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Abstract 

 

It is shown that Riemann’s hypothesis is true by showing that an equivalent state-

ment is true. Even more, it is shown that Stieltjes’ conjecture is true. 
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1) Introduction  

Riemann stated his hypothesis in 1859 [1]: the non-trivial zeroes of his zeta-function in 
the complex plane are all on the line with real part 1/2.  

Closely related is the Möbius function µ(n) [2], [9, page 234] which indicates if there are 
even or odd numbers of distinct primes and which can be used for an equivalent formu-
lation of the Riemann hypothesis (5), precisely: 

- µ(n) = 0, if n has one or more repeated prime factors (is not square-free). 

- µ(n) = (-1)k, if n is a product of k distinct primes. This is: µ(n) = 1 if there is an even 
number (including zero) of distinct primes and µ(n) = -1 if there is an odd number 
of distinct primes. 

Furthermore, the Mertens function M(x) [5, page 370] is summing up the Möbius function: 

(1) M(x) = ∑ µ(𝑘)
𝑛≤𝑥 

𝑘=1
. 

Here is a sequence of equations, analysis and theorems around the Möbius function that 
will be used in this paper: 

- (2) Equation: lim
𝑛→∞

(∑ |µ(𝑘)𝑛 
𝑘=1 |)

 

𝑛
= 6/π2; asymptotic density of square-free num-

bers q(n) =  |µ(n)|, [9, page 270]. 

- (3) Equations: Similarly [3], [10, page 606], and using Iverson’s notation, the 
asymptotic densities of µ(k)=1 or µ(k)=-1 are: 

lim
𝑛→∞

(∑ [µ(𝑘)=1
𝑛 

𝑘=1
])
 

𝑛
= 3/π2; and lim

𝑛→∞

(∑ [µ(𝑘)=−1]
𝑛 

𝑘=1
)
 

𝑛
= 3/π2. 

- (4) Equation: lim
𝑛→∞

(∑ µ(𝑘)𝑛 
𝑘=1 )

 

𝑛
= 0; average order of µ, which is equivalent to the 

prime number theorem [11, page 64]. 

- (5) Theorem: M(x) = O(x 0.5+ε), ε>0, is equivalent to Riemann’s hypothesis, us-
ing big O notation [4], [5, page 370], [6, page 47], [7, page 251]. We will make use 
of this theorem to verify the Riemann hypothesis.  

- (6) Theorem: M(x) = Ω(x 0.5); this shows a lower bound, using Ω notation [5, 
page 371].   
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- (7) Conjecture: M(x) = O(x 0.5); Stieltjes’ conjecture, implying Riemann’s hy-
pothesis [4], [7, page 250]. 

Denjoy’s probabilistic interpretation of Riemann’s hypothesis [8, pages 268f] is not used 
for the proof in chapter 3). 

 

2) Outline of the Proof 

Step 1: It follows from (2) and (9) a linear term and a remainder term O(√𝑥) for the sum-
matory function of square-free numbers (big O notation). 

Step 2: The same remainder term for the summatory function of the set of numbers with 
µ(k)=1 and the set of numbers with µ(k)=-1 can be concluded. 

Step 3: Finally, the equation for M(x) is created, using the result of step 2, which shows 
Riemann’s hypothesis. Supporting evidence is presented in chapter 4). 

 

3) Riemann’s Hypothesis 

Looking at the square-free numbers (2), there is a remainder term in [9, page 270]: 

(8) ∑ |µ(𝑘)𝑛 
𝑘=1 | = (6/π2) ∗n + O(√𝑛), 

where the sum - using Titchmarsh’s notation [5, page 370] - is noted as:  

(9) Q(x) = ∑ |µ(𝑘)𝑛≤𝑥 
𝑘=1 | = (6/π2) ∗x + O(√𝑥). 

The remainder term (big O notation) takes care of details not described by the linear term. 

This does not imply randomness, it shows that additional terms are of order O(√𝑥). 

Let us define with Iverson’s notation: 

(10) Q+1(x) = ∑ [µ(𝑘)
𝑛≤𝑥 

𝑘=1
= 1], the summatory function over all numbers with µ(k)=1. 

(11) Q-1(x) = ∑ [µ(𝑘)
𝑛≤𝑥 

𝑘=1
= −1], same for all numbers with µ(k)=-1. 

From (10) and (11) together with (9) and (1) there is [10, page 606]: 

(12) Q(x) = Q+1(x) + Q-1(x), and: 

(13) M(x) = Q+1(x) - Q-1(x). 

