F+E_{o} r_{B}}
$$

Annexe 1: Approach possibility to nucleus ($\mathrm{r} \rightarrow \mathbf{0}$)

EE_{B} maximum penetration or minimum distance between nucleus and electron has been dealt in item "4) r_{i} and E_{i} when division $\rightarrow 0$ " and maximum that penetrates is $\left(r_{i}\right)_{d \rightarrow \infty}$ half (45). If innermost ns electron lobe has $\mathrm{r} \rightarrow 0$ possibility there must be an additional explanation that allows to penetrate more. First explanation is discarded and second is studied.

1) Positive sign preceding square root in r_{A} solutions from Victoria Equation

Positive sign selection (32) allows to have EE with $\mathrm{r}=] 0,-\mathrm{F} /\left(2 \mathrm{E}_{\mathrm{o}}\right)$ [but lacks physical sense for this theory:
a) EE_{A} would occupy the innermost interval when it should be intern EE that is EE_{B}.
b) E_{A} and E_{B} would increase to $E_{A} \rightarrow-\infty$ and $E_{B} \rightarrow \infty$
c) E_{B} would compensate $-E_{A} \gg-E_{0}$ when $\left(r_{A}\right)_{d \rightarrow 0}$ via $E_{B}>0$. This sign change in E_{B} would imply that $\mathrm{E}_{\mathrm{P}}>0$ and $\mathrm{E}_{\mathrm{k}}<0$.
d) For this sign change, r_{B} should be negative and therefore distance between nucleus and EE_{B} would be negative.

All these facts have no physical sense and consequently, positive sign preceding square root selection is discarded.
2) Feliz Mechanism: Subdivision continued in EE as $r \rightarrow 0$ (first attempt developed to justify theoretical probability until arrival to nucleus even thought probability has not yet been dealt with in this theory)

Up to this point, electron with a single subdivision into two electronic extremes $\left(\mathrm{EE}_{\mathrm{A}}\right.$ and EE_{B}) providing Main Swinging Movement (MSM) has been considered. According to Feliz Mechanism, innermost lobe EE_{B} in ns electron can be subdivided into two new EE forming a Secondary Swinging Movement (SSM) that meets what is seen for MSM. Subdivision is made from EE_{B} and therefore, $\mathrm{EE}_{\mathrm{B}-\mathrm{i}}$ mass and charge is one quart of electron mass and charge. Suffix "B-1i" indicates:

B	SSM born from $E E B B_{B}$ MSM
1	First SSM
i	A or B EE

$\mathrm{EE}_{\mathrm{B}-2 \mathrm{~A}}$ and $\mathrm{EE}_{\mathrm{B}-2 \mathrm{~B}}$ have one eight of electron mass and charge and successively with $\mathrm{EE}_{\mathrm{b}-3 \mathrm{i}} \mathrm{EE}_{\mathrm{B}-4 \mathrm{i}} .$. . Suffix "B-2i" indicates:

B-2 \quad SSM born from $E_{B-1 B}\left(E E_{B}\right.$ of first SSM)
2 Second SSM
i A or B EE
$E_{B-1 i}$ Initial Energy or $\left(E_{o}\right)_{B-1}$ is not exactly E_{o} (where E_{o} is IE generally (P02 and P03)) and correspond to E_{B} when its Probability is quite small which is for low divisions. As previously indicated, Probability has not been developed and division only plays a prominent role in Probability, but is not Probability. Therefore and to be able to illustrate how electron has possibility through this mechanism to penetrate in direction
to nucleus, SSM energies and division (Axis Y) reducing factor by way of example have been included in Table 6 for Figure 8.

In order not to complicate only EE_{B} of SSM has been represented (obviating EE_{A} of SSM) and in the range of divisions indicated in Table 6. Likewise, in all cases, EE_{B} $\mathrm{d}=10$ of immediately higher charge has been selected as energetic source of the next SSM. It is important to note that, considering (40) and (42), ($\left.\mathrm{r}_{\mathrm{i}}\right)_{\mathrm{d} \rightarrow \infty}$ of born SSM is equal to $\left(r_{B}\right)_{d=s e l e c t e d ~ a s ~ e n e r g e t i c ~ s o u r c e ~}$ of immediately higher charge. Importance is that, in the case of hypothetical SSM existence, implies that SSM born is created $(\mathrm{d} \rightarrow \infty)$ where EE_{B} division selected and consequently, there are no areas without probability.

