On the representation theorem for the stochastic differential eq uations with fractional Brownian motion and jump by Probabili ty measures transform

Kim Ju Gyong, Ju Kwang Son

Abstract

In this paper we prove Girsanov theorem for fractional Brownian motion and jump measures and consider representation form for the stochastic differential equations in transfer Probability space.

Keywords: Girsanov theorem, probability measures transform, fractional Brownian motion, jump measure

1 Introduction

Girsanov theorem is foundation of probability measures transform. After the introduction of Girsanov theorem by Brownian motion, one with jump measures is considered ([1], [3]) and Girsanovs transform for Backward Stochastic differential equation is also proved([2]).

Girsanov theorem by fractional Brownian motion is considered in [4].

In this paper we prove Girsanov theorem for fractional Brownian motion and jump measures and consider representation form for the stochastic differential equations in transfer Probability space.

If $(\Omega_H, \mathscr{F}_H, \mathbf{P}_H)$ is the probability space driven by fractional Brownian motio n and $(\Omega_v, \mathscr{F}_v, \mathbf{P}_v)$ is one derived by pure jump Levy processes, one to consid er is $(\Omega, \mathscr{F}, \mathbf{P}) = (\Omega_H \times \Omega_v, \mathscr{F}_H \otimes \mathscr{F}_v, \mathbf{P}_H \otimes \mathbf{P}_v).[6]$

On this space fractional Brownian motion, skorohod integral by Poisson rando m measures, definition and property of Malliavin derivative and Ito formula, et c are on the basis of [5].

2 Probability measures transform

The stochastic differential equations to consider are as follows.

$$dX(t) = a(t, X(t))dt + b(t, X(t))dB_{H}(t) + \int_{|z|>0} C(t, X(t), z)\widetilde{\mu}(dt, dz)$$
(1)

 $X(0) = X_0$

Here, $\{B_H(t)\}_{t \in [0,T]}$ is fractional Brownian motion with parameter H(0 < H < 1),

that is,

$$\mathbf{E}(B_{H}(t)) = 0$$

$$C_{H}(s,t) = \mathbf{E}(B_{H}(s)B_{H}(t)) = \frac{1}{2}(|t|^{2H} + |s|^{2H} - |t-s|^{2H})$$

Also, $\{\mu(dt, dz)\}$ is Poisson integral random measure, its intensity is

v(dt, dz) and $\tilde{\mu}(dt, dz) = \mu(dt, dz) - v(dt, dz)$ denotes the compensated version of $\mu(dt, dz)$.

Coefficients a(t, x), b(t, x), c(t, x, z) are measurable and bounded with respect to every variable.

 $\{\mathcal{F}_t\}_{t \in [0, T]}$ is given by

$$\mathscr{F}_t \coloneqq \sigma\{B_H(s), \, \mu([0, s], \Gamma), \, 0 \le s \le t, \, \Gamma \in \mathbf{B}^1\}$$

Then, function space $\mathbf{L}_{H}^{2}([0,T])$ and \mathbf{F}_{ν} are defined as follows with kernel

function $\phi_H(s,t) \quad (\phi_H(s,t) = H(2H-1)|t-s|^{2H-2})$ and Levy measure v(dz)

$$\begin{split} \mathbf{L}_{H}^{2}([0,T]) &= \{f \; ; \; \left\|f\right\|_{\phi}^{2} = \int_{0}^{T} \int_{0}^{T} f(s)f(t)\phi_{H}(s,t)dsdt < \infty \} \\ &\langle f,g \rangle_{\phi} = \int_{0}^{T} \int_{0}^{T} f(s)g(t)\phi_{H}(s,t)dsdt \; , \quad f,g \in \mathbf{L}_{H}^{2}([0,T]) \\ &\left\|f\right\|_{\phi,t}^{2} = \int_{0}^{t} \int_{0}^{t} f(s_{1})f(s_{2})\phi_{H}(s_{1},s_{2})ds_{1}ds_{2} \; , \quad f(s) \in \mathbf{L}_{H}^{2}([0,T]) \\ &\mathbf{L}_{\nu} = \{g \; ; \; \int_{0}^{T} \int_{0}^{t} |g(s,z)|^{2}\nu(dz)ds < \infty, \end{split}$$

Consider the following linear stochastic differential equation (Dolyan equation) by above fractional Brownian motion and integral random measure.

$$M(t) = 1 + \int_{0}^{t} \theta(s)M(s)dB_{H}(s) + \int_{0}^{t} \int_{|z|>0}^{t} \lambda(s, z)M(s)\tilde{\mu}(ds, dz)$$
(2)

