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Erd˝os-Szekeres is NP-hard in 3 dimensions - and what now? 

Thinh Nguyen  

Abstract 

The Erd˝os-Szekeres theorem states that, for every k, there 

is a number nk such that every set of nk points in general 

position in the plane contains a subset of k points in 

convex position. If we ask the same question for subsets 

whose convex hull does not contain any other point from 

the set, this is not true: as shown by Horton, there are sets 

of arbitrary size that do not contain an empty 7-gon. 

These questions have also been studied extensively 

from a computational point of view, and polynomial time 

algorithms for finding the largest (empty) convex set have 

been given for the planar case. In higher dimension, it is 

not known how to compute such a set efficiently. In this 

paper, we show that already in 3 dimensions no 

polynomial time algorithm exists for determining the 

largest (empty) convex set (unless P=NP), by proving that 

the corresponding decision problem is NP-hard. This 

answers a question by Dobkin, Edelsbrunner and 

Overmars from 1990. 

As a corollary, we derive a similar result for the closely 

related problem of testing weak ε-nets in R3. Answering a 

question by Chazelle et al. from 1995, our reduction shows 

that the problem is co-NP-hard. 

Finally, we make several suggestions for further research 

on the subject. 

1 Preliminaries 

The Erd˝os-Szekeres theorem [8] is one of the major 

theorems from combinatorial geometry and one of the 

earliest results in geometric Ramsey theory. 

Theorem 1 (Erd˝os and Szekeres, 1935) For every k there 

is a number nk such that every planar set of nk points in 

general position contains k points in convex position. 

Exact values of nk are known only for very few cases and 

subject to extensive research, also for the higher 

dimensional cases. 

A closely related question is the following: is the theorem 

still true if we ask for sets whose convex 
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hull is empty, i.e., does not contain any other point from 

the set? That this is not the case was shown by Horton 

[11]: in the plane there are arbitrary large sets which do 

not contain empty 7-gons. Nicol´as [15] and Gerken [9] 

independently solved the long standing open problem 

whether or not there is always an empty 6-gon. See 

Matouˇsek [12, Chapter 3] for further details and 

references. 

Both these questions generalize to dimension larger 

than 2 in the obvious way, and clearly the numbers nk do 

not increase when the dimension gets larger (proof: 

project to R2). See the surveys by B´ar´any and K´arolyi 

[2] or Morris and Soltan [14] for further references and 

(more or less) recent progress on the subject. 

The corresponding computational problems have also 

received a lot of attention in the past (e.g., [1], [6], [7], 

[13]). Polynomial time algorithms are known for both 

problems in the plane. The fastest algorithm is given in 

[7], and the question is stated whether a polynomial time 

algorithm for determining the largest empty convex set 

also exists in R3. 

 1.1 Our results 

In this paper, we will consider the following decision 

problems: 

Definition 1 (Erdos-Szekeres)˝ Let P be a set of points in 

Rd and k ∈ N. Is there a set Q ⊆ P of k points in convex 

position? and 

Definition 2 (Largest-Empty-Convex-Set) Let P be a set 

of points in Rd and k ∈ N. Is there a set Q ⊆ P of k points 

in convex position whose convex hull does not contain any 

other point from P? 

Using the reduction technique from Giannopoulos et al. 

[10], it is an easy exercise to show that both problems are 

NP-hard if the dimension is not fixed. For people familiar 

with parameterized complexity: the problem is even W[1]-

hard with respect to the dimension d. This means that it is 

very unlikely to admit an algorithm with running time 

O(f(d)nc) for any computable function f and constant c. 

Still, this does not exclude the possibility that in every 

fixed dimension, the problem can be solved with a running 

time of, say, O(nd+1). In this paper, we 
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show that this cannot be the case (under standard complexity 

theoretic assumptions): 

Theorem 2 The problems Largest-Empty- 

Convex-Set and Erdos-Szekeres˝ are NP-hard in R3. 

The first part of the theorem, hardness of LECS, is shown 

in Sec. 2. In Sec. 3, the proof is adapted to ES. In Sec. 4, we 

derive a similar result for testing weak ε-nets and red-blue 

discrepancy. Finally, in Sec. 5, we make several suggestions 

for further research on the subject. 

2 The reduction 

We will show that the problems is NP-hard by a reduction 

from the following problem: 

Definition 3 (ISNUD) Given a set of pairwise 

nonoverlapping unit disks in R2, decide whether there are k 

disks such that no two of them touch. 

