
Intuitive explanation of the Riemann hypothesis

I. Characterisation of the nontrivial zeroes of ζ.

There is a unique (canonical) one-form α on H invariant under Γ(2)
with a pole of residue 1 at the image of i∞ and a pole of residue
−1 at the image of 1. Under the embedding H → C with τ the
coordinate on C the ratio [α : iπdτ ] tends to one at the upper end
of the interval (0, i∞). Let T be the connected real multiplicative
group and consider the multiplication actions{

µ+ : T ×H→ H
(g, z) 7→ √gz{
µ− : T ×H→ H
(g, z) 7→ 1√

g
z

1. Theorem. For each unitary character ω of T and each real
number c with 0 < c < 1, the differential two-form

g2c−2ω(g)µ∗+(α− iπdτ) ∧ µ∗−(α− iπdτ)

is real and integrable (rapidly decreasing, that is ‘Schwartz’ with re-
spect to an invariant parallelization) on T × (0, i∞). Among rapidly
decreasing forms, it is exact if and only if ζ(c+ iω0) is zero where ζ
is Riemann’s zeta function and ω0 is the real number corresponding
to ω under the rule ω(g) = giω0 .

Proof. It is real because the factors besides ω(g) are anti-symmetric
with respect to interchanging µ+ and µ− which matches the reversal
of orientation of T. The two-form integrates to the squared absolute
value of a holomorphic integral, namely

∫
gc−1ω(g)(α − iπdτ). In

turn, it is easy to calculate the holomorphic definite integral; it is
−L(s, χ)Γ(s)π1−s L is the L series for sums of four squares, χ is
the Dirichlet sign character and s = c + iω0. The rule ω(g1g

−1
2 ) =

ω(g1)ω(g2)
−1 is all that is needed.
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II. Remark about the dynamical interpretation.

Here is an intuitive way of integrating the two-form let, us call it As
for s = c+ iω0. Let τ = iet. By ‘integration by parts’∫

e(c−1)t+iω0td log(
λ

q
) = −(c− 1 + iω0)

∫
e(c−1)t+iω0tlog(

λ

q
(iet))dt.

Therefore∫ ∫
As = |(s− 1)| 2|

∫ ∞
−∞

eiω0te(c−1)tlog(
λ

q
(iet))dt|2.

The second term on the right is the squared magnitude of the Fourier
tranform value at frequency ω0 of the real function

e(c−1)tlog(
λ

q
(iet)).

A disk spinning with angular rate ω0 with pivot point held by a
pair of opposing movable bearings, if we move the bearings in a line
according to this function (of time), the limiting radius of the circle
traced by the initial pivot point will be the magnitude and

2. Theorem.

π

|s− 1|2

∫
As = area inside final circle.
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III. Lie actions.

Whenever As is a Lie derivative As = δB under the action of a
vector-field δ, then As can be obtained by multiplying B by a suit-
able divergence ratio; put differently As = d iδB which is an exact
form. If the contraction iδB is Schwartz then ζ(s) = 0 (still assum-
ing 0 < c < 1).

IV. The action of ∂
∂c
.

Conversely, a vector field which does not preserve T × (0, i∞) is the
partial derivative with respect to c. If g = et it sends As to 2tAs.

3. Question. For 0 < c < 1/2, is the partial derivative ∂
∂c

∫
Ac+iω0

non-positive?

An affirmative answer would imply that As is non-exact, and ζ(c+
iω0) 6= 0, for all c in the same range. The reason is that for each
value of ω0 the dependence on c would be a non-increasing real
analytic function (0, 1/2)→ [0,∞). Such a function cannot take the
value of zero.

Let’s attempt to estimate the partial derivative to see if we can start
to answer the question. Let

h(r, v) = e2(c−1)vlog(
λ

q
(v + r/2))log(

λ

q
(v − r/2)

This has the properties that for 0 < c < 1/2{
h(r, v) > 0 for all r, v

h(r, v)− h(r,−v) < 0 for all r and all v > 0

.

For each fixed c and r let

γ(c, r) =

∫
vh(r, v)dv∫
h(r, v)dv

This is the mean value of h(r, v) as a function of v.
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Now

∂

∂c

∫
As =

∂

∂c
((c− 1)2 + ω2

0)

∫ ∫
cos(rω0)h(r, v)dvdr.

