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Some words upfront.

This little book is meant as a generalization of classical topology and geometry
into the realm of non-commutative topologies as well as geometries. These are
objects of the operational kind where a space is glued together and the gluing
procedure does not obey the commutativity and associativity properties of the
set theoretical union. That is to say, there is substance to space like there are
two sides to a wooden plate and space is not something which exists and void of
properties at the same time. Likewise is this so for the distance function where
measurement, or the act thereof, depends upon previous measurements leaving
a trace in the non-abelian dust. This is a property which holds for sure in na-
ture albeit we know the dust to be very subtle regarding our senses. We do not
see neither feel it, but it is there and a necessary aspect for the creation of life.
Until a few decades ago, physicists have righteously ignored these small aspects
of geometrical sensitivity but it has become the time to investigate them prop-
erly. There exist a few distinct proposals from the mathematical side of how
to deform the classical situation; for example Alain Connes focuses on function
algebra’s and Dirac operators. It is well known that the classical limit problem
herein is well posed and answered for, albeit the general non-abelian situation
has no obvious geometrical interpretation and it appears way too general in or-
der for it to be useful. Another approach was taken by Majid, Vaes and others
and hinges upon the concept of a Hecke algebra which is an object unifying a
Lie-algebra and a Lie-group; an approach which seems certainly useful for highly
symmetrical spaces such as Minkowski or (anti) de Sitter. It is nevertheless still
grounded in the concept of “inertial coordinates” and generalizations towards
curved geometry are highly suspicious and confused. The approach taken here
resembles the one taken in my book on “geometrical quantum theory and ap-
plications” where classical physics is written as a peculiar case in the quantum
language and quantum theory is rather seen as a bi-dual theirof. That is, there
is a one to one mapping between a classical metric space and the quantization
theirof. We shall go much further here and study connection theory from an
abstract global point of view and develop quantum connections with differen-
tiable sections. The book is short and intended for the beginning researcher;
everything which follows is exactly defined and all relevant properties proven
and commented upon.
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Chapter 1

Classical logic and topology.

Spaces are usually defined as consisting out of elements and being composed by
gluing of “standard” elements together. This requires cut and paste operations
equivalent to taking the intersection ∩ and union ∪. In standard mathematics,
we assume those operations to be perfect meaning there is no waste as well
as no preference for how or the order in which they are performed. This last
stance translates as A ∩ B = B ∩ A as well as A ∪ B = B ∪ A both properties
being referred to as the commutativity of the respective operations. This is not
necessarily so in nature, it does matter for example when I poor coffee in first
in a bowl and then hot water later on. In this case the coffee dissolves and
raises upwards causing for a homogeneous mixture. If I were to do it the other
way around, the coffee would most likely keep on floating on the water. So this
commutativity of the union is not obvious, it refers to the fact that items are
hard objects and no particular law holds between them. They are independent
as to speak; this stance of individualism is required in science, we would not
learn anything from a holistic perspective. We have to subdivide and believe
in holy freedom otherwise nothing can be said about the I and its relations
to others. We moreover insist those operations to be associative meaning that
(A ∩ B) ∩ C = A ∩ (B ∩ C) and likewise so for the union. Now, we can talk!
Denote with A,B,C, . . . so called sets; we have no idea yet what they are but
we shall further specify some properties regarding the operations ∩ and ∪. The
operations satisfy for sure A ∩A = A ∪A = A and we demand the existence of
a unique empty set ∅ such that

A ∩ ∅ = ∅
A ∪ ∅ = A

A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

where this last rule is the same as the de-Morgan rule in Boolean logic. Set
theory at this level is equivalent to the rules of classical logic where the A
denote truisms and ∅ is given by “false”. Then A ∩ A = A reads as A and
A are both true is the same as A is true. A or A is true, denoted by A ∪ A
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is the same as A is true. A and false is always false whereas the vericacity of
A or false just depends upon A. Finally A is true and B or C is true is the
same as A and B is true or A and C is true. So set theory is classical logic,
it is a definite speech about truisms of belonging to. We will later on think of
devilish ways to escape this definite way of speaking about things which hinges
upon many assumptions which could equally well be false. However, just as is
the case for Greek and Roman architecture, the most simple rules can allow
for very complicated ones to arise by means of building. The old Greek alway
described elements or atomos as things which cannot be further subdivided;
hence the following definitions. We say that A is a subset of B if and only if the
intersection of A and B equals A which reads as A ⊆ B ↔ A∩B = A. An atom
A 6= ∅ is called a primitive set, that is, A has the property that if B ⊆ A then
B = A. The reader checks the obvious statement that A ∩ C 6= ∅ is a subset of
A; this follows from associativity and commutativity of the intersection because
A∩ (A∩C) = (A∩A)∩C = A∩C and therefore, by definition A = A∩C ⊆ C
in case A is an atom or primitive set. Indeed, we can only speak of subparts
when the operation of intersection is priceless. This suggests that primitive sets
are as elements of a set and to emphasize that distinction we denote A = {Â}
where Â is interpreted as an element and the brackets denote the bag. We use
the symbolic notation Â ∈ B as an equivalent to the more primitive statement
A ∩B = A.

The reader notices that we have defined elements from the operations ∩,∪
whereas normally the opposite happens; you cannot crumble the bread further
than up to its elementary fibers. This is a much more human way of dealing with
language in the sense that the limitations attached to our operations define our
notion of reality. The old approach starts from divine knowledge which nobody
possesses; in order to make logic dynamical and attached to physical processes
in space-time, mathematicians have invented the notion of a Heyting algebra
instead of a Boolean one. We shall not go that far in this book but the interested
reader should comprehend very well how this definition is tied to the one of
classical relativistic causality. Our point of view also allows for quantal rules as
long as the de-Morgan rule is suitably deformed; we shall discuss such logic in
this book and make even further extensions towards non-associative and non-
commutative cases. Extension of the material presented is left to the fantasy of
the gifted reader. For example, an infinite straight line does not need to consist
out of points, the latter being mere abstractions. Let us first investigate further
implications of our rules before we move on to further limitation of the setting at
hand. It is true that if B ⊆ C then every element Â in B belongs to C. Indeed,
Â ∈ B if and only if A∩B = A and therefore A∩C = (A∩B)∩C = A∩(B∩C) =

A ∩ B = A proving that A ∩ C = A and therefore Â ∈ C. Differently, Â ∈ B
if and only if A ∩B = A which is equivalent to (A ∩ C) ∩B = A and therefore
A ∩ C 6= ∅ from which follows that A ∩ C = A because A is an atom. Hence,
elements of subsets belong to the set itself. What about the intersection of two
sets? First, we show that if Â ∈ B,C then Â ∈ B ∩ C: this holds because
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A ∩ (B ∩ C) = (A ∩B) ∩ C = A ∩ C = A and therefore Â ∈ B ∩ C. The other

way around, we have that if Â ∈ B ∩C then Â ∈ B,C because the intersection
is a subset of both. Hence, the elements in the intersection are precisely those
which are in both of them. What about the union? We show that if Â ∈ B ∪C
then either Â ∈ B or Â ∈ C because A = A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)
implying that at least one of them is non empty and equal to A due to atomicity
of the latter. Reversely, one has that if Â ∈ B then it is an element of B ∪ C
because A∩ (B∪C) = A∪ (A∩C) which equals A∪A or A∪∅ due to atomicity
of A. In both cases we have that A∩ (B ∪C) = A because A∪ ∅ = A = A∪A.
Therefore, the elements in the union are in correspondence to the elements of
one of the sets.

As suggested previously this does not imply that sets are fully specified by their
elements nor that elements exist in the first place. For example, assume that S
consists of ∅, {1}, {1, 2}, then {1} is an atom, but {1, 2} does not merely consist
out of atoms. Standard set theory makes the assumption that

B = {Â|Â ∈ B}

meaning that a set equals a collection of its elements. In this case, we have
just proved that ∩ and ∪ coincide with the usual operations of intersection and
union. The reader might think this is all a bit abstract and utter “well, can
I just not assume this without all these rules?”. The simple answer is “no”;
mathematicians are very scarce on their assumptions indeed! Why writing an
extra sentence into the constitution when the latter is already a consequence of
the former rules?! The next question one could pose then is “well on then, but
how do you make up for all these theorems as well as the formal proofs?”. The
simple answer is that the results have to be in your mind prior to making up the
concepts! A proof is no more as a logical confirmation of a kind of naturalistic
observation in a way. Henceforth, it is merely an exercise to verify that the
concepts lead to the appropriate results. This applies in the case of set theory
due to the existence of the natural concept of an atom being equivalent to an
element.