Here, $\theta(t) \in \mathbf{L}^2_H([0,T]), \lambda(t,z) \in \mathbf{L}_v$

Theorem 1.The solution for equation (2) is

$$M(t) = \exp\{\int_{0}^{t} \theta(s) dB_{H}(s) - \frac{1}{2} \|\theta\|_{\phi, t}^{2} + \int_{0}^{t} \int_{|z|>0}^{t} \ln(1 + \lambda(s, z)) \widetilde{\mu}(ds, dz) - \int_{0}^{t} \int_{|z|>0}^{t} [\lambda(s, z) - \ln(1 + \lambda(s, z))] \nu(dz) ds\}$$
(3)

Proof. Let Y(t) be as follows.

$$Y(t) = \int_{0}^{t} \theta(s) dB_{H}(s) - \frac{1}{2} \|\theta\|_{\phi,t}^{2} + \int_{0}^{t} \int_{|z|>0} \ln(1+\lambda(s,z)) \widetilde{\mu}(ds,dz) - \int_{0}^{t} \int_{|z|>0} [\lambda(s,z) - \ln(1+\lambda(s,z))] \nu(dz) ds$$

Then, apply stochastic integral transform formula on function $F(y) = e^{y}$. M(t) = F(Y(t)) =

$$=F(Y(0)) + \int_{0}^{t} F(Y(s))\theta(s)dB_{H}(s) - \frac{1}{2}\int_{0}^{t} \int_{0}^{t} F(Y(s_{1}))\theta(s_{1})\theta(s_{2})\phi_{H}(s_{1}, s_{2})ds_{1}ds_{2}$$

+ $\frac{1}{2}\int_{0}^{t} \int_{0}^{t} F(Y(s_{1}))\theta(s_{1})\theta(s_{2})\phi_{H}(s_{1}, s_{2})ds_{1}ds_{2}$
+ $\int_{0}^{t} \int_{|z|>0} [F(Y(s) + \ln(1 + \lambda(s, z))) - F(Y(s)) - \ln(1 + \lambda(s, z))F(Y(s))]\nu(dz)ds$
+ $\int_{0}^{t} \int_{|z|>0} [F(Y(s) + \ln(1 + \lambda(s, z))) - F(Y(s))]\widetilde{\mu}(ds, dz)$
- $\int_{0}^{t} \int_{|z|>0} F(Y(s))[\lambda(s, z) - \ln(1 + \lambda(s, z))]\nu(dz)ds$
 $1 + \int_{0}^{t} \theta(s)M(s)dB_{H}(s) + \int_{0}^{t} \int_{|z|>0} \lambda(s, z)M(s)\widetilde{\mu}(ds, dz)$

Note. In case that the integrand is suitable process, Skorohod integral by fractional Brownian motion is equal to Ito integral ([5]) and if and if only random process

 $\{F(t, \omega)\}$ is (\mathcal{F}_t) - process, its chaos expansion $F(t, \omega) = \sum_{n=0}^{\infty} I_n(f_n(\cdot; t))$ is presented by

$$F(t,\omega) = \sum_{n=0}^{\infty} I_n(f_n(\cdot;t)\chi_{([0,t])^{\otimes n}}(\cdot))$$

Here, $\chi_{[0,t]^{\otimes n}}(\cdot)$ is point function.

And for random variable

=

$$G(\omega) = \sum_{n=0}^{\infty} I_n(f_n(\cdot)) \in \mathbf{L}^2(\mathbf{P})$$

,semi conditional expectation is defined by

$$\widetilde{\mathbf{E}}[G(\omega)|\mathscr{F}_{s}] = \sum_{n=0}^{\infty} I_{n}(f_{n}(\cdot)\chi_{([0,s])^{\otimes n}}(\cdot))$$

Lemma 1. The solution $\{M(t)\}_{t \in [0,T]}$ for equation (2) is \mathcal{F}_t -semi martingale.