= (2c− 2)

∫
cos(rω0)

∫
h(r, v) + ((c− 1)2 + ω2

0)(2v)h(r, v)dvdr

= (2c− 2)

∫
cos(rω0)

∫
h(r, v)dvdr

+((c− 1)2 + ω2
0)

∫
2γ(c, r)cos(rω0)

∫
h(r, v)dvdr

The integral
∫ ∫

cos(rω0)h(r, v)dvdr is semi-positive since it is the
squared magnitude of a complex number. Each of the coefficients
2c− 2 and γ(c, r) are negative when 0 < c < 1/2.

Let

ρ(c+ iω0) =

∫
γ(c, r)cos(ω0r)

∫
h(r, v)dvdr∫

cos(ω0r)
∫
h(r, v)dvdr

so our integral is

= ((2c− 2) + 2((c− 1)2 + ω2
0)ρ(s))

∫
cos(rω0)

∫
h(r, v)dvdr

= 2(
c− 1

(c− 1)2 + ω2
0

+ ρ(s) )

∫
As.

Removing the leading factor of −1 in − L(s, χ)Γ(s)π1−s which has
no effect, and removing our leading factor of 2 which relates the real
part of the logarithmic derivative with our integral, we obtain

Re
d

ds
log (L(s, χ)Γ(s)π1−s) =

Re(s− 1)

|s− 1|2
+ ρ(s).

The logarithmic derivative of the gamma function is the digamma
function Ψ(s). With this notation then

4. Theorem.

Re
d

ds
log L(s, χ) =

Re(s− 1)

|s− 1|2
+ ρ(s) + log(π)−Re Ψ(s).
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From this we can write an expression for the real part of the loga-
rithmic derivative of L(s) itself and ζ(s)ζ(s− 1).

When c = 1/2 a first approximation of ρ(s) would just be the con-

stant log( log(16)
π

). Here the real part of the logarithmic derivative of

L(s, χ)Γ(s)π1−s as a red graph, and the Re(s−1)
|s−1|2 + log( log(16)

π
) as a

green graph as a function of ω0 when c = 1/2.

This graph is not much evidence as we don’t know why the actual
value departs from the approximation.
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V. Holomorphic interpratation

Before we begin, it makes sense to notice that the Cauchy integral
theorem is a statement about functions which a single-valued func-
tion times a logarithmic form. In our situation, when we look at a
cusp expansion, and a multiple-valued function times a logarithmic
form, what takes place is that one can still define a residue and the
statement of the Cauchy theorem regarding arcs which pass through
a pole of the form, and it is still true. The residue term proven to
equal the half the limit of horocyle integrals. Thus

5. Remark. We may speak of ‘residues’ of one-form even if there
is a cusp expansion instead of a Laurent expansion.

Recall we let α be the unique Γ(2) invariant holomorphic one-form
on H which has a simple pole at the image of i∞ of residue +1 and
a simple pole at the image of 1 of residue −1, and we consider for
each constant s with 0 < Re(s) < 1 the holomorphic one-form

(−iτ)s−1(α− iπdτ) = us−1(α + πdu)

where u = −iτ. The restriction to u ∈ (0,∞) is rapidly decreas-
ing or ‘Schwartz’ once one makes the definition in an appropriately
symmetric way (e.g. on the Lie algebra of the multiplicative group).

Our earlier arguments gave equivalent conditions for the existence
of f rapidly decreasing. Since they were based on integration by
parts, we lost the actual underlying symmetry on the level of forms.

Denote by 0, 1,∞ in order be the images in the Riemann sphere of
the bounary points 0, 1, i∞ of H, so that α can be interpreted as
the meromorphic one-form on the Riemann sphere with a pole of
residue 1,−1 at ∞ and 1.
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Let Z be the rational function which takes the value 0 at 0 with a
simple pole of residue 1 at∞. The permutations of the three-element
set {0, 1,∞} extend uniquely to automorphisms, for instance the
transform of α under interchanging 0 and ∞ is the same as the
multiple of α by 1

Z
. That is to say, 1

Z
is the eigenfunction for this

involution. In fact α = −dZ
Z−1 .

The real points of the projective line form a real circle inside the
Riemann sphere, which contains all three of the points 0, 1,∞. Writ-
ing τ = iu, the line where u takes positive real values actually covers
the line where Z takes negative real values.

The ideal triangle in H which contains the boundary points 0, 1, i∞
maps topologically isomorphically to the circle of real points of the
projective line.

Suppose now that f is a function on the H such that

df =
−us−1dZ
Z − 1

+ πus−1du.

We can restrict f to the ideal triangle and therefore to the real
points of the projective line.