These are by far not the only rules of set theory which we shall slowly expand
upon by means of more complicated objects and operations. Let us now deviate
a bit and reflect further upon the commutation and associative properties of
the intersection as well as union. We imagined that a set can be thought of
as items in a bag; however, in reality our bag is a phantom bag given that the
operations of emptying and resorting do not matter in taking the intersection
or union. This would lead to complications involving the order of operations
leading to a non-commutative logic which we shall study later on in this book.
A true Frenchman would expect such rule to emerge in a way from the simple
ones and indeed this is the case. Another field where such a thing happens is
Riemannian geometry which is a generalization of flat Euclidean geometry.

We define the natural numbers n by means of the sum operation n = 1 + 1 +
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1 + 1 + . . .+ 1 by means of the following prescription:

0 = {∅}
n+ 1 = {n, ∅}.

Hence, 1 = {{∅}, ∅}, 2 = {{{∅}, ∅}, ∅} etcetera; this is a partial dictionary made
out the symbols ∅, {, } which are part of any set theory. I have warned the
reader that symbolic notation often is the most difficult part of set theory and
the latter notation allows for a definition comprehensible by a computer albeit
the latter uses binary representations. We define in the same way n + m by
means of the prescription n+ (m+ 1) = {(n+m), ∅} where n+ 0 = 0 + n = n.
The reader shows that n + m = m + n for every natural number m which is
true by definition for m = 0. Indeed, suppose it is true for m = k, then we
show it holds for m = k + 1. Indeed, n + (k + 1) = {n + k, ∅} = {k + n, ∅} =
{k + (1 + (n − 1)), ∅} = {(k + 1) + (n − 1), ∅} = (k + 1) + n where, in the
first step, we have used the definition of the natural numbers, in the second the
assumption that k+n = n+ k and finally, in the third step, the associativity of
+. We pose that N is the set of all natural numbers, something which defines a
set theory by means of taking all subsets of N.

The operation + maps two natural numbers onto a natural number; it is associa-
tive, commutative and has 0 as a neutral element implying that 0+n = n+0 = n.
For any n, it is possible to define an inverse −n satisfying n + (−n) = 0 =
(−n) + n something we denote by n − n = 0; n + (−m) = n −m is a natural
number n > m and minus a natural number if n < m. The set of natural
numbers taken together with their inverse is called the entire numbers and is
universally denoted by Z. Z,+ is called a commutative group given that the
operation + is interior, associative, has a neutral element and inverse.

As previously stated, one starts by making a distinction between elements of a
set and sets themselves; we departed from the concept of an empty set ∅, the
intersection and union and therefrom we deducted the first three axioms of set
theory. The approach taken here is somewhat more general as we defined an
element as a primitive set. Zermelo-Frankel set theory has plenty of more as-
sumptions which have to do with infinity culminating into the axiom of choice.
A fifth axiom deals with taking set theoretical differences

B \ C = {Â|Â ∈ B ∧ Â /∈ C}

and we shall always assume the difference set to exist. In the field of geometry,
it is not only possible to take the union of two lines or the intersection theirof
but we can also take the so called Cartesian product, defining a two dimensional
sheet. More in particular, given two sets B,C, we define the Cartesian product
B × C as the set of all tuples (x, y) such that x ∈ B and y ∈ C giving a six’th
axiom in S and henceforth is this last one closed with respect to × from which
holds

A× (B ∩ C) = (A×B) ∩ (A× C)
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and
A× (B ∪ C) = (A×B) ∪ (A× C).

The existence of Cartesian products allows us to define relations where a rela-
tionship R between sets B and C constitutes a subset of B×C. In case B = C
we can demand plenty of criteria. With the notation xRy we intend to say that
x has a relation of type R to y if and only if (x, y) ∈ R; we call R reflexive if xRx
for all x ∈ B, symmetric if xRy implies that yRx for all x, y ∈ B and finally
transitive if xRy and yRz imply that xRz. A reflexive, anti-symmetric, transi-
tive relation is called to be a partial order and is noted by ≺ or ≤. A reflexive,
symmetric and transitive relation is called an equivalence relation and is usually
denoted by ≡. One should think of an equivalence relation as a generalization
of the equality sign given that it concerns objects with similar properties. One
should prove that an equivalence relationship defined on a set A pulverizes it in
equivalence classes x where

x = {y ∈ A|x ≡ y}.

The reader verifies that x = y if and only if x ≡ y and therefore the intersection
x∩y = ∅ if they are not equivalent. A partial order is a generalization of a total
order such as “Jon is larger as Elsa”. A partial order allows for two objects to
be not related at all.

We have defined the natural numbers by means of the operation +; N has a
natural total order ≤ defined by n ≤ n and n ≤ n + 1 and one takes the
transitive closure therefrom which is defined by imposing transitivity on the
existing relationship. This can be compared with lacing a chain. From the
natural numbers we constructed the entire numbers Z and the definition of ≤ has
a natural extension towards Z. We construct now the rational numbers starting
from Z×N0 and imposing the equivalence relationship (m,n) ≡ (m′, n′) if and
only if there exist a k, l ∈ N0 such that km = lm′, kn = ln′ where N0 = N\{0}.
De rational numbers are henceforth defined as the equivalence classes defined
by means of this equivalence relation.

The six axioms discussed are by far the most important ones of set theory and
allow one to construct the rational numbers; the remaining two axioms concern
infinity and are in general added to generalize aspects of the rational numbers
to the real ones. We shall be very cautious here with the kind of infinity we shall
allow for culminating into a thorough discussion of the axiom of choice. The
seven’th axiom allows one to define subsets of sets: given a set D, the power
set 2D of all nontrivial subsets of D is a set and belongs to S. This axiom
leads to the construction of the ordinary numbers by Cantor. The definition
the Cartesian product is extended to so called “index” sets something which
requires a partial order ≺. An index set I is a set equipped with a partial order
≺ such that for any x, y ∈ I there exists a z ∈ I such that x, y ≺ z. This
condition is required and sufficient if we want to take unique limits such any
reader should check. If this is not valid, then several sub limits could exist;
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hence, we denote by
×i∈IAi = {(xi)i∈I |xi ∈ Ai}

where all I-tuples are partially ordered by ≺. Finally, we have the so called
axiom of choice which can be formulated as follows: given sets Ai, i ∈ I, with I
an index set, then the Cartesian product is nonempty. Another, but equivalent
formulation is that there exists a function f from I to ∪i∈IAi such that f(i) ∈
Ai. So, one can constitute a set by drawing an element from each set. This
axiom has plenty of ramifications in some parts of mathematics, in particular
functional analysis although some mathematicians have refuted it because some
results appear too strong and give the transfinite an equal status to the finite
situation. I have stated it already a few times: mathematics as such is not
open to proof; it is a language and we have to make some grammatical choices.
The reader has to reflect about these rules en be conscious of the fact that
commutativity, associativity as well as the formation of a power set are the
most simple of all symmetrical rules. An example which does not obey these
rules has been constructed from this ideal situation; for example, we shall study
later on non commutative or associative operations and construct those from the
simple commutative situation. This leads to non commutative groups, quantum
groups etcetera. This reminds us about the Egyptian architectural art followed
by the Roman and French symmetrical ones: super simple, magnificent and
logical.

One has to contemplate about topology as a refinement of set theory; it is to
say, we limit ourselves to special sets being the so called open sets. In nature,
an open set is an abstraction, an imaginary concept which has no real existence.
An open surrounding has to be thought of as a voluminous object: for example,
a straight line segment is the set of all real numbers between two extremal
values denoted by (a, b) = {x|a < x < b} with a natural length of b − a. A
point is an example of a closed set and has vanishing volume or length. We now
consider some properties regarding the set theoretical operations on the open
segments (a, b): the union of two open segments is declared open by fiat whereas
the intersection of two open segments is an open segment anew. Note that the
union of open segments can be written as a disjoint union. Given a set D, we
call a set τ(D) of subsets of D a topology if and only if

• ∅, D ∈ τ ,

• A,B ∈ τ implies that A ∩B ∈ τ ,

• Ai ∈ τ implies that ∪i∈IAi ∈ τ for every second countable index set I.

I stress again that this definition depends upon the commutativity as well as as-
sociativity of the intersection and union; it is possible to define a non-associative
and non commutative topology by means of deformations. We shall study this
from the viewpoint of logic further on and the reader may repeat these construc-
tions almost ad-verbatim here. In this chapter, we start pedestrian by studying
the classical case, where taking the union can be seen as putting landscape maps
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together; typically such charts overlap and all we demand is that the intersec-
tion of two charts is again a chart and that arbitrary many of them can be put
together. There exist special subsets E ⊆ D which are

• closed if and only if Ec := D \ E ∈ τ(D),

• compact if and only if for any coverage by means of open sets Oα of E
there exists a finite sub-coverage Oi; i = 1 . . . n such that E ⊆ ∪ni=1Oi.

