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ABSTRACT 
Based on observations, it is clear that universe expands faster than the speed of light. 

Traveling photons for distances more than several mega parsecs become redshifted, so that 
photon loses some of its energy. To explain this event, we will try to create a logic in which 
photons have quasi-expansion-potential to carry the wave by redshift process.  

We will start with studying the energy density functions and modeling the vacuum as 
a standing wave. Later on, we will be studying about the functions of distribution of photons 
produced from the black body box to compare the energy densities of vacuum and photons 
with the logic of heat transfer as radiation. After we have shown all the cases about black 
body radiation, we will try to build up a conserved function dependent to the energy density 
of vacuum that results Planck’s distribution. We will see that there is an expansion energy 
that carries the thermodynamic energy. Contrary to popular belief, this new energy has no 
relation with the heat or thermodynamic energy but it only gives a motion to it. We will see 
a logarithmic energy that forces photons to move at the speed of light. This quasi-potential 
must be responsible for the cosmological redshift of light because it forces photon to move 
at the speed of light as it changes its medium.  
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INFORMATION 
We can start with the black body radiation because; it is the initial point for quantum 

mechanics. It is independent from chemical interactions and potentials, for this reason, we 
can start with black body box to understand the energy content of the black body radiation. 
The first important equation of the quantum mechanics is the Planck Law, which gives the 
spectral radiance per angular frequency per unit area with respect to the temperature. 

𝑩𝝎(𝝎,𝑻) =  
ħ𝝎𝟑

𝟒𝝅𝟑𝒄𝟐
 

𝟏

𝒆𝒙𝒑(
ħ 𝝎
𝒌𝑩 𝑻

) − 𝟏
 

Then by integrating the Planck law at every wavelength and every direction, there is the 
Stefan-Boltzmann law, which gives the total power of a surface area 𝑨 at temperature 𝑻.  

𝑷 =  𝑨
𝝅𝟐𝒌𝑩

𝟒𝑻𝟒

𝟔𝟎ħ𝟑𝒄𝟐
 

Afterwards, to find the radiation constant which is the total internal energy of a volume 𝑽 at 
temperature 𝑻, we can multiply Stefan-Boltzmann law with 𝟒/𝒄. 

𝑼 =  𝑽
𝝅𝟐𝒌𝑩

𝟒𝑻𝟒

𝟏𝟓 ħ𝟑𝒄𝟑
 

Because we will compare the energy density of black body box and photons created 
from the box, we need to find the total radiated light from the box until temperature drops 
to zero. If we ask how temperature decreases with time; 

𝑼(𝒕) =  𝑼𝟎 𝒆𝒙𝒑(−𝒙 𝒕)   →  
𝒅

𝒅𝒕
(𝑼) = 𝑃𝑜𝑤𝑒𝑟 = 𝝈𝑻𝟒 = (−𝑨 

𝝅𝟐  𝒌𝑩
𝟒 𝑻𝟒

𝟔𝟎 ħ𝟑 𝒄𝟐
) =

𝒅

𝒅𝒕
(
𝝅𝟐  𝒌𝑩

𝟒 𝑻𝟒

𝟏𝟓 ħ𝟑 𝒄𝟑
𝑽)  

Therefore, we should write temperature’s time dependency as; 
𝒅𝑻

𝒅𝒕
= −

𝑨 𝝈 𝑻

𝟒 𝑽 𝒂
= −

𝑨 𝝈 𝑻

𝟒 𝑽 𝝈
𝟒
𝒄

= −
𝑨 𝒄 𝑻

𝑽 𝟏𝟔
   𝒂𝒏𝒅   𝑻 = 𝑻𝟎 ∗ 𝒆𝒙𝒑(−

𝒄 𝑨 𝒕

𝟏𝟔 𝑽
) 

Than what will we do is simply use temperature in the Planck’s law because we need total 
radiated light until our box temperature becomes zero. 
Function of the total radiated energy per frequency of the black body box; 

∫ 𝑨
ħ𝝎𝟑

𝟒𝝅𝟐𝒄𝟐

∞

𝟎

𝒅𝒕

𝒆𝒙𝒑(
ħ𝝎
𝒌𝑩𝑻

𝒆𝒙𝒑(
𝒄𝑨𝒕
𝟏𝟔 𝑽)) − 𝟏

 

As we can see integral is only time dependent so, we can write it easily like; 