Proof. For any *s*, $t (0 \le s < t \le T)$, by equation (2),

$$\begin{split} \widetilde{\mathbf{E}}[M(t)|\mathscr{F}_{s}] &= \\ &= 1 + \widetilde{\mathbf{E}}[\int_{0}^{t} \theta(s_{1})M(s_{1})dB_{H}(s_{1})|\mathscr{F}_{s}] + \widetilde{\mathbf{E}}[\int_{0}^{t} \int_{|z|>0}^{t} \lambda(s_{1},z)M(s_{1})\widetilde{\mu}(ds_{1},dz)|\mathscr{F}_{s}] \\ &= 1 + \int_{0}^{t} \theta(s_{1})M(s_{1})\chi_{(0\leq s_{1}\leq s)}(s_{1})dB_{H}(s_{1}) + \int_{0}^{t} \int_{|z|>0}^{t} \lambda(s_{1},z)M(s_{1})\chi_{(0\leq s_{1}\leq s)}\widetilde{\mu}(ds_{1},dz) \\ &= 1 + \int_{0}^{s} \theta(s_{1})M(s_{1})dB_{H}(s_{1}) + \int_{0}^{s} \int_{|z|>0}^{t} \lambda(s_{1},z)M(s_{1})\widetilde{\mu}(ds_{1},dz) \\ &= M(s) \end{split}$$

For any $f(t) \in \mathbf{L}^{2}_{H}([0,T]), g(t,z) \in \mathbf{F}_{V}$,

$$\mathcal{E}_{0}(t; f, g) \coloneqq \exp\{\int_{0}^{t} f(s)dB_{H}(s) - \frac{1}{2} \|f\|_{\phi, t}^{2} + \int_{0}^{t} \int_{|z|>0}^{t} \ln(1 + g(s, z))\widetilde{\mu}(ds, dz) - \int_{0}^{t} \int_{|z|>0}^{t} [g(s, z) - \ln(1 + g(s, z))]\nu(dz)ds\}$$

$$\varepsilon_1(t; f):=\exp\{\int_0^t f(s)dB_H(s) - \frac{1}{2} \|f\|_{\phi,t}^2\}$$

$$\varepsilon_2(t;g) = \exp\{\int_0^t \int_{|z|>0}^{t} \ln(1+g(s,z))\widetilde{\mu}(ds,dz) - \int_0^t \int_{|z|>0}^{t} [g(s,z) - \ln(1+g(s,z))]\nu(dz)ds\}$$

We can easily show that

$$\varepsilon_0(t; \theta, \lambda) = \varepsilon_1(t; \theta) \ \varepsilon_2(t; \lambda) = M(t)$$

Lemma 2. $\{\varepsilon_i(t; \cdot)\}_{t \in [0,T], i=0,1,2}$ is \mathcal{F}_t -exponential martingale.

$$\mathbf{E}[\varepsilon_i(t; \cdot)] = 1, \quad i = 0, 1, 2$$

The proof is certain by Theorem 1 and Lemma 1.

Let the new probability measure \mathbf{P}^* define that the Radon-Nikodym derivative satisfies

$$\frac{d\mathbf{P}^*}{d\mathbf{P}}\Big|_{\mathcal{F}_t} = M(t), \ t \in [0, T]$$

3 Representation theorem

We can obtain the following theorems.

Theorem 2.For any $f(t) \in \mathbf{L}^{2}_{H}([0, T])$,

 $\{B_H^*(t)\}_{t\in[0,T]}$ such that

$$\int_{0}^{T} f(s) dB_{H}^{*}(s) = \int_{0}^{T} f(s) dB_{H}(s) - \frac{1}{2} \langle f, \theta \rangle_{\phi}$$

is fractional Brownian motion with parameter H by the new probability measure \mathbf{P}^* .

Proof. It is sufficient that the characteristic function of

$$\int_{0}^{T} f(s) dB_{H}^{*}(s)$$

is semi expectation by the new probability measure \mathbf{P}^* and

$$\widetilde{\mathbf{E}}^* \exp\{iu\int_{0}^{T} f(s)dB_{H}^*(s)\} = \exp\{-\frac{u^2}{2} \|f\|_{\phi}^2\}.$$

$$\widetilde{\mathbf{E}}^{*} \exp\{iu\int_{0}^{T} f(s)dB_{H}^{*}(s)\} =$$

$$= \widetilde{\mathbf{E}}[\exp\{iu\int_{0}^{T} f(s)dB_{H}(s) - iu\frac{1}{2}\langle f, \theta \rangle_{\phi}\}\varepsilon_{0}(T; \theta, \lambda)]$$

$$= \widetilde{\mathbf{E}}[\exp\{\int_{0}^{T} (iuf(s) + \theta(s))dB_{H}(s) - iu\langle f, \theta \rangle_{\phi} - \frac{1}{2} \|\theta\|_{\phi}^{2}\}\varepsilon_{2}(T; \lambda)]$$

$$= \widetilde{\mathbf{E}}[\varepsilon_{1}(T; (iuf(s) + \theta(s)))\varepsilon_{2}(T; \lambda)]\exp\{-\frac{u^{2}}{2} \|f\|_{\phi}^{2}\}$$

$$= \exp\{-\frac{u^{2}}{2} \|f\|_{\phi}^{2}\}$$

Theorem 3. Random measure $\tilde{\mu}^*(dt, dz)$ defined by $\tilde{\mu}^*(dt, dz) = \mu(dt, dz) - \nu^*(dt, dz)$

is \mathscr{F}_t -martingale by the new probability measure \mathbf{P}^* and centralized Poisson integral random measure.