Henceforth, the compact sets are those which can always be covered by means
of a finite sub-cover such as for example a globe: irrespectful of how small you
make the charts, the globe is covered by a finite number of them. Given a point
p ∈ D, we say O is an open environment of p if and only if p ∈ O. Given a
point p, a basis of open environments is given by a countable collection of open
neighborhoods Oi of p, such that for any open V encompassing p it holds that
there exists an index i such that Oi ⊆ V . One could moreover demand that
Oi+1 ⊆ Oi by taking intersections but this is not mandatory however. Regarding
the closed sets X,Y one has to verify the following truisms: (a) ∅, D are closed
(b) X ∪ Y is closed (c) ∩i∈IXi is closed if and only if all Xi are as such. Sets
such as ∅, D which are open and closed at the same time are dubbed cloped.
Given B ⊆ D, the intersection of all closed sets X encompassing B is closed and
called the closure of B which we denote as B. The closure of a set is therefore
the smallest closed set encompassing the latter itself. In other words, one adds
elements or points which are limits of elements in B. More concretely, we call x
a limit point of a sequence (xi)i∈I if and only if for every open neighborhood O
of x it holds that there exists an index j such that ∀j ≺ i it holds that xi ∈ O.
Now one shows that, using the properties of an index set, if y were another
limit point then the open neighborhoods of x and y coincide. This motivates
the following definition: a topology is Hausdorff if and only if all disjunct points
x and y have open neighborhoods each with empty mutual intersection. It is
to say that x ∈ O, y ∈ V and O ∩ V = ∅. For Hausdorff topologies it holds
that the limit point of a sequence is unique. We now prove the following result
for topologies with a countable basis: a set is closed if and only if it contains
all its limit points. Indeed, suppose that B is closed, and (xi)i∈I is a sequence
in B with limit point x ∈ D, then it holds that x ∈ B otherwise one can find
an open neighborhood Bc of x which is disjoint with (xi)i∈I , something which
contradicts the definition of a limit point. Reversely, suppose that any limit
point of B belongs to B, then we show that B is closed; suppose it is not,
then we find an x ∈ B \ B such that for any basis-open neighborhood On of x
we find an element xn ∈ B ∩ On and as such it holds that x is a limit point
of (xn)n∈N ∈ B and henceforth, by assumption, an element of B which leads
to a logical contradiction. Later on, we give an example of a compact set in
a non-Hausdorff topology with a sequence containing no subsequence with a
limit point (in case you want to think about this; find an example in an infinite
number of dimensions). We shall study further characteristics of compactness
in the so called metric topologies, which are determined by a distance function
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d.

So far, the treatment of topology appears to be very abstract and not very
useful at all, one can think of any topology one wants to and indeed, all subsets
of the real number system for example constitute a topology called the discrete
topology. Indeed, in this case, all sets are cloped which suggests a huge triviality.
The physical reality we live in appears by very close inspection much more
peculiar given that we speak about distance functions and spheres such as for
example the circle with radius of 10 kilometer around Brussels measured from
the Grand Place in bird flight. On earth this procedure only goes wrong when
one traverses half of the circumference; one step further in the same direction
would replace that journey by a different one where one originally departs in
the opposite direction. Therefore, at large distances, one can expect problems
of this global nature and in quantum geometry, one suspects those issues can
occur at small distances too. Typical scales here are much smaller as those of
an atom. By definition, a distance function d : X ×X → R+ defined on a set
X satisfies

• d(x, y) = 0 if and only if x = y,

• d(x, y) = d(y, x) for each x, y ∈ X,

• d(x, z) ≤ d(x, y) + d(y, z) the so called triangle inequality.

A distance function defines a so-called Hausdorff topology with countable basis
by means of the open balls

B(x, ε) = {z|d(x, z) < ε}

giving rise to a countable basis defined by B(x, 1
n ) where n ∈ N0. Two points

x, y separated by means of a distance d(x, y) > 2ε can be surrounded by means
of two disjoint balls B(x, ε), B(y, ε) respectively. This representation of affairs is
still a bit abstract given that one wants to measure angles as well contemplate a
notion of orthogonality which is not so simple in this formalism. In other words,
we require further specialization extending beyond the distance function only.
Nevertheless, one can prove plenty of theorems in this primitive language relying
solely upon those three axioms. A generalization consists in specifying that the
distance function has a local origin; it is to say that the distance between two
points can be chopped into arbitrarily small pieces. This leads to the notion of
a path metric: d is a path metric if and only if the property holds that for any
two points x, y there exists a z such that

d(x, z) = d(y, z) =
d(x, y)

2
.
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In other words, every two points define at least one midpoint. We shall later on
give a better representation of those facts.

We will study now an equivalence relationship between two topological spaces;
in other words, when are two topological spaces the same? To determine that,
we shall study topological mappings between two topological spaces X,Y . A
mapping f : X → Y is defined by means of a subset F of the Cartesian product
X ×Y ; F obeys the law that for any x ∈ X there exists exactly one y ∈ Y such
that (x, y) ∈ F . y is then denoted as f(x) and F is the graph of f . In human
language, this signifies that each element chosen from X has precisely one image
in Y . Concerning mappings, we formulate still the following extremal properties:
(a) f is injective if and only if f(x) = f(x′) implies that x = x′ or each x has a
different image (b) f is surjective if and only if for each y ∈ Y there exists an
x ∈ X such that f(x) = y or, in other words, every potential image is realized
effectively. Finally, we say that f is a bijection if and only if it is injective as
well as surjective; bijective mappings are equivalences between sets as we shall
see now. Suppose f : X → Y and g : Y → Z then g ◦ f : X → Z : x→ g(f(x))
is the composition of these two mappings. Show that g ◦ f is injective if and
only if g has this property on f(X) and f obeys this law on X. Show that g ◦ f
is surjective if and only if g is on f(X); finally, show that g ◦ f is a bijection if
and only if g is and f is injective. In case f : X → Y is a bijection, it becomes
possible to define a unique inverse f−1 : Y → X by means of

f−1(f(x)) = x

or f−1 ◦f = idX where idX constitutes the identity mapping on X. Derive here
from that

f ◦ f−1 = idY

using the surjectivity of f . Finally, one shows that f−1 also is a bijection; we
say henceforth that X and Y are equivalent if and only if there exists a bijection
from X onto Y . Using the previous properties, one shows that this relation is
reflexive, symmetric and transitive. Now, we are in position to define topolog-
ical equivalences f : X → Y ; f is continuous if and only if the inverse of each
open set O in Y , denoted by f−1(O), is open in X. For a continuous bijection,
one has that f−1 is continuous if and only if f(V ) open is in Y for any open V .
In case a function f satisfies this property, we call it an open mapping. An ex-
ample of a continuous bijection for which the inverse is not continuous, is given
by f : (−1, 1) → (−1, 0]× Z2 : x → (−|x|, θ(x)) where |x| = −x if x < 0 and x
if x ≥ 0. θ(x) = 0 for x ≤ 0 and 1 otherwise; finally, Z2 = {0, 1}. The topology
defined on (−1, 0]×Z2 is the natural one of (−1, 0] and is henceforth not Haus-
dorff on {0, 1}. One has that f((−1, 0)) = (−1, 0) × {0} is not open whereas
(−1, 0) × Z2 is. A topological equivalence is given by means of a bijection f
which is continuous and open. Such mappings are called homeomorphisms and
the reader verifies that this definition obeys all requirements of an equivalence
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relationship indeed.