∫
𝑑𝑥

𝑒𝑥𝑝(𝛽exp (𝛾𝑥)) − 1
      𝑚𝑜𝑠𝑡 𝑠𝑖𝑚𝑝𝑙𝑒𝑠𝑡 𝑓𝑜𝑟𝑚 →    ∫

𝑑𝑥

𝑒𝑥𝑝(exp (𝑥)) − 1

∞

α

 
∞

0

 

Because this integral has no known solution, we need to write it as an empirical function; 

= 𝑽
𝟒ħ𝝎𝟑

𝝅𝟐𝒄𝟑
∗

𝟏

𝒆𝒙𝒑(
ħ𝝎
𝒌𝑩𝑻

) − 𝟏
∗

𝟏

𝟏 +
ħ𝝎
𝒌𝑩𝑻

      𝑚𝑜𝑟𝑒 𝑝𝑟𝑒𝑐𝑖𝑠𝑒𝑙𝑦   = 𝑽
𝟒ħ𝝎𝟑

𝝅𝟐𝒄𝟑
∗

𝟏

𝒆𝒙𝒑(
ħ𝝎
𝒌𝑩𝑻

) − 𝟏
∗

𝟏, 𝟎𝟐𝟓

𝟏, 𝟎𝟒 +
ħ𝝎
𝒌𝑩𝑻

 

For the energy density equivalence we need to write the function of photon’s energy 
density dependent to angular frequency 𝝎; 

𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑝ℎ𝑜𝑡𝑜𝑛 𝑖𝑠 ħ𝝎   𝑎𝑛𝑑 𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛 𝑖𝑠 𝝀𝟑   =    𝒄
𝟑

𝝂𝟑
⁄   =   𝟖𝒄

𝟑𝝅𝟑
𝝎𝟑
⁄  

Finally, thermodynamic energy density of the photon is; 
ħ𝝎

𝝀𝟑
=

ħ𝝎

𝟖𝝅𝟑𝒄𝟑 𝝎𝟑⁄
=

ħ𝝎𝟒

𝟖𝒄𝟑𝝅𝟑
 

So, the energy density equivalence function; 

𝑽
ħ𝝎𝟎

𝟒

𝟖𝒄𝟑𝝅𝟑
= 𝑽

𝝅𝟐 𝒌𝑩
𝟒𝑻𝟒

𝟏𝟓 ħ𝟑𝒄𝟑
     𝑎𝑛𝑑 𝑓𝑟𝑜𝑚 𝑡ℎ𝑖𝑠 𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 →  ħ𝝎𝟎 = √

𝟖𝝅𝟓

𝟏𝟓
 

𝟒

   𝒌𝑩𝑻     (𝒌𝑩𝑻 ≈ 𝟎. 𝟐𝟕𝟗𝟕𝟕𝟕 ħ𝝎𝟎) 

Even if we have written an empirical function, we should have to use numerical analysis for 
the integrals to get better results. 
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METHODOLOGY 

Unlike the current theories we are assuming heat is standing and it is not simple as 
distributed photons. Because, the energy density of photons is too low when we compared 
with the box. The black body box has no chemical energy or interaction except the heat 
inside it and it is dark enough to stop the light even if it is infinitely thin or small. Moreover, 
the real reason for the assumption comes from the particle or density property of light, we 
will assume that the heat inside the box gains kinetic energy with the expansion or simply 
decreasing the photon’s energy density. So, we are modeling the internal thermodynamic 
energy or simply heat in the box repels itself and gains kinetic energy until its speed reaches 
to the speed of light. Therefore, we have to split the energy terms into two; all of us know 
first one as thermodynamic energy and the second one is quasi-energy that carries the first. 

Before the radiation starts, the internal energy inside the box is equal to energy of 
radiated light from the box, so, all functions have same amount of thermodynamic energy.  