Here,

$$v^*(dt, dz) = (1 + \lambda(s, z))v(dt, dz)$$

Proof. We can similarly prove as in Theorem 2. That is,

$$\begin{split} \widetilde{\mathbf{E}}^* \exp\left\{iu \int_{0}^{T} \int_{|z|>0}^{T} g(s, z) \widetilde{\mu}^*(ds, dz)\right\} &= \\ &= \widetilde{\mathbf{E}}[\exp\left\{iu \int_{0}^{T} \int_{|z|>0}^{T} g(s, z) \widetilde{\mu}(ds, dz) - iu \int_{0}^{T} \int_{|z|>0}^{T} g(s, z) \lambda(s, z) \nu(dz) ds\right\} \varepsilon_0(T; \theta, \lambda)] \\ &= \widetilde{\mathbf{E}}[\exp\left\{\int_{0}^{T} \int_{|z|>0}^{T} (iug + \ln(1 + \lambda)) \widetilde{\mu}(ds, dz) - \right. \\ &- \int_{0}^{T} \int_{|z|>0}^{T} (g\lambda + \lambda - \ln(1 + \lambda)) \nu(dz) ds\right\} \varepsilon_1(T; \theta)] \\ &= \widetilde{\mathbf{E}}[\varepsilon_1(T; \theta) \varepsilon_2(T; (iug + \ln(1 + \lambda))) \exp\left\{\int_{0}^{T} \int_{|z|>0}^{T} (e^{iug + \ln(1 + \lambda)} - 1 - iug(1 + \lambda) - \lambda) \nu(dz) ds\right\}] \\ &= \exp\left\{\int_{0}^{T} \int_{|z|>0}^{T} (e^{iug} - 1 - iug) \nu^*(dz) ds\right\} \end{split}$$

Also, with respect to \mathbf{P}^*

$$\widetilde{\mathbf{E}}^* \varepsilon_2^*(t, iug) =$$

$$= \widetilde{\mathbf{E}}^* [\exp\{iu \int_0^t \int_{|z|>0}^t g(s, z) \widetilde{\mu}^*(ds, dz) - \int_0^t \int_{|z|>0}^t (e^{iug} - 1 - iug) v^*(dz) ds\}]$$

$$= 1$$

Consequently, the theorem is proved.

Theorem 4. The stochastic differential equation (1) in transfer Probability space is presented as follows.

$$X(t) = X(0) + \int_{0}^{t} a(s, X(s))ds + \int_{0}^{t} \int_{0}^{t} b(s_{1}, X(s_{1}))\theta(s_{2})\phi_{H}(s_{1}, s_{2})ds_{1}ds_{2}$$

+
$$\int_{0}^{t} \int_{|z|>0} c(s, X(s), z)\lambda(s, z)\nu(ds, dz)$$

+
$$\int_{0}^{t} b(s, X(s))dB_{H}^{*}(s) + \int_{0}^{t} \int_{|z|>0} c(s, X(s), z)\widetilde{\mu}^{*}(ds, dz)$$

The proof of above theorem follows from Theorem 2, 3.

References

- [1] D. Applebaum, Levy processes and stochastic calculus, Cambirge Uni versty press, 408p, 2009
- [2] B. G. Liang, A. Lionnet, Z. Qian; On Girsanovs transform for Backw

ard Stochastic differential equation, arXiv 10113228V1 [math PR]14 N o 2010

- [3] Christion Leonard; Girsanov theorem under a finite entropy conditions, arXiv 1101, 3958V2 [math PR] 31 Jan 2011.
- [4] Necula C. ; Option pricing in a fractional Browinan motion environm ent, Academy of Economics Syudies Bucharest, Preprint, 2002.
- [5] F. Biagini, Y. Hu, B. Øksendal; Stochastic Calculus for Fractional Bro wnian Motion and Applications, Springer, 2008
- [6] G. D. Nunno_, T. M. Brandis, B. Oksendal; Malliavin calculus and anticipative Ito formulae for Levy processes, Infinite Dimensional Analysis, Quantum Probability and Related Topics, Vol. 8, No. 2 (2005) 235~258