We return to our study of metric topologies and in particular alternative charac-
terizations of compactness. A sequence (xi)i∈I is called Cauchy if and only if for
each ε > 0, there exists an i, such that for all i ≺ j, k one has that d(xj , xk) < ε.
In human language, this reads: if one proceeds sufficiently far in the sequence
then the points reside arbitrarily close together. Such a property suggests the
existence of a unique limit point x; a metrical space (X, d) for which any Cauchy
sequence has a limit point is called complete. In case K is a compact set, then
one shows that any sequence (xi)i∈I has a subsequence with a limit point in K.
The proof is simple, consider arbitrary finite (due to compactness) covers with
balls of radius 1

n ; then one finds a sequence of balls B(yn,
1
n ) such that finite

intersections ∩mn=1B(yn,
1
n ) contain an infinite number of xi ∈ K. This defines

a subsequence with as limit point

x = ∩∞n=1B(yn,
1

n
)

in K. Reversely, suppose that any sequence in K has a Cauchy subsequence
with a limit point in K, then K is compact. Choose a cover of K of open balls -
without limitation of validity- B(yn, εn) where n ∈ N and suppose that no finite
sub-cover exists. Define then Bm = ∪mn=1B(yn, εn), we henceforth arrive at the
conclusion that for any m there exists an m′ > m such that Bm′ ∩Bm

c∩K 6= ∅.
In particular, we construct a sequence (xm) with the property that for any m
there is an m′ > m such that xm′ ∈ Bm

c
for k ≥ m′. This sequence cannot

contain a Cauchy subsequence with some limit point x because x ∈ Bm for m
sufficiently large which is a contradiction. We just proved that a set is compact
in a metric topology if and only if any sequence contains a Cauchy subsequence
with limit point in K. Prove the following properties:

• define on R the function d(x, y) = |y − x|, show that this defines a metric
(easy exercise),

• prove that in the metric topology on R, the closed interval [a, b] is compact
(hint: use the decimal representation of real numbers) (difficult),

• suppose two topological sets X,Y , then the product topology τ(X × Y )
is the smallest topology containing τ(X)× τ(Y ), where the last contains
elements U × V with U ∈ τ(X) and V ∈ τ(V ),

• show that the Cartesian product K1×K2 of two compact sets is compact
in the product topology (average),

• a metrical space (X, d) is bounded if and only if there exists an M > 0
such that d(x, y) ≤ M for all x, y ∈ X; show that a compact space is
closed and bounded (easy).

Again, the reader might utter that this kind of considerations are far too general
and that our world is much more detailed in the sense that light rays bend
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and twist around one and another and that this behavior is geometrical and
continuous in nature. To describe these features in detail, one needs the notion
of a local scalar product giving further rise to analytical geometry. Note the
following: suppose that γ : [a, b]→ X is a continuous curve joining x and y and
define the length functional L(γ) of γ where

L(γ) = sup
a=t0<t1<t2<...<tn+1=b

n∑
k=0

d(γ(tk), γ(tk+1))

and sup means taking the supremum of this sum over all finite partitions a =
t0 < t1 < t2 < . . . < tn+1 = b of the closed interval [a, b]. The supremum of
a set of real numbers A is the smallest number larger or equal as any number
x ∈ A. The supremum is also called the upper bound and the reader shows that
by definition the supremum always exists and is unique by means of addition
of the number +∞. Likewise, one defines the infimum or under bound and
one shows again it exists and is unique. Concerning the sum, one notices that
breaking up an interval [tk, tk+1] into two disjoint pieces by means of addition
of an intermediate point tk < tk+ 1

2
< tk+1 the sum increases by means of the

triangle inequality. Henceforth, splitting up an interval [a, b] leads to a higher
sum by means of the triangle inequality.

Now, we will formulate our main result; a complete metric space (X, d) defines
a path metric d if and only if

d(x, y) = min
γ:[a,b]→X,γ(a)=x,γ(b)=y

L(γ).

In other words, when the distance between two points equals the minimal length
of a curve joining x to y we speak about a path metric space. The reader is ad-
vised to show this by means of using the midpoint property in order to construct
such curve using that L(γ) ≥ d(x, y). Reversely, in case such a curve exists, one
automatically finds a midpoint. A curve minimizing length is called a geodesic
and in a path metric space, the length of a geodesic equals the distance between
two points. Later on, we shall arrive at a more detailed characterization of
geodesics when imposing more structure. Again, those primitive notions allow
one to obtain a substantial amount of results some of which have been obtained
by Mikhail Gromov and Peter Anderson. Studying those primitive metric spaces
further on requires consultation of their work.

As one notices, our language is not rich enough to speak about notions such
as perpendicularity, angles etcetera. One gradually learns that this book will
become more and more specific, that the language gets more rich and complex
allowing for stronger connections and results. Compactness or local compactness
is an important notion because the (local) topology is finite in a way. Spaces
which are not locally compact often do not allow for certain mathematical struc-
tures to exist because there is too much “room” or space such as is the case for
integrals. We now arrive at very special building blocks: line segments, triangles
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and pyramids as well as higher dimensional generalizations thereof. We shall
use those to describe certain topological spaces and characterize them: a cen-
tral element herein is the concept of homology which leads to further categorical
abstractions.

Whereas the previous topics were very abstract, we shall now continue to work
with more tangible objects, things we know from everyday life. We shall use
abstraction of these objects to deal with them in a more appropriate way. This
has its advantages because it allows us to calculate with them; this actually is
the main miracle of abstraction, that it allows us to do things. The topolog-
ical spaces to be studied here are those which are modelled by means of the
n-dimensional real space

Rn = ×ni=1R = {(xi)ni=1|xi ∈ R}

which is the set of n-tuples of real numbers equipped with the product metrical
topology of R. One can extend the notion of a sum by means of the definition

(xi) + (yi) = (xi + yi)

and likewise can one define the scalar multiplication of a real number with an
n-tuple vector by means of

r.(xi) = (rxi).

More in general, let R be a field and G,+ a commutative group, then we say
that G is an R module in case there exists a scalar multiplication such that

1.g = g; (rs).g = r.(s.g); (r + s).g = r.g + s.g; r.(g1 + g2) = r.g1 + r.g2

for all r, s ∈ R and g, g1, g2 ∈ G. In case R = R we call the module a real vector
space. In Rn,+, we have special vectors ei, defined by the number 1 on the i’th
digit and zero elsewhere; herefore, it holds that

n∑
i=1

ri.ei = 0

if and only if it holds that all ri = 0 and moreover all vectors can be written
uniquely as

n∑
i=1

ri.ei.

In case these properties hold for a set of vectors {vi|i = 1 . . .m}, then we call
{vi|i = 1 . . .m} a basis. One notices that we have used two integer numbers
here, n for the ei and m for all vj ; it is now a piece of cake to show that n = m.
The reason is the following, because ei is a basis, one can write the vj uniquely
as

vj =

n∑
i=1

vijei
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and reversely

ei =

m∑
j=1

ejivj .

Henceforth,
n∑
i=1

vije
k
i = δkj ; j, k : 1 . . .m

and
m∑
j=1

ejiv
l
j = δli; i, l : 1 . . . n

where δkj = 1 if and only if j = k and zero otherwise. This system of equa-
tions is symmetrical in e and v and therefore m = n given that both mappings
are injective. Henceforth, n is a basis invariant and called the dimension of
Rn,+. Now, we have a sufficient grasp upon real vector spaces and we proceed
by defining special building blocks mandatory for the construction of simplicial
manifolds.

What follows is a generalization of simple cutting and pasting of higher dimen-
sional triangles and pyramids. We may construct so called Euclidean bodies in
this way and the old fashioned approach towards a classification of topological
spaces upon a homeomorphism has been made as such. However, different lines
of argumentation which are less constructivist can lead towards such classifica-
tion too. Consider the space Rn+1 and consider a basis vi; i = 0 . . . n, then the
n simplex (v0v1 . . . vn) is defined by means of the closed space

(v0v1 . . . vn) = {
n∑
i=0

λivi|λi ≥ 0,

n∑
i=0

λi = 1}.

This is all a bit abstract and in order to get a picture of how such space looks like,
one imagines the 0, 1, 2, 3 dimensional cases. A zero dimensional simplex (v0) is
simply a point, a one dimensional simplex is given by the line segment (v0v1)
which may be embedded into the plane R2. A two dimensional simplex (v0v1v2)
is given by a triangle which can be embedded into R2 whereas finally (v0v1v2v3)
describes a pyramid in R3. In general, the simplex (v0v1 . . . vn) is a convex
space meaning that the line segment between two points x, y ∈ (v0v1 . . . vn)
completely belongs to (v0v1 . . . vn). The line segment between two points x, y is
the set

{λx+ (1− λ)y|0 ≤ λ ≤ 1}.

Points of the simplex which do not belong to the interior of a line segment
belonging entirely to the simplex are called extremal. Show by means of exercise
that the only extremal points of (v0v1 . . . vn) are given by vi. One calls the
simplex the convex hull of the extremal points {vi|i = 0 . . . n}. We know now
how a module is defined as well as a simplex which allows us for the definition
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of a linear operator. A mapping A : V → W between two R modules V,W is
linear if and only if

A(rv1 + sv2) = rA(v1) + sA(v2)

for all r, s ∈ R and vi ∈ V . Show that A is injective if and only if A(v) = 0
implies that v = 0. Now, we shall work a bit more abstractly: we do not need
at this point the property that vi ∈ Rn+1, something which was required for
matters of representation. We shall temporarily proceed by insisting that the
vi, wj are merely points which are not necessarily associated to vectors in some
linear space. Note that a simplex (v0v1 . . . vn) naturally possesses an orientation
defined by the order in which the vertices appear and that swapping two vertices
reverses the orientation, meaning for example

(v0, v1) = −(v1, v0).