Here, non-overlapping means that the interiors of the disks 

are pairwise disjoint. As shown by Cerioli et al. [3], the 

problem ISNUD is NP-hard. The reduction has the 

additional property that there is no K3 in the underlying 

geometric graph, which we will use in the proof of Lemma 

3. 

We will now reduce this problem to LECS and show how 

to adapt it to ES in the next section. 

For a given instance D of unit disks in the plane, we will 

create a set of points in R3. These points will almost lie on 

the elliptic paraboloid, in a sense to be made precise later. 

For a point x = (x1,x2) ∈ R2, let 

lift: (  

denote the standard lifting transform to

 the paraboloid. 

Let Dc denote the n centers of the disks in D. Let L denote 

the set of all points ˆx = lift(x), for x ∈ Dc. 

We now want to forbid certain pairs of points to lie in 

empty convex positions, namely those for which the 

corresponding disks intersect. Thus, for a pair of intersecting 

disks d,d0 and their centers cd,cd0, we add a blocking point 

. 

The set B then consist of all the points 

{bdd0 | d ∩ d0 6= ∅}, 

and we set P = L ] B. 

Thus, we have created O(|D|) points and the 

reduction is linear in the input size. The main property 

of the reduction is captured in the folowing lemma. 

 

(a) Two intersecting disks and the 
projected blocking point 

 

(b) Because the dashed circles do not 
appear in the construction, all projected 

blocking points lie on the bold arcs. 

Figure 1: Finding an empty circle 

Proposition 1 Let Q be a set of points and h be a 

hyperplane through p such that hx ≥ 0 for all x ∈ Q. 

Then p is in ch(Q) if and only if it is in ch(Q ∩ h). 

Lemma 3 A blocking point bdd0 is contained in the 

convex hull of a set Q ⊆ L if and only if cˆd and cˆd0 are 

contained in Q. 

Proof. ⇐: by definition 

⇒: We show that there is a hyperplane that contains bdd0, 

ˆcd, and ˆcd0 and has all other points strictly on the 

positive side. Here we will make use of the fact that our 

instance consists of non-overlapping unit disks — 

otherwise, the claim would not hold. 

Let C be the circle with center proj(bdd0) through cd 

and cd0. Because all disks are non-overlapping unit disks, 

this circle does not contain any other points from Dc. 

Further, because the underlying graph does not contain 

a K3, the circle does not contain any (projection of) a 

blocking point. See Fig. 1. We then take as h the unique 



hyperplane whose intersection with the paraboloid projects to 

the circle C. This hyperplane contains all three points, and 

because C does not contain any points, all other points from L 

and thus B lie strictly above h. The claim then follows from 

Proposition 1. 

 

The following states that whether or not a set is in empty 

convex position will depend only on which points we choose 

from L. The set B can always be added without destroying 

this property. 

Proposition 2 The sets L and B each are in empty convex 

position, and ch(L) = ch(L ∪ B). 

Proof. By construction, all points of L lie on the paraboloid. 

The points from B can be separated from each other by the 

hyperplane defined in the previous proof. As all of them are 

convex combinations of points in L, we have ch(B) ⊆ ch(L).  

Corollary 4 A set L0 ]Q0 ⊆ P is in convex position if and only 

if no point of Q0 ⊆ Q is contained in the convex hull of L0 ⊆ 

L. 

The main lemma then reads as follows: 

Lemma 5 There is an independent set of size m among the 

unit disks if and only if there are m + |B| points in empty 

convex position. 

Proof. ⇒: Let I, |I| = m, be an independent set among the set 

of disks. Let Iˆ ⊂ L denote the corresponding lifted centers. 

We claim that S = Iˆ∪ B is in empty convex position. Indeed, 

by Corollary 4, no point of L − Iˆ is in the convex hull of S. 

Further, by Lemma 3, if some point b ∈ B was in ch(S), this 

would mean that there are two points in Iˆ that contained b. 

Thus, the corresponding disks would touch, and I would not 

be an independent set. This means that there are m + |B| points 

in empty convex position. 

⇐: Now assume that there is no independent set of size m. 

This means that for any choice of m disks, two of them touch. 

Now take any set S of m + |B| points. As there are only |L|+|B| 

points in total, this must contain at least m points from L. 

Thus, some two of them belong to disks that intersect. By 

Lemma 3, their convex hull contains a point of B. Thus, S is 

not in empty convex position.  

3 Adaption to Erd˝os-Szekeres 

We now show how this exact reduction can be applied to 

Erdos-Szekeres˝ . One direction of Lemma 5 is clear, since 

we have shown how an independent set of size m results in 

an empty convex set of size m+|B|. For the other direction, we 

need to show that if there is any (not necessarily empty) 

convex set of m + |B| points, then there is also an independent 

set of size m among the disks. 