From (3) it is known that Q+1(x) and Q-1(x) both have linear terms, but I am not aware of 
any publication regarding the remainder terms. So there is: 

(14) Q+1(x) = (3/π2) ∗x + O(f+1(x)), and: 

(15) Q-1(x) = (3/π2) ∗x + O(f-1(x)), where both f(x) limit the order of additional terms. 

From (9) it is known that the remainder term of (12) is O(√𝑛). 

Hence O(f+1(x)) and O(f-1(x)) both are of maximal order O(√𝑛), otherwise there would 
be a contradiction. From this, (3), (13) and the calculation rules of big O we conclude: 

(16) M(x) = O(√𝑥), complying with (6). 

 

This is Stieltjes’ conjecture and (16) implies Riemann’s hypothesis by (5). 

Hence Riemann‘s hypothesis is true.  
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(4) Supporting Evidence – Part 1 

In [7, page 323] – while following Denjoy’s probabilistic interpretation of Riemann’s hy-
pothesis – it is argued that from a strict 1:1 correlation between numbers with µ(k)=1 and 
numbers with µ(k)=-1 the Riemann hypothesis follows. Let us have a look on equations 
(3) and (4). They suggest that µ(k)=1 is as frequent as µ(k)=-1. But still there might be a 
huge deviation from a strict 1:1 correlation. 

(17) Theorem: There is a bijection between the set of odd square-free numbers and the 
set of even square-free numbers. 

(18) Theorem: There is a bijection between the set of numbers with µ(k)=1 and the set 
of numbers with µ(k)=-1. 

 

Proof: In picture (19) all square-free numbers are allocated into four sets A, B, C, D. By 
construction these four sets do not share any common numbers and together these four 
sets cover all square-free numbers. There is a bijection between sets A and B, and a bijec-
tion between sets C and D, both implemented as a multiplication with 2 or division by 2 
respectively. From this there is a bijection between {A ⋃ C} and {B ⋃ D} which delivers 
theorem (17). There also is a bijection between {A ⋃ D} and {B ⋃ C} which delivers theo-
rem (18) and is more strict than (3) which states same asymptotic density. 

 

(4) Supporting Evidence – Part 2 

(20) Theorem: There is a bijection between the set of odd square-free numbers with an 
odd number of prime factors and the set of odd square-free numbers with an even number 
of prime factors (sets A and C in picture (19)). 

(21) Theorem: There is a bijection between the set of even square-free numbers with 
an odd number of prime factors and the set of even square-free numbers with an even 
number of prime factors (sets B and D in picture (19)). 

Proof: picture (22) shows the square-free numbers generated with a set of four odd prime 
numbers. The number of elements with a certain number of prime factors are counted. 

Set A: all odd square-free numbers with 

even number of prime factors

1

3*5, 3*7, …, 5*7, 5*11, …

3*5*7*11, 3*5*7*13, …

…

Set C: all odd square-free numbers with 

odd number of prime factors

3, 5, 7, …

3*5*7, 3*5*11, …

3*5*7*11*13, 3*5*7*11*17, …

…

Set B: all even square-free numbers with 

odd number of prime factors

2

2*3*5, 2*3*7, …, 2*5*7, 2*5*11, …

2*3*5*7*11, 2*3*5*7*13, …

…

Set D: all even square-free numbers with 

even number of prime factors 

2*3, 2*5, 2*7, …

2*3*5*7, 2*3*5*11, …

2*3*5*7*11*13, 2*3*5*7*11*17, …

…

bijection

bijection

(19) Picture

multiply with 2

divide by 2

µ=1

µ=-1

µ=-1

µ=1

Allocation of square-free numbers
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For 0, 1, 2, 3, 4 prime factors there are 1, 4, 6, 4, 1 elements respectively, which is deter-
mined by the binomial coefficients. Numbers of elements in Set 1 and Set 2 are the same. 

 

If Set 1 and Set 2 are created with more and more odd prime factors, the result stays the 
same: |Set 1| = |Set 2|. 

The reason is the formula for the sum of alternating binomial coefficients: 

∑ (𝑛
𝑘
)(−1)𝑘

𝑛

𝑘=0
= 0.  

This formula holds for arbitrary many prime factors (alternatively |Set 1| = |Set 2| could 
be shown by induction when adding the next odd prime factor) and thus delivers theorem 
(20). Taking “2” as one of the prime factors in the sets delivers theorem (21). 

From theorems (17), (18), (20) and (21) it follows: |A| = |B| = |C| = |D| with the four sets 
defined in picture (19). 