An n dimensional simplcial complex is defined as a collection of n distinct sim-
plices such that any sub-simplex also belongs to it. We shall be interested in
taking forml sums of simplices of the same dimension k ≤ n; ab initio, you
might want to impose certain constraints such as (a) no branching meaning
that no more as two k dimensional simplices share the same k − 1 dimensional
sub-simplex. Also (b) you might want for every k simplex to appear exactly
once into such a sum so that we can think of it as being single valued. Also, you
might insist upon it being (c) oriented which in its most general sense would
mean that the contribution of internal k−1 dimensional sub-simplices vanishes.
This means that, upon taking a formal sum∑

i

ai(v
i
1, . . . , v

i
k)

where all (vi1, . . . , v
i
k) are different, we have that in case∑

w

∂w∂w1
. . . ∂wk−1

(vl1, . . . , v
l
k) = ±

∑
w

∂w∂w1
. . . ∂wk−1

(vs1, . . . , v
s
k) 6= 0

for at least two values s 6= l, then
∑
w ∂w∂w1

. . . ∂wk−1

∑
i ai(v

i
1, . . . , v

i
k) = 0

where ∂v is the linear operator attached to any vertex v defined by ∂v(vv0 . . . vi) =
(v0 . . . vi) in case none of the vj equals v and zero otherwise, here it is assumed1

that () = 1. This, taken together with condition (a) simply means that if
precisely two k dimensional simplices share the same k − 1 dimensional sub-
simplex then the induced orientations differ. Let us for now keep things in the
middle and see if those concerns really matter. We define the boundary operator
∂n : Zn → Zn−1 as the linear operator over Z mapping a simplex (v0v1 . . . vn)
to

∂k(v0v1 . . . vk) =

k∑
i=0

(−1)i(v0 . . . vi−1vi+1 . . . vk) =
∑
w

∂w(v0v1 . . . vk).

1Note that we deviate here slightly with the convention in the literature where () = 0.
This will result in a zero’th homology froup with one generator less; it is worthwile keeping
this in mind when discussing the definition of the Betti numbers.
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One verifies that ∂k−1∂kSk = 0 given any sum of simplices. From the def-
inition, it follows that the boundary of any linear combination of simplices
is oriented in the previous sense. Also, by the same virtue, any closed sum
Sk of simplices, meaning ∂kSk = 0, is oriented since

∑
w ∂w∂w1

. . . ∂wk−1
Sk =

(−1)k−1∂w1
. . . ∂wk−1

(
∑
w ∂wSk) = 0 given that ∂v∂w = −∂w∂v. Now, one may

wonder whether any closed Sn can be written as a linear combination of closed
simplicial complexes satisfying (a) and (b). We shall first prove that this is the
case for n = 1; take any one dimensional complex S1 = 1

2

∑
ij a

ij(vivj) where

aij = −aji where a factor 1
2 has been included because each simplex is summed

over twice. Assume now that the simplex is closed meaning that
∑
i aij = 0

and choose the smallest positive aij . Then at the vertex j, one certainly has
some k such that ajk ≥ aij , proceed towards k and substract aij from ajk. One
repeats this procedure a sufficient number of times until the curve comes back
to itself defining aij times a canonical loop obeying a and b. Now, the remainder
contains at least one edge less and is also closed; hence, upon repetition of this
procedure we arrive at our result. Now, a one dimensional simplicial omplex
is rather trivial as each such structure can be consistently oriented. This is no
longer true in two dimensions and we shall generalize here the construction of
a Mobius strip in order to provide for a counterexample. I will not provide all
details but the reader will see how it works. Take an oriented square with four
corner boundary points in order (according to the orientation of the boundary)
given by 1, 2, 3, 4 and identify the line segments 12 with 34 and 23 with 41, then
the reader notices that, given a representation in terms of a simplicial complex,
all the interior lines are cancelled when taking the boundary of this simplicial
complex, but the “boundary lines” between 12 and 23 are doubled. So, this sum
is not closed; to compensate for this, take a second identical construction but
now with opposite orientation on the “boundary lines” and glue them together.
Then, the boundary of this doubled complex vanishes but there is no way to
undo the bifurcation at the lines 12 and 23 which are now adjacent to four half
planes instead of two. It appears that we have to live with such “anomalies” as
there is no way to exclude them, therefore we consider all formal linear com-
binations of k dimensional simplices. To repeat, we consider a formal linear
combination Tk of k simplices closed if and only if ∂kTk = 0 and exact if and
only if Tk = ∂k+1Sk+1 for some Sk+1. It is clear that exact simplicial complexes
are closed using the crucial property of a boundary operator and we define ac-
cordingly the Z modules Ck(Sn) of all closed k sums and Ek(Sn) of all exact
k sums, where En(Sn) = {0} and C0(Sn) equals ZV−1 with V the number of
points or vertices in Sn. Clearly it holds that Ek(Sn) ⊆ Ck(Sn) and we define
the homology classes Hk(Sn) as the quotient module

Hk(Sn) =
Ck(Sn)

Ek(Sn)

being the Z module of Ek(Sn) equivalence classes in Ck(Sn). We say that two
closed sums Tk, Yk are equivalent if and only if Tk−Yk ∈ Ek(Sn). So far for the
general theory of simplical complexes, we now arrive to the very important sub
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theory of topological spaces A homeomorphic to a simplicial complex Sn; the
important step herein consists in proving that Hk(A) is well defined because
homeomorphic simplicial sums define the same homology module. The reader
may try to show this fact by him or herself as a kind of difficult exercise but
it it clear that the statement is rather obvious. Indeed, the boundary operator
is defined independently of the simplicial decomposition. The dimension of
Hk(Sn) plus one, in case k = 0, is called the k-th Betti number bk of the
simplicial complex Sn. The reader now makes the following exercises: take a
two dimensional spherical surface and show that b2 = 1, b1 = 0, b0 = 1. The two
torus T2 is defined by taking an oriented square and glue opposite sides to one
and another; show that b2 = 1, b1 = 2, b0 = 1. In general, one defines the Euler
number of a two dimensional simplicial complex S2 as

χ(S2) = D − L+ V

where D is the number of triangles and L the number of line segments. One can
show that the Euler number is a topological invariant; calculate that the Euler
number of a two sphere is given by 2 = b2 − b0 + b1 = 1 − 0 + 1 and that of a
torus by 0 = 1− 2 + 1. In general, one shows that

χ(Sn) :=

n∑
i=0

(−1)iVn−i =

n∑
i=0

(−1)ibn−i

where Vi equals the number of i dimensional sub-simplices. To start with the
calculation of the dimension of a homology class, note that an element of Hk(Sn)
corresponds to a closed k dimensional connected surface which cannot be con-
tracted to a point. Concerning the calculation of b1 on the two sphere, it is clear
that any closed curve can be reduced to a point whereas on the two torus two
fundamental circles do existwhich are not the boundary of a two dimensional
simplicial complex. Consider two closed surfaces A2 and B2 and remove a two
disk from both of them; now, paste each of the remainders along the circular
boundaries resulting in a new closed surface denoted by A2 � B2. Show that
the operation � is associative as well as commutative with as identity element
the two dimensional surface S2. Calculate that the Euler number of the n-fold
crossproduct of T2 equals 2− 2n; more in particular, it holds that

χ(A2 �B2) = χ(A2) + χ(B2)− 2.

Later on, we shall study the notion of a manifold and one of the most important
results is that any closed, compact, connected and oriented two dimensional
topological space is homeomorphic to S2 or an n-fold product T2 � T2 � . . . � T2.
This formula can be generalized towards any dimension, where the connected
sum is then defined by means of cutting out the interior of a ball and identifying
the boundaries; the reader verifies that in general

χ(An �Bn) = χ(An) + χ(Bn)− 2

for n even and
χ(An �Bn) = χ(An) + χ(Bn)
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for n odd. This implies that closed, compact, connected as well as orientable
two dimensional manifolds are completely characterized topologically by means
of the Euler number. For closed manifolds, one shows that bn−i = bi something
which is called Betti duality, a result which may be proved by definition of a
duality operator ? on the simplicial complexes such that S?n is homeomorphic
to Sn and Hk(Sn) is mapped bijectively to Hn−k(S?n). One can imagine ? as a
natural generalization of the following operation on a one dimensional simplicial
complex S1: it maps every line segment r to a point r? and each point p to a
line segment p? such that ? interchanges the operation ⊆ meaning r? ⊆ p? if
and only if p ⊆ r. S?1 is a closed simplicial complex if and only if S1 is in case
no branching occurs; the Euler number changes in case S1 shaws branching as
the reader verifies. Henceforth, the manifold condition is mandatory and Betti
duality does not hold for general closed simplicial complexes. The reader should
prove that two circles having a common point show bad behavior under the du-
ality transformation. The notion of a variety is henceforth really special and our
result, that closed two dimensional and oriented varieties are classified by the
Euler number only does not hold in higher dimensions. Here ends our discus-
sion of simplicial homology which can be summarized by a chain of operations
∂k : Zk(Sn)→ Zk−1(Sn) met ∂0 : Z0(Sn)→ Z and2 ∂k+1∂k = 0. Such a struc-
ture is called a chain and those objects enjoy plenty of beautiful characteristics
which are much more primitive as the topological point of departure. An initial
point for higher mathematics therefore!