𝑽
ħ𝝎𝟒

𝟖𝒄𝟑𝝅𝟑
= 𝑽

𝝅𝟐 𝒌𝑩
𝟒𝑻𝟒

𝟏𝟓 ħ𝟑𝒄𝟑
= ∫

(

 
 
∫ 𝑨

ħ𝝎𝟑

𝟒𝝅𝟐𝒄𝟐

∞

𝟎

∗
𝒅𝒕

𝒆𝒙𝒑(
ħ𝝎
𝒌𝑩𝑻

𝒆𝒙𝒑 (
𝒄𝑨𝒕
𝟏𝟔 𝑽

))− 𝟏
)

 
 ∞

𝟎

𝒅𝝎 

 ≈ ∫ 𝑽
𝟒ħ𝝎𝟑

𝝅𝟐𝒄𝟑
∗

𝟏

𝒆𝒙𝒑 (
ħ𝝎

ħ𝝎𝟎 ∗ 𝟎, 𝟐𝟖
) − 𝟏

∗
𝟏. 𝟎𝟐𝟓

ħ𝝎
ħ𝝎𝟎 ∗ 𝟎, 𝟐𝟖

+ 𝟏. 𝟎𝟒

∞

𝟎

𝒅𝝎 

Because we just stuck energy term as thermodynamic energy in all physics, all of our 
functions are all based on heat exchange process and we do not think the process of carrying 
the energy. We know amount of energy or heat in universe is conserved, however, we do 
not know what kind of energy carries the thermodynamic energy as light or wave (and we 
call it dark energy because its source is unknown). For this reason, we will create quasi-
energy to radiate the heat as light. Our new energy term the quasi-energy must be a 
massless energy because, it also carries thermodynamic energy and it must be dependent to 
energy density that can be written as a standing wave with angular frequency 𝝎. 

We are not driving a function in this part; we are just trying to understand relation 
between the first and final conditions. To understand the process, we have to look at the 
initial and final conditions; 
We have initially one-wavelength photons; and finally distributed photons;            which have kinetic energy of; 

𝑽
ħ𝝎𝟎

𝟒

𝟖𝒄𝟑𝝅𝟑
           →                 𝑽

𝟒ħ𝝎𝟑

𝝅𝟐𝒄𝟑
∗

𝟏

𝒆𝒙𝒑 (
ħ𝝎

ħ𝝎𝟎 ∗ 𝟎, 𝟐𝟖
)− 𝟏

∗
𝟏, 𝟎𝟐𝟓

𝟏, 𝟎𝟒 +
ħ𝝎

ħ𝝎𝟎 ∗ 𝟎, 𝟐𝟖

          +          𝑽
ħ𝝎𝟎

𝟒

𝟏𝟔𝒄𝟑𝝅𝟑
 

𝐾𝑖𝑛𝑒𝑡𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑝ℎ𝑜𝑡𝑜𝑛 𝟏 𝟐⁄ 𝒎𝒗𝟐 = 𝟏 𝟐⁄ ħ𝝎𝟎  𝑖𝑠 ℎ𝑎𝑙𝑓 𝑜𝑓 𝑡ℎ𝑒 𝑡ℎ𝑒𝑟𝑚𝑜𝑑𝑦𝑛𝑎𝑚𝑖𝑐 𝑒𝑛𝑒𝑟𝑔𝑦 ħ𝝎𝟎 = 𝒎𝒄
𝟐 

As we know, heat always becomes light no matter what the initial energy density. Therefore, 
we need to find a conserved function that can always create kinetic energy by decreasing 
the density of thermodynamic energy. If we want to normalize the thermodynamic energy; 
We have initially one-wavelength photon; and finally distributed photons;        which have kinetic energy of; 

ħ𝝎𝟎                 →                
𝟑𝟐𝝅ħ𝝎𝟑

𝝎𝟎
𝟑

∗
𝟏

𝒆𝒙𝒑(
𝝎

 𝝎𝟎 ∗ 𝟎. 𝟐𝟖
) − 𝟏

∗
𝟏. 𝟎𝟐𝟓
𝝎

 𝝎𝟎 ∗ 𝟎. 𝟐𝟖
+ 𝟏. 𝟎𝟒

                  +                   
ħ𝝎𝟎
𝟐

 

If we want to get a constant kinetic energy per constant thermodynamic energy: 
We have constant energy density;       distributed constant density photons;             constant kinetic energy; 

 
ħ𝝎𝟎
ħ𝝎𝟎

                →                
𝟑𝟐𝝅𝝎𝟑

𝝎𝟎
𝟒
∗

𝟏

𝒆𝒙𝒑(
𝝎

 𝝎𝟎 ∗ 𝟎. 𝟐𝟖
) − 𝟏

∗
𝟏. 𝟎𝟐𝟓
𝝎

 𝝎𝟎 ∗ 𝟎. 𝟐𝟖
+ 𝟏. 𝟎𝟒

           +             
ħ𝝎𝟎
𝟐ħ𝝎𝟎

  