As division is not probability, there are inconsistencies such as pivot or initial position can not be represented in Figures 4-8 because $\log ($ initial position division) $=\infty$.

Table 6 - Values devised for Hydrogen to simulate division as Probability for SSM born from EE_{B} (Feliz Mechanism: Subdivision continued in EE as $\mathrm{r} \rightarrow 0$)

Swinging Movement	qi	Origin	Eo	Divisions represented
MSM	$1 / 2$	Electron	$-13,598434005136$ (IE)	$\mathrm{EE}_{\mathrm{A}}=\left[1,10^{4}\right] \quad \mathrm{EE}_{\mathrm{B}}=\left[7,10^{4}\right]$
$\mathrm{SSM}_{\mathrm{B}-1 \mathrm{~B}}$	$1 / 4$	MSM $d_{\mathrm{B}}=10$	$-9,2018523$	$\mathrm{EE}_{\mathrm{B}-1 \mathrm{~B}}=[8,150]$
$\mathrm{SSM}_{\mathrm{B}-2 \mathrm{~B}}$	$1 / 8$	$\mathrm{SSM}_{\mathrm{B}-1 \mathrm{~B}}$ $\mathrm{~d}_{\mathrm{B}}=10$	$-7,3642426$	$\mathrm{EE}_{\mathrm{B}-2 \mathrm{~B}}=[10,500]$
$\mathrm{SSM}_{\mathrm{B}-3 \mathrm{~B}}$	$1 / 16$	$\mathrm{SSM}_{\mathrm{B}-2 \mathrm{~B}}$ $d_{\mathrm{B}}=10$	$-6,6703428$	$\mathrm{EE}_{\mathrm{B}-3 \mathrm{~B}}=\left[10,10^{4}\right]$
$\mathrm{SSM}_{\mathrm{B}-4 \mathrm{~B}}$	$1 / 32$	$\mathrm{SSM}_{\mathrm{B}-3 \mathrm{~B}}$ $d_{\mathrm{B}}=10$	$-6,4199125$	$\mathrm{EE}_{\mathrm{B}-4 \mathrm{~B}}=\left[10,10^{4}\right]$

Annexe 2

Table 2. r_{i} and E_{i} for Hydrogen divisions				
d	$\mathbf{r a x}_{\text {(}}(\mathrm{A})$	$\mathbf{r}_{\mathrm{B}}(\mathbf{A})$	$\mathrm{E}_{\mathrm{A}}(\mathrm{eV})$	$\mathrm{E}_{\mathrm{B}}(\mathrm{eV})$
1	4,982982903	0,279583172	-0,72244097	-12,87599304
2	2,645861853	0,294161987	-1,36058161	-12,23785239
3	1,876023887	0,308223977	-1,91890466	-11,67952934
4	1,497431990	0,321582058	-2,40405641	-11,19437759
5	1,274793396	0,33411345	-2,82391719	-10,77451682
6	1,129656184	0,345756229	-3,18673153	-10,41170247
7	1,028412400	0,356498153	-3,50045466	-10,09797934
8	0,954287827	0,366362861	-3,77235345	-9,826080550
9	0,897996953	0,375396983	-4,00882316	-9,589610847
10	0,853999792	0,383659819	-4,21535346	-9,383080541
11	0,818797699	0,391215905	-4,39658170	-9,201852304
12	0,790080086	0,398130109	-4,55638744	-9,042046565
14	0,746234576	0,410277452	-4,82410102	-8,774332982
16	0,714506971	0,420544487	-5,03831471	-8,560119294
18	0,690593799	0,429293814	-5,21277629	-8,385657714
20	0,671983776	0,436813789	-5,35713973	-8,241294277
22	0,657122228	0,443331331	-5,47829738	-8,120136625
26	0,634935206	0,454035216	-5,66972968	-7,928704324
30	0,619211953	0,462431962	-5,81369749	-7,784736511
34	0,607514056	0,46917877	-5,92564229	-7,672791718
38	0,598484012	0,474710335	-6,01504954	-7,583384467
42	0,591309216	0,479323508	-6,08803462	-7,510399382
52	0,578519852	0,488069857	-6,22262308	-7,375810924
62	0,570093839	0,494232554	-6,31459372	-7,283840280
72	0,564129485	0,498804488	-6,38135584	-7,217078165
82	0,559687846	0,502329312	-6,43199778	-7,166436225
92	0,556252845	0,505128935	-6,47171698	-7,126717027
100	0,554019139	0,506985142	-6,49780978	-7,100624226
150	0,545601478	0,51424548	-6,59805944	-7,000374570
200	0,541479148	0,51796215	-6,64829106	-6,950142945
300	0,537414675	0,521736676	-6,69857216	-6,899861842
400	0,535404165	0,523645666	-6,72372614	-6,874707868
500	0,534204818	0,524798018	-6,73882163	-6,859612375
1000	0,531821784	0,527118385	-6,76901753	-6,829416476
10000	0,529694914	0,529224574	-6,79619700	-6,802237009