It is clear, from the simplicial point of view, that topological spaces of dimension
n cannot be classified by means of the Betti numbers. The reader is invited to
show this by means of braiding three closed surfaces in different ways. Later on,
we shall study the Euler number from the viewpoint of vectorfields, akin Morse
theory, as well as closed differential forms determined by the homology classes.

Exercise: the Poincaré conjecture.
The conjecture of Poincaré is that every 3 dimensional compact, closed topo-
logical spaceM which is path connected and has trivial first homotopy class, is
homeomorphic to the 3 dimensional sphere. Note that I am speaking of homo-
topy instead of homology which is another and much crazier way of constructing
topological invariants; the reader is encouraged to wade through the literature
on homotopy which is full of rich results (for example, the homotopy groups are
also labelled by a discrete index, referring to dimension, but they may well be
nontrivial beyond the dimension of the embedding space). The first homotopy
group consists out of all equivalence classes of continuous closed curves with a
base point which cannot be continuously deformed into one and another while
keeping the base point fixed. Obviously, for the torus, the homology group is
Z ⊕ Z which basically means that you consider linear combinations over Z of
two independent generators, whereas the first homotopy group is the same given
that one must show that the two generator commute. However, this is no longer

2In the literature, this is zero given that there one takes another definition of ∂0.
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true upon considering the torus and cutting out a small disc. The boundary of
the latter is obviously the boundary of the complement of the disc (and is there-
fore trivially zero in the homology group) but it cannot be deformed into any
existing element in the homotopy theory. Nevertheless one may trivially prove
that if the first homotopy group vanishes, then the first homology croup must
vanish too; the reverse is not true however. Note that this theorem does not
hold in higher dimensions as for example S2 × S2 provides for a counterexam-
ple. The conjecture has been proved by Perelman some years ago and the proof
heavily relies upon techniques from differential geometry, something which we
shall study further on in this book. Taking the classification of closed, compact
and connected two dimensional topological spaces we have just given, I once
constructed the following simple argument. As of today, I do not know where
my error resides and I encourage the reader to think about it.

• Show that M allows for a path metric d.

• Consider an arbitrary point p and show that for sufficiently small r, the
surface Lr := {x|d(p, x) = r} is homeomorphic to the 2 dimensional sphere
S2.

• Show that there exists a critical point r0 such that Lr0 is no longer a
sphere.

• In case Lr0 is a point, the theorem is proved; otherwise we have a compact
2 dimensional topological space obtained from the sphere by means of
identification of k dimensional subspaces where k can range from 0 to 2.

• Show that the subsequent connected components of the topological space
for r > r0 are again two dimensional connected, closed spaces3 which can
only close up to a point in a three dimensional closed space in case they
are homeomorphic to the sphere S2.

• Subsequently, to close the topological space, all components different from
some S2 and possibly the S2 themselves must be pasted together leading
to a nontrivial first homotopy class which is forbidden.

• Consequently M is a 3 dimensional sphere.

Simplicial gravitation.
Simplicial metric spaces are very simple and entirely characterized by means of
distances d(v0v1) defined on the line segments (v0v1). One defines the following
operators: xw(v0 . . . vi) = (wv0 . . . vi) and ∂w(wv0 . . . vi) = (v0 . . . vi) in case

3This seems to be the crucial step! It is certainly true for the theorem in two instead of
three dimensions where a circle possibly biffurcates into two circles which, in case they rejoin,
gives rise to a nontrivial homotopy. The reader may convince himself of that by studying the
example of a torus versus a long “saussage”. In both cases, we have that for generic points x
the circles of radius r around x identify at some points but split later again into two distinct
circles which in case of the torus rejoin and in case of the saussage individually collapse to a
point.
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none of the vj equals w. The remaining cases where this last condition is violated
lead to the null simplex with as boundary conditions ∂w(w) = 1, xw1 = (w)
where 1 = () is the empty simplex. From this, it follows that (xw)2 = 0 as
well as (∂w)2 = 0. One verifies that the operator ∂ =

∑
w∈S ∂w is the usual

boundary operator what shows that ∂w constitutes the appropriate derivative
operator defined by means of the boundary operator ∂. The empty simplex
constitutes the neutral element regarding the cross product ∗ defined by means
of

(v0 . . . vi) ∗ (w0 . . . wj) = (v0 . . . viw0 . . . wj).

One simply verifies that xwxv = −xvxw and likewise for the operators ∂v, ∂w.
Henceforth, the creation operators associated to a vertex generate a Grassmann
algebra; moreover, it holds on the vector space of simplices that

∂vxw + xw∂v = δ(v, w)

such that the ∂v represent Grassmann annihilation operators. Bosonic line
segment operators are consequently defined by means of

∂(vw) = ∂w∂v

and such operators satisfy

∂(vw)(yz) = δ(v, y)δ(w, z)− δ(v, z)δ(w, y)

giving rise to an oriented derivative. The simplex algebra is henceforth defined
by means of polynomials spanned by monomials which are formal products of
simplices (v0 . . . vj) for all j : 0 . . . n. Mind that this formal product does not
equal the crossproduct implying that 1 does not constitute the neutral element.
Given that on general spaces bi relations carry an evaluation by means of the
metric d it is natural to limit the function algebra to two simplices (v0v1) given
that other simplices do not procure for independent variables. The bosonic
character of 1 implies that the ∂v, xw constitute Fermionic Leibniz operators on
the function algebra. Indeed, one has that

∂v((w)Q) = ∂v((xw1)Q) = ∂vxw(1Q)− ∂v(1xwQ) =

(k + 1)δ(v, w)1Q− xw(1∂vQ)− ∂v(1xwQ)

which reduces to

(k + 1)δ(v, w)1Q− (xw)∂vQ− 1xw∂vQ− 1∂vxwQ = δ(v, w)1Q− (xw)∂vQ

where k denotes the degree of the monomial Q given by the number of factors.
This follows immediately from the Leibniz rule given that the operator

xw∂v + ∂vxw = δ(v, w)

is bosonic. Henceforth, the even simplex variables behave bosonically whereas
the odd ones fermionic. Indeed,

∂v((wz)Q) = ∂v((xw(z))Q) = ∂v(xw((z)Q)+((z)xwQ)) = −xw∂v((z)Q)−(z)(∂vxwQ)
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which reduces to

= xw((z)∂vQ)− (z)(∂vxwQ) = (wz)∂vQ.

Given that the usual derivatives of a function are defined by means of the
infinitesimal intervals (x− |ε|, x+ |ε|) where f(v + ε, v − ε) gets identified with
the coordinate function f(x). This is logical given that the v ± ε are fermionic
and independent such that the intervals (v − ε, v + ε) ∼ x are bosonic. Note
that products of the form (v − ε)(v + ε) can be further derived such that

∂xf(x) = L
[
∂(v−ε,v+ε)f(v − ε, v + ε)

]
where L merely retains the monomials depending exclusively of the line seg-
ments. This phenomenon clearly occurs in (vw)2 whose (vw) derivative equals

2(vw)− 2(v)(w).

To obtain the standard commutation-relations on the function algebra generated
by (vw) we define

x̂(vw)Q := x(vw)x1Q

where Q is a polynomial defined on the edges (r, s) and x(vw) is a bosonic Leibniz
operator defined by

x(vw)(v0 . . . vj) = (vwv0 . . . vj).

By definition, one has that
x(vw)(rs) = 0

if and only if r or s equals v, w and moreover

(x(vw) + x(rs))((vw) + (rs)) = 2(vwrs)

which vanishes unless (r, s) is the opposite side of a pyramid which we shall
forbid from now on. In particular, this does not apply to geodesics

γ(v0vi) := (v0v1) + (v1v2) + . . . (vi−1vi)

which satisfy

xγ(v0vi) :=

i∑
j=1

x(vj−1vj)

and therefore
xγ(v0vi)γ(v0, vi) = 0.