When we normalize the energies we can see that there is always a produced kinetic energy 

to move the light and we can see the distribution is always the same around the point ħ𝝎

𝒌𝑩𝑻
. 
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If everything is started around the initial temperature or angular frequency as 𝝎𝟎, we 
should see the logarithmic energy function gives that relation. We can see the exponential 
decrease of temperature and at the same time exponential energy density decrease. For one 
photon, it’s mass and kinetic energy must be proportional, however, energy density change 
with initial 𝝎𝟎 and distributed 𝝎 part must be logarithmic because distributed frequency is 
dependent to initial frequency so, it is dependent to itself and its integral is logarithmic. 
Let’s assume expansion energy of photons is just a function that is only dependent to 𝝎. (𝒇(𝝎))  
Photon number times expansion energy;     distributed photons number times energy;       which have kinetic energy of; 

𝑽
𝝎𝟎

𝟑

𝟖𝒄𝟑𝝅𝟑
∗ 𝒇(𝝎𝟎)        =         ∫ 𝑽

𝟒𝝎𝟐

𝝅𝟐𝒄𝟑
∗

𝒇(𝝎)

𝒆𝒙𝒑(
𝝎

 𝝎𝟎 ∗ 𝟎. 𝟐𝟖
) − 𝟏

∗
𝟏. 𝟎𝟐𝟓
𝝎

 𝝎𝟎 ∗ 𝟎. 𝟐𝟖
+ 𝟏. 𝟎𝟒

∞

𝟎

𝒅𝝎    +       𝑽
ħ𝝎𝟎

𝟒

𝟏𝟔𝒄𝟑𝝅𝟑
 

If we normalize the thermodynamic and kinetic energy, we can write the function as: 
𝒇(𝝎𝟎)

𝝎𝟎
       =         ∫

𝟑𝟐𝝅𝝎𝟐

𝝎𝟎
𝟒
∗

𝒇(𝝎)

𝒆𝒙𝒑(
𝝎

 𝝎𝟎 ∗ 𝟎. 𝟐𝟖
) − 𝟏

∗
𝟏. 𝟎𝟐𝟓
𝝎

 𝝎𝟎 ∗ 𝟎. 𝟐𝟖
+ 𝟏. 𝟎𝟒

∞

𝟎

𝒅𝝎      +      
𝟏

𝟐
 

If we divide all parts into frequency of photon, our energy function becomes logarithmically 
dependent to frequency. Therefore, there must be a linear multiplier of the thermodynamic 
energy inside the expansion energy of photon. Now we can understand that the function of 
the expansion energy has linear and logarithmic parts and we need to write energy function.  

𝒇(𝝎) = (𝒄𝟏 ∗  ħ𝝎) ∗ (𝒍𝒐𝒈𝒃(𝒄𝟐 ∗ ħ𝝎)) 

As we can understand, logarithmic quasi-energy gives an infinite value in both ends. 
Therefore, we have to write the energy function by changing the angular frequency. 
The energy of one photon;  and finally distributed photons times the energy of photons;     kinetic energy; 

𝒇(𝝎)→ (𝒄𝟏 ∗  ħ𝝎𝟎) ∗ (𝒍𝒐𝒈𝒃(𝒄𝟐 ∗ ħ𝝎𝟎)) = ∫
𝟑𝟐𝝅𝝎𝟐

𝝎𝟎𝟑
∗
(𝒄𝟏 ∗  ħ𝝎) ∗ (𝒍𝒐𝒈𝒃(𝒄𝟐 ∗ ħ𝝎))

𝒆𝒙𝒑(
𝝎

 𝝎𝟎 ∗ 𝟎.𝟐𝟖
) −𝟏

∗
𝟏. 𝟎𝟐𝟓
𝝎

 𝝎𝟎 ∗ 𝟎.𝟐𝟖
+ 𝟏.𝟎𝟒

∞

𝟎

𝒅𝝎 + 
ħ𝝎𝟎
𝟐
  

We can easily say that logarithm’s base can easily be equal to 𝒆 which is a natural 
logarithm 𝒍𝒏 and with it we should calculate the constants 𝒄𝟏 and 𝒄𝟐. Moreover, we can make 
some simplifications because of the ħ𝝎𝟎 dependency. We should start with a normalized 
function that is division of energy densities of heat and produced light. Whatever we take 
the initial temperature or the frequency 𝝎𝟎 it becomes always 𝟏. 