The form df is rapidly vanishing at the points 0 and∞. At the point
1 the form α = −dZ

Z−1 has a simple pole of residue −1 (as we know)

and the function us−1 takes the value (−i)s−1. Since the point τ = 1
is invariant under

−1

τ − 1
7→ −1

τ − 1
+ 2

the function Z = λ−1
λ

can be expressed by a ‘q-expansion’ in terms

of eiπ/(1−τ) about Z = 1

Z = 1 + 16eiπ/(1−τ)....

Here iπ/(1−τ) = −π/(u+ i). We can expand u in terms of Z giving

u = −i− π

log(Z−1
16

)
...

To the first approximation

πdu = (u+ i)2
dZ

Z − 1
.

7



This means our form is to the first approximation

(−1 + (u+ i)2)us−1
dZ

Z − 1
.

We already knew that including the terms (u+i)2 in the first bracket
would not affect the ‘residue.’

Then our form is approximately merely

−(−i− π

log(Z−1
16

)
)s−1

dZ

Z − 1

which agrees closely with

−(−i)s−1 dZ

Z − 1
.

This means that we may use the residue calculation, we may work
as if the form has a simple pole at the point 1 of the Riemann
sphere, and integrate up to a point near 1, then on the other side
from a corresponding point, and as the gap is made smaller, the
omitted difference will approach −iπ times −(−i)s−1. That is, the
counter-clockwise integral about the ideal triangle makes sense, and
evaluates to

(iπ)((−i)s−1) = −πe−iπs/2

The condition Re(s) = 1/2 corresponds to the semilinear eigenvalue
of complex conjugation on the residue being the imaginary unit i.

The relation with the condition that ζ(s) = 0 is that this is equiva-
lent to the value at 0 and ∞ being equal, in which case the residue
equals the integral over the arc from 0 to∞ which passes through 1
(now where Z runs over the positive real numbers). Here we must
interpret this as an improper integral, leaving a gap about 1 which
is symmetrical with respect to the involution, and taking the limit
as the gap tends to zero. Thus

6. Theorem. The form us−1(α+πdu) corresponds to a well-defined
one-form on the real projective line except the point 1, where the
cusp expansion has residue −(−i)s−1. Thus the integral of the form
over the real projective line evaluates to−iπ times the residue, which
is πe−iπs/2.
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7. Example. Using Wolfram Alpha with s = .1 + 5i to integrate
over the ideal triangle omitting the gap from 1 to 1 + e−6i and the
corresponding gap near 1 on the circle with endpoints at 0 and 1
gives the approximate sum over the three arcs of 511350+3024940i−
503458− 3026210i− 0.003 + 0.039i reading counter-clockwise from
0. These add to 7891 − 1269i; while the completely precise actual
value, the integral of the natural form over the real points P1(R) as
we have calculated it, is more precisely

πe−iπs/2 = 7993.016037640268...− 1265.9693716266...i

exposing an error of roughly five, due to the missing gap.

The integral over what is here the third arc is zero if and only if
ζ(s) = 0, while the real and imaginary parts of our residue, at the
unique ‘pole’ on the Riemann sphere, proven here equal to the real
and imaginary parts of the full integral, add to zero if and only if
Re(s) = 1/2.

I should remark, it isn’t actually possible to have a meromorphic
form on the Riemann sphere with just one pole (the sum of the
residues being zero would prohibit that). The extra care was due to
the fact that the form is actually multi-valued, since we never in-
sisted that the coefficient u needs to descend to the quotient modulo
the action of Γ(2). We really have a multi-valued meromorphic form;
however it is single valued on the real points and a single residue
determines the whole integral.
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VI. Some calculation details.

The interval (0, i∞) maps to one of our arcs under τ 7→ τ +1 and to
the other under τ 7→ 1/(1− τ), the second being the circle meeting
the cusps at 0 and 1. We have oriented this one clockwise so that
images of the interval [a,∞) together with a gap, formed by the
images of [0, a), cover the union.

Our integral on the first arc, correctly oriented, once multiplied by
is−1, becomes

−
∫ i∞

ia

(
1

1− τ
)s−1d logλ(

1

1− τ
)− iπ(

1

1− τ
)s−1d

1

1− τ

= −
∫ i∞

ia

(1− τ)1−sd logλ(
1

1− τ
)− iπ

s

where the limits refer to values of τ.

The second integral becomes∫ i∞

ia

(1 + τ)s−1d log(
λ

q
(1 + τ)

As we know that the residue term, once multiplied by is−1 becomes
−iπ because we have made the residue become 1. The integals along
all three arcs add to the residue term −iπ.