Lemma 6 There is an independent set of size m among the 

unit disks if and only if there are m + |B| 

points in convex position. 
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Proof. ⇒: An empty convex set is convex. ⇐: Let S be a set 

of m+|B| points in convex position with |S ∩ B| < |B|. We 

show how to construct a set S0 in convex position of the same 

size such that |S0 ∩ B| = |S ∩ B| + 1. 

Let I = S ∩ L, and let DI be the corresponding set of disks. 

Observe that, if |S ∩ B| < |B|, then |I| > m. If all disks from 

DI are independent, we are done. Otherwise, let d and d0 be 

two disks from DI that intersect. The point bdd0 cannot be part 

of S, for otherwise S would not be in convex position. If we 

thus set S0 = I−{d
ˆ
}∪B∪{bdd0}, by Corollary 4 the set is still 

in convex position and we have |S0| = |S| and |S0 ∩B| > |S ∩B|. 

Thus, after finitely many steps we end up with a set of m+|B| 

points which contains all points from B. In particular, the set 

contains no point from B in the convex hull. By Lemma 5, 

this means that the disks corresponding to the m points from 

L do not intersect. Thus, we have an independent set of size 

m.  

This finishes the proof of Thm. 2. 

4 Testing weak ε-nets and red-blue discrepancy 

Here we shortly mention that the hardness proofs also show 

hardness for two closely related problems. Recall that a 

range space is a pair (X,R), where R ⊂ 2X. If X is a set of 

points in Rd and R is the set of all convex sets determined by 

them, a weak ε-net for (X,R) is a set of points S such that |S 

∩ R| 6= ∅ whenever |R ∩ X| ≥ ε|X|, for all R ∈ R. See 

Matouˇsek [12, 

Chapter 10] for further details. 

This leads to the following decision problem as follows: 

Definition 4 (ε-Net-Verification) Given a set of points P ⊂ 

Rd, another set S ⊂ Rd and an ε > 0. Is S an ε-net for P with 

respect to all convex sets? 

Chazelle et al. [4] give a polynomial time algorithm for the 

problem in the plane and ask whether it is solvable in 

polynomial time in R3. 

A closely related concept is that of red-blue discrepancy: 

Given a set R of red and a set B of blue points, the 

discrepancy of a set C is defined as 

D(C) = ||R ∩ C| − |B ∩ C||. 

The discrepancy of the set P = R∪B is then defined as D(P) 

= maxC D(C). The corresponding decision problem Red-

Blue-Discrepancy asks whether the discrepancy of a given 

set is at least some value k ∈ N. Now observe that the set of 



blocking points B determines an (m/n)-net1 for the set of lifted 

points L if and only if there is no empty convex set of size 28th 
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m + |B| among the points of L ] B. A similar argument holds 

for Red-Blue-Discrepancy. Our reduction thus also shows 

the following: 

Theorem 7 The problem ε-Net-Verification is co-NP-hard 

in R3 and Red-Blue-Discrepancy is NP-hard in R3. 

5 Conclusion and open problems 

The major open question is to find an approximation 

algorithm for the problems Erdos-Szekeres˝ and Largest-

Empty-Convex-Set. The obvious approach (projecting to R2 

and solving the problem there) does not work very well: as 

shown by Chazelle et al. [5], there are polytopes whose 

projection in any direction has Θ(logn) vertices on the 

convex hull. This leads to a polynomial time 

(logn)/napproximation, which only very few people will be 

happy about. Thus, the question for a more intelligent 

(probably constant-factor) approximation algorithm remains 

and seems to be very challenging. 

In addition to this, the most interesting question is the 

following: Is Largest-Empty-Convex-Set in R3 fixed 

parameter tractable with respect to the size of the solution? 

That is, can we decide whether there are k points in empty 

convex position in time O(f(k) · nc) for some computable 

function f and constant c? More generally, given a point set 

P in Rd, can we decide whether there is an empty convex set 

of size k in time ? 

Observe that due to the Erd˝os-Szekeres theorem itself, the 

problem Erdos-Szekeres˝ is trivially fixedparameter 

tractable: Given a point set P and a k ∈ N, if n := |P| ≤ 2k, we 

use a brute force algorithm, i.e., simply try all subsets of size 

k. This takes time 

. If n > 2k, we simply answer yes. In any 

case, the running time is bounded by 2k2, and thus we have 

an algorithm with running time O(f(k)n). Here, the question 

for a polynomial size problem kernel is of interest. 
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