∫
𝟑𝟐𝝅𝝎𝟑

𝝎𝟎
𝟒
∗

𝟏

𝒆𝒙𝒑(
𝝎

 𝝎𝟎 ∗ 𝟎. 𝟐𝟖
) − 𝟏

∗
𝟏. 𝟎𝟐𝟓
𝝎

 𝝎𝟎 ∗ 𝟎. 𝟐𝟖
+ 𝟏. 𝟎𝟒

∞

𝟎

𝒅𝝎 ≈ 𝟏 

Because we have empirical function we need to calculate the integral numerically. When we 
calculate logarithm of produced light frequency 𝝎 with respect to initial heat frequency 𝝎𝟎: 
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Now, we will compare all the radiated lights angular frequency with initial frequency 
𝝎𝟎. Therefore, our graph shows the function of; 

∫
𝟑𝟐𝝅𝝎𝟑

𝝎𝟎𝟒
∗
𝒄𝟏 ∗ 𝒍𝒏(

𝝎
 𝝎𝟎
)

𝒆
𝝎

 𝝎𝟎∗𝟎.𝟐𝟖 −𝟏

∗
𝟏.𝟎𝟐𝟓
𝝎

 𝝎𝟎 ∗ 𝟎. 𝟐𝟖
+ 𝟏. 𝟎𝟒

∞

𝟎

𝒅𝝎 =  −
𝟏

𝟑
 

Now we can speak about the 𝒄𝟏 and 𝒄𝟐. If we can create energy in every case as we did in 
functions, we do not need to have a constant inside the logarithmic part.  

𝒄𝟏 ∗ 𝒍𝒏(𝒄𝟐 ∗
𝝎

 𝝎𝟎
)     𝒊𝒔 𝒆𝒒𝒖𝒂𝒍 𝒕𝒐     𝒄𝟏 ∗ ( 𝒍𝒏(𝒄𝟐) + 𝒍𝒏 (

𝝎

 𝝎𝟎
)) 

We do not need to have linear energy difference inside function. We can see that we do not 
need 𝒄𝟐, because we do not have any constant linear energy difference inside the equations, 
so we can take 𝒄𝟐 as 𝟏 and 𝒍𝒏(𝟏) = 𝟎. 

𝑬𝒙𝒑𝒂𝒏𝒔𝒊𝒐𝒏 𝒆𝒏𝒆𝒓𝒈𝒚 𝒐𝒇 𝒑𝒉𝒐𝒕𝒐𝒏 = 𝒄𝟏 ∗ 𝒍𝒏(
𝝎

 𝝎𝟎
) =    𝒄𝟏 ∗ ( 𝒍𝒏(𝝎)− 𝒍𝒏(𝝎𝟎)) 

We must transform this function to real energy density function or just one photon’s energy 
transformation function. We can create energy by changing the wavelengths of the photons, 
while the thermodynamic energy in box is constant. If we have only one photon we should 
find its energy change with distribution or if we have a volume, we should find its expansion 
energy function.By taking an average expansion energy of all distributed photons we have 
find a constant which is equal to −𝟏 𝟑⁄ . It must be equal to −𝟏 𝟐⁄ , because it is the difference 
between the thermodynamic energy and the kinetic energy of the particles. Therefore, 𝒄𝟏 is 
just 𝟏. 𝟓 and the function becomes like; 

𝟏. 𝟓 ∗ ħ𝝎 ∗  𝒍𝒏 (
𝝎

 𝝎𝟎
) 

Because we have energy function which is logarithmically dependent to wavelength change, 
there must be a function with respect to speed of light to give that photon to kinetic energy. 
For normalized function which has constant thermodynamic and quasi-expansion energy;  

∫
𝟑𝟐𝝅𝝎𝟑

𝝎𝟎
𝟒
∗
𝟏. 𝟓 ∗ 𝒍𝒏 (

𝝎
 𝝎𝟎
)