8. Remark. Since the residue term is the limit of the horocycle
integral, when ζ(s) = 0 each of the two integrals shown above must
be asymptototic in every case to a purely imaginary multiple of the
residue term −iπ, that is to say, to a real number, the real multiplier
magnitudes must be approximately negative since no other term
depends on a.
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9. Remark. We are allowed to truncate the upper half-plane,
cutting away a neighbourhood of the ideal point which is in the
Γ(2) orbit of 0, 1,∞, or we can just imagine the universal cover of
the Riemann sphere with three disks deleted. Our three arcs now
connect a chain of three circles, making a tri-partite graph with nine
edges and six vertices, and the inverse image of this graph in H is
such that each circle unwraps to a horocycle, and the two types of
edges coming from it alternate. The integral of our form along any
edge path is the sum of 2πi(b− c)a(s−1) over cusps in the Γ(2) orbit
of 1 where b and c are half-integer indices of edges meeting the cusp
which has rational coordinate a. When we lifted the ‘fundamental
cycle’ of P1(R) containing (0, i∞), we might have chosen to use the
pair of arcs meeting at the cusp at −1. Our sum of 2πi(b− c)a(s−1)
would still have just one term, but since it is the cusp at −1 we
would set a = −1. The interchange of b and c negates the coefficient
b − c and the resulting integral would be the same. Note that it is
the same rather than conjugate since the same value of s is used.
However, the symmetry here, of negating the real axis, does act by
complex conjugation on the variable u such that iu = τ.

10. Remark. Since our form is not invariant under covering trans-
formations, even for defining the integrals along homotopically triv-
ial paths, the integral will depend on the choice of lift of the starting
point. In the case when ζ(s) = 0 we choose two lifts, and these we
choose to be 0 and i∞ and we know that the integral along any path
in H connecting these will be zero; the route of entry into either of
those cusps does not matter since the form is zero there. In our
CW decomposition of the sphere, we traced two of the components
of the real projective line with 0, 1,∞ deleted, to reach the cusp at
1. In our CW decomposition we see a pair of semicircles, which is
where we had cut off the cusp.
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But if we traverse the wrong one, the lifted path of three arcs will
not connect our chosen elements in the orbit of 0 and i∞. If we
merely integrate our form along the two arc components of the real
projective line, up until they meet the vertex at the horocycle, de-
pending on how small we make it, the sum will converge to what we
have called the residue. Also the integral along the semicircular arc
will converge to the same number. In this way, integrating ‘straight
through’ the cusp downstairs, without making any choices, really
means taking the limit of a horocycle integral where we have chosen
a particular one of the two semicircular arcs, implicitly, when we
decided to represent the beginning and end points of our arc as the
points 0 and i∞. But the zeta function implicitly refers to these.
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VII. Deformations of τ s−1(α− iπdτ).

When we integrate our form τ s−1(α− iπdτ) over the three arcs, it is
only in the case of the arc connecting 1 and 0 that the two separate
integrals, of τ s−1α and τ s−1iπdτ separately, both converge. Let’s
consider deformations which continuously pass between the integral
with the iπτ s−1dτ term present or removed on the third arc. Using
the letter w as a deformation parameter, then, consider αw, such
that α0 = α− iπdτ, and write the integrals over our three arcs as

I(w, s) =

∫ i∞

0

τ s−1αw

J(w, a, s) =

∫ i∞

ia

(τ + 1)s−1αw(τ + 1)

K(w, a, s) = −
∫ ∞
ia

(
1

1− τ
)s−1αw(

1

1− τ
)

If our deformation is such that I and J are constant,

I(w, s) = I(0, s)

J(w, a, s) = J(0, a, s),

while

K(1, a, s) =

∫ ∞
ia

(
1

1− τ
)s−1α(

1

1− τ
).

To be clear about our notation here, when we write out J(w, a, s)
we obtain ∫ i∞

ia

(1 + τ)s−1(α(1 + τ)− iπd(1 + τ)

and we can replace d(1 + τ) by dτ, whereas, by contrast, there is
no second term in our choice of K(1, a, s), so the deformation it to
make that term disappear.

We are interested in those deformations such that the limiting ‘total
divergence’ on the circular arc is real, meaning

d

dw
K(w, a, s) = η(w, a, s)K(w, a, s)
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where lima→0η(w, a, s) is real. The ‘total divergence’ on the other
two arcs is zero of course.

We assume that each αw has the same convergence properties of α
that we’ve already used. The ‘Cauchy’ integral formula gives

lima→0(I(w, s) + J(a, w, s) +K(j, w, s)) = iπRes1(αw).