 

(4) Supporting Evidence – Part 3 

Let S be an infinite set of numbers: S={a, b, c, …}; where a, b, c, … are arbitrary numbers. 
For ease of notation let us define a function r  that returns k if t is k times included in S: 

(23) r(t, S)=1, if {t}⊆S; r(t, S)=2, if {t, t}⊆S; r(t, S)=k, if {t, t, …, t}⊆S , with |{t, t, …, t}|=k ;  
otherwise r(t, S)=0. (Returns maximum possible k). 

If all elements in S are different, r is an indicator-function, showing if a number t is in S.  

 

Set 1: all odd square-free numbers with 

even number of prime factors

0 prime factors: |{ 1 }| = 1

2 prime factors: 

|{ 3*5, 3*7, 3*11, 5*7, 5*11, 7*11 }| = 6

4 prime factors: |{ 3*5*7*11 }| = 1

Set 2: all odd square-free numbers with 

odd number of prime factors

1 prime factor: |{ 3, 5, 7, 11 }| = 4

3 prime factors: 

|{ 3*5*7, 3*5*11, 3*7*11, 5*7*11 }| = 4

(22) Picture

Example with primes 3, 5, 7, 11

(24) Picture

∑  ( ,   )
  

 = 
; S0={1, 2, 3, …, 30, …}
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∑  ( ,  )
  

 = 
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Summatory function of r

n n

S

S2



Riemann’s Hypothesis and Stieltjes’ Conjecture 
_____________________________________________________________________________________________________ 

 
Contributed by Dr. Clemens Kroll   5/6 

The summatory function of r is shown in picture (24), on the left hand side there is a sim-
ple example with a set S0 containing natural numbers starting with 1. On the right hand 

side there is a more complex S resulting in ∑ 𝑟(𝑘, 𝑆)
𝑛 

𝑘=1
 = const∗n + O(√𝑛). The dotted line 

represents the linear term, the range between the continuous lines shows the effect of the 
big O (illustrative). Summatory r of another set S2 is shown additionally, described below. 

Now let us check what happens to ∑ 𝑟(𝑘, 𝑆)
𝑛 

𝑘=1
 = const∗n + O(√𝑛) when all elements of S 

are multiplied with some number c, for example 2 like in picture (19). Let us call this set 

S2, with S2={a∗2, b∗2, c∗2, …}. Then there is ∑ 𝑟(𝑘, 𝑆2)
𝑛 

𝑘=1
 = const*n/2 + O(√1/2 ∗ √𝑛). 

Recalling the invariance of big O regarding constant factors results in: 

(25) ∑ 𝑟(𝑘, 𝑆2)
𝑛 

𝑘=1
 = const∗n/2 + O(√𝑛). 

Similarly, having a set S with even elements only – like sets B and D in picture (19) – all 
elements in S can be divided by 2 and S3={a/2, b/2, c/2, …}. Like above there is: 

(26) ∑ 𝑟(𝑘, 𝑆3)
𝑛 

𝑘=1
 = const∗n∗2 + O(√𝑛). 

From (25) and (26) it is seen that for linear scaling operations on elements of a set S with 

∑ 𝑟(𝑘, 𝑆)
𝑛 

𝑘=1
 = const∗n + O(√𝑛), the remainder term stays in the same order O(√𝑛), and 

the linear term is re-scaled inversely to the multiplicative factor but still is a linear term.  
This applies to sets A, B and to sets C, D in picture (19). 

This is shown for integer multipliers or divisors. There are multiple more general settings 
than used here regarding the multipliers or the functions within the big O. 

Let us come back to the summatory function of r: ∑ 𝑟(𝑘, 𝑆)
𝑛 

𝑘=1
 and have two infinite sets 

S1 and S2. Without loss of generality, it is assumed that the elements in the sets show up 
in ascending order. From this ordering there directly is: 

(27) ∑ 𝑟(𝑘, {𝑆1 ⋃ 𝑆2})
𝑛 

𝑘=1
 =∑ 𝑟(𝑘, 𝑆1)

𝑛 

𝑘=1
 +∑ 𝑟(𝑘, 𝑆2)

𝑛 

𝑘=1
. 

This supports the conclusion regarding the big O terms in (14) and (15).  

Finally – taking the four sets in picture (19) – we have: 

 ∑ 𝑟(𝑘, 𝐴)
𝑛 

𝑘=1
 = (1.5/π2) ∗n + O(√𝑛); 

 ∑ 𝑟(𝑘, 𝐵)
𝑛 

𝑘=1
 = (1.5/π2) ∗n + O(√𝑛); 

 ∑ 𝑟(𝑘, 𝐶)
𝑛 

𝑘=1
 = (1.5/π2) ∗n + O(√𝑛); 

 ∑ 𝑟(𝑘, 𝐷)
𝑛 

𝑘=1
 = (1.5/π2) ∗n + O(√𝑛). 
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