Next, we define the derivatives

∂γ(v0,vi) :=

i∑
j=1

∂(vj−1vj)
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and consider the operator

∂̂γ(v0,vi) = L ◦ ∂γ(v0,vi)

and one calculates that

∂̂γ(v0,vi)x̂γ(v0,vi) − x̂γ(v0,vi)∂̂γ(v0,vi) = 1

on the function algebra generated by the monomials Q of the form (γ(v0, vi))
k

where k > 0. We have now a tool to do physics; in particular,generated by the
monomials Q of the form (γ(v0, vi))

k where k > 0. We have now a tool to do
physics; in particular,

EP (γ(v0, vi)) = P (

i∑
j=1

d(vj−1vj))

is the evaluation function. The reader is invited to expand this theory further as
well as to implement the Fourier transformation from chapter fourteen on conic
tangent spaces. Hint: integrate in “hyperbolic” or “spherical” coordinates by
replacing the n− 1 sphere with the level surface Hn−1(ε, v0) = {x|d(v0, x) = ε}
for ε sufficiently small such that Hn−1(ε, v0) belongs to the star neighborhood
of v0. See chapter thirteen for more information.

This is all we have to say basically at the classical level regarding topology for
general enough spaces; further specialization is obviously always possible and
can lead to very rich results such as is the case for the de Rahm theorem con-
necting the exterior derivative to the boundary operator by means of the Hodge
theorem. Another step away then consists in abstraction of this duality from
the point of category theory and in particular long left and right exact sequences
attached to the exterior derivative and boundary operator respectively. In my
opinion, this topic is too specialist to be treated here and philosophically, the
very gist of classicality has been treated and resides in the axioms of Boolean
logic or the algebraic structure generated by ∧,∩ and ×. This author has re-
cently suggested an interesting extension of this formalism by extending those
operations to semi-group ones where the semi reflects the fact that the inverse
is not necessarily unique. That is, given a set A, an anti-set obeys

A×A× = {1}

where the last one is a set with one element 1 and henceforth serves as the
identity element for ×. To represent an anti-set in the set-like fashion; denote
that if A = {x|x ∈ A} and A× = {ω?A} where ωA : A → {1} is the constant
mapping onto 1 and ? is the associated duality relation, then

A× {ω?A} = ωA(A) = {1}.

So, taking inverses regarding the Cartesian product naturally leads to a notion
of duality which may be interpreted as an anti-event. Likewise, we can demand

A ∪A∪ = {∅}
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as well as
A ∩A∩ = Ω

where Ω is supposed to be a maximal set. A∪ can be seen to exist out of the
negative events −x where x ∈ A. The latter induces the following natural rules

−(A ∪B) = (−A) ∪ (−B), −(A ∩B) = (−A) ∩ (−B)

and henceforth it is a Boolean algebra isomorphism. In logic, the notion of a
negative primitive sentence has no obvious philosophical meaning whereas this
is the case for the negative of an event as one absorbing the other. The Boolean
¬ operation satisfies

A ∩ ¬A = 0, A ∪ ¬A = 1, ¬(A ∪B) = ¬A ∩ ¬B

and has as set theoretical counterpart the complementation operation. However,
Boolean logic does possess another operation called xor instead of or which does
allow for these things to happen; A xor B is true if and only if exactly one of
them is true and the other is false. In set theory, the equivalent is given by the
disjoint union

A tB = (A ∪B) \ (A ∩B)

and in such a case At = A. However, such a thing is rather mundaine and −x
should really be seen as eating x meaning

{x,−x} = {∅}

which is a serious departure from the negative of integer numbers given that
the equivalence {5,−5} = {∅} does not exist. This brings along some subtleties
with the complementation operation Ac given that (−Ω) ∪Ω = {∅} and hence-
forth {∅}c = {∅} in the enlarged setting of negative events breaking hereby the
equivalence with the logical operator ¬. This is logical from a philosophical
point of view given that − is associated to death and therefore pressuposes cre-
ation whereas ¬ pertains to an eternal truism. This gives problematic aspects
regarding the intersection operation

A ∩ {∅} = B

where, in last instance, B is any subset of A. This is obviously not desirable
and is resolved by insisting that

(−A) ∩B = −(A ∩B)

where A,B are ordinary sets. This implies that the notion of element becomes
superfluous given that

{x} ∩ {−x} = {−x}

which is a situation intermediate between the classical and quantum; there is
no contradiction with our previous treatment of set theory given that {x} is
no longer a primitive set but {−x} is (so x is no longer an element). So, even
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if we start out with a standard set theory, adding all anti sets to it leads to a
new theory where the elements of the old sets are no longer elements in the full
set theory but their anti elements are. It is natural to posit that the boundary
operator ∂ commutes with − meaning ∂(−A) = −(∂A) and obviously it holds
as well that

∂Ac = −∂A

assuming Ω has no boundary and the minus sign in this case refers to the
opposite orientation (and has nothing to do with negative events). We leave
such exotisms for future exploration.
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Chapter 2

Quantum logic and
topology.

We now treat quantal set theory from an axiomatic point of view and connect
this with the subject of quantal logic developed by Von Neumann a century
ago. The central idea in quantum theory is that a proposition is associated to
a linear space and the mathematics of linear spaces is provided for by the (set
theoretical) intersection ∩, the (direct) sum + (⊕) (replacing the union) and the
tensor product ⊗ as a substitute for the Cartesian product. Given a complex
vector space H as well as scalar product 〈v|w〉 defined upon it for v, w ∈ H.
The scalar product between v and w is supposed to be equal to the product of
the oriented length of the projection of w upon v times the length of v. This
quantity satisfies, by means of simple experience, the following properties:

〈v|w〉 = 〈w|v〉
〈v|aw + bu〉 = a〈v|w〉+ b〈v|u〉

〈v|v〉 ≥ 0 where equality holds if and only if v = 0.

Hilbert spaces carry some natural topologies; to define those, we show that the
scalar product defines in a canonical fashion a metric d. We first prove that the
quantity ||v|| defined by

||v|| =
√
〈v|v〉

and called a norm has identical properties to those of the modulus of a complex
number. An important step herein is the so called Cauchy-Schwartz identity

|〈v|w〉| ≤ ||v||||w||

meaning that the projection of w on v multiplied with the length of v is less
or equal to the product of the lengths of v and w, a result one expects to hold
trivially. The formal proof goes as follows:

0 ≤ ||v + λw||2 = ||v||2 + |λ|2 ||w||2 + 2Re
(
λ〈w|v〉

)
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where Re(a + ib) = a is the real part of the complex number z = a + bi. One
verifies that the real part of the complex number z may be written as 1

2 (z + z)
whereas the imaginary part equals −i 12 (z − z). The modulus of a complex
number is defined by means of

|z| =
√
zz =

√
a2 + b2

and satisfies
|z + z′|2 = |z|2 + |z′|2 + (zz′ + zz′)

whereas the last term equals, up to a factor of two,

aa′ + bb′

and the absolute value is bounded from above by |a| |a′|+ |b| |b′|. The square of
this last expression is given by

a2a′2 + b2b′2 + 2 |a| |a′| |b| |b′| ≤
(
a2 + b2

) (
a′2 + b′2

)
= |z|2 |z′|2

and consequently one has that

|z + z′|2 ≤ (|z|+ |z′|)2

and hitherto
|z + z′| ≤ |z|+ |z′|

a formula known as the triangle inequality. Consequently, we may define a
metric on the complex plane by means of

d(z, z′) = |z − z′| .

Returning to the proof of the triangle inequality, one notices that we may pick
λ such that

Re
(
λ〈w|v〉

)
= − |λ| |〈v|w〉|

whereas, in general, the left hand side is always larger than the right hand side.
Therefore, we have that

0 ≤ ||v||2 + |λ|2 ||w||2 − 2 |λ| |〈v|w〉|

which is a quadratic polynomial inequality in the positive variable |λ|. The
existence of at most one positive root demands that

0 ≤ 4 |〈v|w〉|2 − 4||v||2||w||2

which proves the result and equality only holds if and only if w = −λv. Conse-
quently,

||v+w||2 ≤ ||v||2 + ||w||2 + 2 |〈v|w〉| ≤ ||v||2 + ||w||2 + 2||v||||w|| = (||v||+ ||w||)2

27



which proves the triangle inequality for the norm. Consequently, each Hilbert
space H defines a canonical metric topology by means of

d(v, w) = ||v − w||

and we demand that H is complete in this topology. This condition is extremely
important for the theory of linear operators but let us start by making some
preliminary observations. Two non-zero vectors v, w are perpendicular to one
and another if and only if 〈v|w〉 = 0 and we say v is normed if and only if
||v|| = 1. Given two Hilbert spaces Hi, the tensor product H1 ⊗H2 constitutes
again a Hilbert space spanned by pure vectors v1⊗v2 where vi ∈ Hi. Regarding
sums

∑n
i=1 ziv

i ⊗ wi, the following equivalences are in place

z(v ⊗ w) ≡ (zv)⊗ w ≡ v ⊗ (zw)

v ⊗ w1 + v ⊗ w2 ≡ v ⊗ (w1 + w2).

