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On the representation theorem for the stochastic differential eq
uations with fractional Brownian motion and jump by Probabili
ty measures transform 
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Abstract 
In this paper we prove Girsanov theorem for fractional Brownian motion and jump 

measures and consider representation form for the stochastic differential equations in 
transfer Probability space. 
Keywords: Girsanov theorem, probability measures transform, fractional Brownian 
motion, jump measure  
1 Introduction 

Girsanov theorem is foundation of probability measures transform. After the 
introduction of Girsanov theorem by Brownian motion, one with jump measures is 
considered ([1], [3]) and Girsanovs transform for Backward Stochastic differential 
equation is also proved([2]). 

Girsanov theorem by fractional Brownian motion is considered in [4]. 
In this paper we prove Girsanov theorem for fractional Brownian motion and

 jump measures and consider representation form for the stochastic differential 
equations in transfer Probability space. 

If ),,( HHH PF  is the probability space driven by fractional Brownian motio
n and ),,( vvv PF  is one derived by pure jump Levy processes, one to consid
er is ),,(),,( vHvHvH PPP  FFF .[6]  

On this space fractional Brownian motion, skorohod integral by Poisson rando
m measures, definition and property of Malliavin derivative and Ito formula, et
c are on the basis of [5]. 

2 Probability measures transform 
The stochastic differential equations to consider are as follows. 
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Here, ],0[)}({ TtH tB   is fractional Brownian motion with parameter )10(  HH ,
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Also, )},({ dzdt  is Poisson integral random measure, its intensity is 
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),( dzdt  and ),(),(),(~ dzdtdzdtdzdt    denotes the compensated version 
of ),( dzdt . 

Coefficients ),,(),,(),,( zxtcxtbxta  are measurable and bounded with respect
 to every variable. 

],0[}{ Ttt F  is given by  
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Then, function space ]),0([2 THL  and F  are defined as follows with kernel 

function  ),( tsH  ( 22)12(),(  H
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Consider the following linear stochastic differential equation (Dolyan equation) by 
above fractional Brownian motion and integral random measure. 
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Theorem 1.The solution for equation (2) is  
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Proof. Let )(tY  be as follows. 
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Then, apply stochastic integral transform formula on function yeyF )( . 
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Note. In case that the integrand is suitable process, Skorohod integral by fractional 
Brownian motion is equal to Ito integral ([5]) and if and if only random process 

)},({ tF  is )( tF - process, its chaos expansion ));((),(
0
 
n

nn tfItF   is 
presented by 
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Here, )(],0[ nt  is point function. 
And for random variable  
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Lemma 1.The solution ],0[)}({ TttM   for equation (2) is tF -semi martingale. 
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Proof. For any )0(, Ttsts  , by equation (2), 
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We can easily show that  
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Lemma 2. 2,1,0,],0[)};({  iTti t  is tF -exponential martingale. 
2,1,0,1)];([  itiE  

The proof is certain by Theorem 1 and Lemma 1. 
Let the new probability measure *P  define that the Radon-Nikodym derivative 

satisfies 
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3 Representation theorem 
We can obtain the following theorems. 
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Theorem 2.For any ]),0([)( 2 Ttf HL , 
 ],0[
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is fractional Brownian motion with parameter H  by the new probability measure 
*P . 
Proof. It is sufficient that the characteristic function of  
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Theorem 3. Random measure ),(~* dzdt  defined by  
),(),(),(~ ** dzdtdzdtdzdt    

is tF -martingale  by the new probability measure *P and centralized Poisson 
integral random measure. 

Here, 
),()),(1(),(* dzdtzsdzdt    

Proof. We can similarly prove as in Theorem 2. That is , 
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Also, with respect to *P  
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Consequently, the theorem is proved. 
Theorem 4. The stochastic differential equation (1) in transfer Probability space is 

presented as follows. 
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The proof of above theorem follows from Theorem 2, 3. 
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