𝒆
𝝎

 𝝎𝟎∗𝟎.𝟐𝟖 − 𝟏
∗

𝟏. 𝟎𝟐𝟓
𝝎

 𝝎𝟎 ∗ 𝟎. 𝟐𝟖
+ 𝟏. 𝟎𝟒

∞

𝟎

𝒅𝝎 = −𝟎. 𝟓        (𝒏𝒐𝒓𝒎𝒂𝒍𝒊𝒛𝒆𝒅 𝒇𝒖𝒏𝒄𝒕𝒊𝒐𝒏) 

And for black body box, total kinetic energy produced from box; 

−𝑽
𝝎𝟎

𝟑

𝟖𝒄𝟑𝝅𝟑
∗ 𝟏. 𝟓 ∗ ħ𝝎𝟎 ∗ 𝒍𝒏(𝝎𝟎)  +  ∫ 𝑽

𝟒𝝎𝟐

𝝅𝟐𝒄𝟑
∗
𝟏. 𝟓 ∗ ħ𝝎 ∗ 𝒍𝒏(𝝎)

𝒆
ħ𝝎

 ħ𝝎𝟎∗𝟎.𝟐𝟖 − 𝟏

∗
𝟏. 𝟎𝟐𝟓

ħ𝝎
 ħ𝝎𝟎 ∗ 𝟎. 𝟐𝟖

+ 𝟏. 𝟎𝟒

∞

𝟎

𝒅𝝎 

We can give simple example about expansion energy exchange of heat and light, if we take 
an average of quasi-expansion energy;  

𝟏. 𝟓 ∗ ħ𝝎𝟎 ∗ 𝒍𝒏(
𝝎
 𝝎𝟎⁄ ) =  −ħ𝝎𝟎 𝟐⁄    𝑠𝑜;  𝒍𝒏(𝝎  𝝎𝟎⁄ ) = −𝟏 𝟑⁄    𝑎𝑛𝑑 (𝝎  𝝎𝟎⁄ ) = 𝟎. 𝟕𝟏𝟔𝟓𝟑𝟏𝟑𝟏𝟏 

This number 𝟎. 𝟕𝟏𝟔𝟓𝟑𝟏𝟑𝟏𝟏 is the frequency of average quasi-energy of photons. This means 
that, if we have initially one photon that has frequency as 𝝎𝟎 = 𝟏 then it can decrease its 
energy and frequency by %𝟐𝟖, 𝟑𝟒 to gain the speed of light. We are using the potential 
energy for heat to become light and this potential energy must work for the case when the 
speed of light changes with respect to our first reference point. So, wavelength of photon 
increases as 𝝀 𝝀𝟎⁄ = 𝟏. 𝟑𝟗𝟓𝟔𝟏𝟐𝟒𝟐 and volume expands as; 𝑽 𝑽𝟎⁄ = 𝝀𝟑 𝝀𝟎

𝟑⁄ = 𝟐. 𝟕𝟏𝟖𝟐𝟖𝟏𝟖 at every 
gained speed of speed of light. So, we can say that one photons redshift formula is; 

𝟏 + 𝒛 = 𝒆(𝒗 𝟑𝒄)⁄    𝑜𝑟 𝑠𝑖𝑚𝑝𝑙𝑦   𝒛 = 𝒆(𝒗 𝟑𝒄)⁄ − 𝟏 
As we can understand, for black body box all the internal energy must be radiated as 

photons so, there is no lose for thermodynamic energy. However, for cosmological redshift, 
we have initially created photons at source and only logic becomes logarithmically losing of 
mass, kinetic and quasi-potential energy at the same time by changing the medium of light. 
As we can see, the quasi-expansion-potential forces photon to move at the speed of light. 
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MY COMMENTS 
As we can understand this new quasi-energy must play a very important role for the 

expansion of the universe. Even if I have written this article only about cosmological redshift 
and its formulation, I did not want to write everything about it. I’m also trying to work about 
its particle property in a different mechanical way. However, due to the lack of mathematics 
I’m suffering from the series functions of infinitely many particle systems and explaining this 
potential in a particular way. 

The problem is not the mathematics that we used in this article but, the assumptions. 
I am thinking that the mechanics of the physics must be very different than our expectations 
because, our current mechanics cannot explain all the physics. If you interested in my ideas, 
you can look for my another article and I am also searching for help about its mathematics.  
Maybe you can help me about its mathematical derivation. 
 
http://vixra.org/author/kadir_aydogdu 
http://vixra.org/abs/1809.0455  Dark Heat 
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