If ζ(s) = 0 so I(w, s) = 0 for all w then as we’ve seen, there is a real
number γ(w) so that the residue at 1 of αw is given

Res1(αw) = γ(w)lima→0
K(a, w, s)

|K(a, w, s)|
.

The same is true for J(a, w, s) in place of K(a, w, s) but with the
number γ(w) negated.

Combining gives

lima→0(I(a, w, s) + J(a, w, s) +K(j, w, s)) = iπγ(w)
K(a, w, s)

|K(a, w, s)|
.

The rate of change of the left side as a function of w is a real multiple
of

K(a, w, s)

|K(a, w, s)|
.

while the right side is an imaginary multiple of the same quantity.
Then

0 =
d

dw
|Res1(αw)|.

Integrating,

| − iπ| = | − iπ +
iπ

s
|

which implies that the complex number s is equidistant from 0 and
1.

There can only be such a deformation which removes the term in-
tegrating on the circular arc to iπ

s
in the special case when Re(s) =

1/2.

14



VIII. Modular L series

Write L(s, χ) as a Dirichlet series

L(s, χ) =
∑

cnn
−s.

In each term of the product Γ(s)L(s, χ), let’s replace the product

cnΓ(s) = cn

∫ ∞
0

use−s
du

u

with this integral which has a finite limit

cn

∫ −iπnτ
0

use−s
du

u

= Γ(s)cne
iπnτ

∞∑
k=0

(−iπnτ)k+s

s(s+ 1)...(s+ k)
.

Now we can define

L(s, χ, τ) =
∑

cne
iπnτ

∞∑
k=0

(−iπnτ)k+s

s(s+ 1)...(s+ k)
n−s.

and for all τ ∫ τ

0

us−1(α + πdu) = −π1−sΓ(s)L(s, χ, τ).

Multiplying by is−1 and using α + πdu = d logλ− iπdτ also gives∫ τ

0

ys−1(d logλ(y)− iπdy) = −(−iπ)1−sΓ(s)L(s, χ, τ)

which provides a particular definite integral of τ s−1d log λ = −τs−1dZ
Z−1 ,

as ∫
τ s−1d logλ =

iπ

s
τ s − (−iπ)1−sΓ(s)L(s, χ, τ).

We wont worry yet about convergence of the particular series repre-
sentation, but we will define L(s, χ, τ) to make these latter integral
formulas true.
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IX. Relations among values of integrals.

Let a < b be positive real numbers, and consider the sequence of
points in H which is

0,
1

1− ia
, 1 + ia, 1 + ib, ib

We may consider this to be a cyclically-ordered sequence, it lies
on the boundary of the ideal triangle which is our topologically
homeomorphic lift of the real points of P1.

The integral of τ s−1(α− iπdτ) around the ideal triangle is the limit
as a→ 0 and b→∞ of −(iπ)1−sΓ(s) times

L(s, χ,
1

1− ia
)− L(s, χ, 0)

+L(s, χ, ib+ 1)− L(s, χ, ia+ 1)

+L(s, χ, 0)− L(s, χ, ib)

By our very definition L(s, χ, 0) is zero. To say that L(s, χ) = 0
is to say that the last term tends to zero as b → ∞ and note also
that then so does the third term. The sum of six, removing one
cancelling pair, simplifies to

L(s, χ, ib+ 1)− L(s, χ, ib)

+L(s, χ,
1

1− ia
)− L(s, χ, ia+ 1).

The first difference tends to zero and the second converges to −iπ
as we have seen.

Because of the relation between values of integrals and residues, this
all implies that there is an asymptotic relation in the limit as

(−iπ)1−sΓ(s)L(s, χ, ia+ 1) ∼= −R(a)− iπ/2

−(−iπ)1−sΓ(s)L(s, χ,
1

1− ia
) ∼= R(a)− iπ/2.

Here the real part of R(a) is large compared to the imaginary part.
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Now we have enough information to describe asymptotically the
integrals of τ s−1α over the three arcs in terms of just the unspecified
real function R. Recall α = −dZ

Z−1 . When ζ(s) = 0,

−
∫ ib

ia

(
1

1− τ
)s−1α ∼= −R(a)− iπ

2
− iπ

s
((

1

1− ib
)s − (

1

1− ia
)s)∫ ib

ia

(1 + τ)s−1α ∼= R(a)− iπ

2
+
iπ

s
((1 + ib)s − (1 + ia)s)

We can summarize these three formulas by saying that the function
iπ
s
τ s behaves nearly like an antiderivative for τ s−1α except that the

purely imaginary term iπ
2

must be subtracted from the right side of
the first two equations, and a pair of cancelling real terms must also
be added, one to each of the first two.
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