Sketch of simple proof for FLT proposed

Dr Jean BÉNICHOU

In cartesian coordinates, if the curve $\mathbf{C}: \boldsymbol{x}^{n}+\boldsymbol{y}^{n}=\boldsymbol{z}^{n}, \mathbf{n}>2$, is satisfied for the integers $\{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$ at one point \boldsymbol{p}, then $\boldsymbol{x}^{2}+\boldsymbol{y}^{2}=\boldsymbol{k}^{2}$ is also a valid equation since the triangle with integer coordinates $\{\{\mathbf{x}, \mathbf{o}\}, \mathbf{p},\{0, \mathbf{y}\}\}$ is a pythagorean triangle. So \mathbf{p} belongs both to the circle $\boldsymbol{x}^{2}+\boldsymbol{y}^{2}=\boldsymbol{k}^{2}$ and to \mathbf{C}.

But this is impossible because as \mathbf{n} increases, \mathbf{C} is smaller and smaller and contained in the circle, and so has no common point with it.

The latter contradiction proves the impossibility of the condition $\{\mathbf{x}, \mathbf{y}$, z\} integers to satisfy $\boldsymbol{x}^{n}+\boldsymbol{y}^{n}=\boldsymbol{z}^{n}$ when $\mathrm{n}>2$.

January 22, 2018
BERNAY
France