BIBLIOGRAPHY

[1] Desclaux JP. Relativistic Dirac-Fock expectation values for atoms with $\mathrm{Z}=1$ to $\mathrm{Z}=$ 120. Atom Data Nucl Data Tables 1973;12: 311-406.
[2] Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team (2014). NIST Atomic Spectra Database (ver. 5.2), [Online]. Available: http://physics.nist.gov/asd [2017, July 9]. National Institute of Standards and Technology, Gaithersburg, MD.
[3] J.C. Slater in Quantum Theory of Matter, $2^{\text {nd }}$ ed. (1968), pp. 145 and 150, McGrawHill.

Abbreviations List

Suffix indicates electronic extreme considered and i suffix is used to both electronic extremes ($E E_{i}$).
d Birth wavelength division or simply, division
EE Electonic extreme
$\mathrm{E}_{0} \quad$ Initial or output energy.
$\mathrm{E}_{\mathrm{i}} \quad$ EE energy
$\mathrm{Ek}_{\mathrm{i}} \quad$ EE kinetic energy
$\mathrm{EP}_{\mathrm{i}} \quad \mathrm{EE}$ potential energy
ES Equi-energetic state
h Planck's constant
$\mathrm{h}_{\mathrm{i}} \quad$ Planck's constant adapted to EE
IE Ionization Energy
me Electron mass
m_{i} EE mass
MSM Main Swinging Movement
$\lambda_{\text {Birth }} \lambda$ Birth wavelength
$\lambda_{c} \quad$ Electron classic wavelength
$\lambda_{i} \quad$ EE wavelength
$\lambda_{i \text {-Birth }}$ EE wavelength when $d \rightarrow \infty$
NIN Negative in Negative (Electron in electron concept)
p_{e} Electron momentum
$\mathrm{p}_{\mathrm{i}} \quad$ EE momentum
$\mathrm{q}_{\mathrm{e}} \quad$ Electron charge
q_{i} EE charge
$\mathrm{q}_{\mathrm{ip}} \quad$ Proton charge
$\mathrm{r}_{\mathrm{AB}} \quad$ Difference in nucleus distance between EE_{A} and EE_{B}
ro Nucleus distance when EE_{i} is in pivot or initial position
$r_{i} \quad$ Distance between nucleus and EE
SSM Secondary Swinging Movement
$\mathrm{v}_{\mathrm{e}} \quad$ Electron velocity
v_{i} EE velocity
z Effective nuclear charge
Z Atomic number

ARTICLES INDEX		
Part	Number	Title
	01	Victoria Equation - The dark side of the electron.
	02	Electronic extremes: orbital and spin (introduction)
	03	Relations between electronic extremes: Rotation time as probability and Feliz I.
	04	Feliz II the prudent: Probability radial closure with high order variable CF