We define H as the linear space of such equivalence classes and make a comple-
tion in the metric topology defined by means of the scalar product

〈v1 ⊗ w1|v2 ⊗ w2〉 := 〈v1|v2〉〈w1|w2〉.

In a similar vein, the direct sum H1⊕H2 is defined by means of the equivalences

z(v ⊕ w) ≡ (zv)⊕ (zw)

v1 ⊕ w1 + v2 ⊕ w2 ≡ (v1 + v2)⊕ (w1 + w2)

with as scalar product

〈v1 ⊕ w1|v2 ⊕ w2〉 := 〈v1|v2〉+ 〈w1|w2〉.

One verifies that a basis for H1 ⊗H2 is provided by means of vi ⊗ vj where the
vi constitute a basis of H1 and wj of H2. A basis for H1 ⊕ H2 is provided by
vi⊕ 0, 0⊕wj . Linear subspaces of Hilbert spaces are characterized by means of
Hermitian projection operators. What follows also holds in an infinite number
of dimensions, but for simplicity of the presentation, we shall confine ourselves
to finite dimensions. Given a linear operator A, we define its adjoint A† by
means of

〈v|Aw〉 = 〈A†v|w〉
for all v, w ∈ H. An operator is called self adjoint in case A = A† and normal
in case AA† = A†A. The reader is advised to make the following exercises.

• Let P,Q be two Hermitian projection operators meaning that P 2 = P ,
Q2 = Q, P † = P,Q† = Q. Show that P + Q constitutes a Hermitian
projection operator if and only if PQ = QP = 0. Show that the same
holds for PQ if and only if PQ = QP .

• Two Hermitian projection operators P,Q are orthogonal if and only if
PQ = 0; we define the partial order ≤ by means of P ≤ Q if and only if
QP = PQ = P . Prove explicitly that ≤ defines a partial order on the set
of Hermitian projection operators. In particular, it holds that P ≤ Q and
Q ≤ P implies that P = Q. Also, P ≤ Q and Q ≤ R leads to P ≤ R.
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• We call the set of Hermitian projection operators on a vector space,
equipped with ≤, a raster. Show that for any P,Q there exists a min-
imal projection operator P ∨ Q such that P,Q ≤ P ∨ Q and any R such
that P,Q ≤ R satisfies P ∨Q ≤ R. On the other hand, one may construct
a maximal projection operator P ∧ Q ≤ P,Q. Show that ∨,∧ do not in
general obey the rule of de Morgan

P ∧ (R ∨Q) 6= (P ∧R) ∨ (P ∧Q).

• In terms of subspaces, P ∨Q is the projection operator on V +W , whereas
P ∧Q on V ∩W where V (W ) is the image of P (Q).

• Show that the raster possesses a unique minimum as well as maximum
provided by 0 and 1 respectively.

• Show that there exist minimal nonzero Hermitian projection operators,
called atoms. Every Hermitian projection operator may be written as a
sum of orthogonal atoms.

Quantum logic.
Given that in the previous exercise ∨ and ∧ may be conceived as “or” and
“and” respectively, it becomes possible to understand quantal logic by means
of using Hermitian projection operators as propositions. Reflect on this and
retrieve classical pointer propositions by considering a complete set of orthogonal
projection operators. In such case, P ∨Q = P +Q and P ∧Q = PQ.

Quantum set theory.
S consists out of sets which are given by objects P,Q and we have again ∧,∨
where P ∧ P = P = P ∨ P with minimal and maximal elements 0, 1 replacing
the empty set and the entire universe. The distinction with classical set theory
is to be found in the de-Morgan rule; in a way, it would be nice if we could find
a logical rule in terms of ∧, ∨ which would deliver us with the Hilbert space
setting where P,Q may be seen as Hermitian projection operators. This has
been the topic of research of the Geneva school for plenty of years and was
rather extensively documented for by Piron.

In particular, the set of propositions must give rise to a so called orthomodular
lattice defined by

• sets P,Q,

• a minimal 0 and maximal element 1,

• commutative and associative operations ∨,∧ satisfying P∨P = P∧P = P
as well as P ∧ 0 = 0, P ∧ 1 = P = P ∨ 0, P ∨ 1 = 1.

• a partial order ≤ defined by P ≤ Q if and only if P ∧ Q = P = Q ∧ P
with 0 as unique minimal element and 1 as maximal one where P ∨ Q is
the supremum of P,Q and P ∧Q the infimum,
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• A linear structure: if one takes Q,P then PQ 6= QP and therefore it does
not hold that (PQ)2 = PQ assuming the product satisfies the standard
requirements of commutativity and associativity. To compensate for this,
one should consider something like

P ∧Q =
1

2
(PQ+QP )

which still does not lead to (P ∧Q)2 = P ∧Q. However, there is a unique
natural fix given by

P ∧Q = lim
n→∞

(
1

2
(PQ+QP )

)n
which we will take as a standard formula. We moreover demand that
P +Q ∈ S if and only if PQ = 0 in which case it coincides with P ∨Q,

• atomisticity, meaning every set P can be written as P = ∨αQα with the
Qα 6= 0 orthogonal primitive propositions QαQβ = 0 for α 6= β,

• a reality notion given by an involution † such that P † = P .

The reader notices that the first four axioms could give rise to classical set
theory and that the linearity really decides upon the case being “quantal”.

Non-commutative Quantum logic.
We generalize the operations ∧ and ∨ to a context in which they are no longer
commutative; this procedure holds as well for the classical Boolean logic or the
quantual logic explained above where the de Morgan rule gets a minor blow. It
is natural to interpret ∧ as well as ∨ as mappings ∧,∨ : P × P → P : (x, y)→
x ∧ y, (x, y) → x ∨ y where P denotes the lattice of propositions defined by
means of a linear Euclidean space in the quantal case. Define the mapping

S : P × P → P × P : (x, y) → (y, x) and consider ∧
′
(V,W ) := W ◦ ∧ ◦ S ◦ V

as well as ∨
′
(V,W ) = W ◦ ∨ ◦ S ◦ V where V : P × P → P × P is required

to be invertible as well as is the case for W : P → P . Requiring ∧
′
(V,W ) to

satisfy
(
∧
′
(V,W )

)′
(V,W )

= ∧ it is sufficient and mandatory that W 2 = 1 as well as

S ◦ V ◦ S ◦ V = 1. This demand is of a special algebraic nature which we dub
by the name of an involution; so we are going to study involutive deviations
from quantal logic. An involution gives rise to a notion of duality; in particular
self-duality is defined by the condition that

∧
′
(V,W ) = ∧,∨

′
(V,W ) = ∨.

It is natural to propose first S symmetrical logics; these are given by

∧
′(V,W ) ◦ S = ∧

′(V,W ),∨
′(V,W ) ◦ S = ∨

′(V,W ).

This can only happen by choosing V such that

V ◦ S = S ◦ V
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reducing a previous condition to

V 2 = 1

whereas it still holds that

∧
′(V,W ) = W ◦ ∧ ◦ S ◦ V.

In case ∧, ∨ coincide with the standard Boolean or Quantal operations denoted
by ∧d, ∨d where d = c, q one has that

∧d ◦ S = ∧d, ∨d ◦ S = ∨d.

In such a case,

∧ := ∧
′(V,W )
d = W ◦ ∧d ◦ V

a small simplification of the previous formula and ∨ is defined in a similar way.
Now, to remain entirely clear, it is so that the d index should be the same in
∧, ∨ but (V,W ) becomes (R, T ) for ∨ whereas the former pertains to ∧. We
now isolate the “de Morgan expression” a ∧ (b ∨ c):

∧ ◦ (1× ∨)(a, b, c) = W ∧q V (1× T ∨q R)(a, b, c).

It is subsequently natural to call T - (∧q, V ) compatible if and only if ∧qV (1×
T ) = T ′ ∧q V for some T ′ : P → P . Likewise, it is natural to call V - ∨q
compatible if and only if V (1×∨q) = (1×∨q)V ′ for some V ′ : P 3 → P 3. Under
these assumptions, the previous expression reduces to

WT ′(∧q(1× ∨q))V ′(1×R)

which was the desirable separation. It is furthermore natural to suggest further
restrictions

WT ′ = 1, V ′(1×R) = 13.

Truth evaluators ω
The material presented below constitutes an extension of the notes I have re-
ceived once from Rafael Dolnick Sorkin; in classical Boolean logic one disposes
of truth evaluator ω of logical sentences which constitutes a homomorphism
from the set of propositions P,∨c,∧c to Z2,+, . where 0 is interpreted as false
and 1 as true and ∨c is the so called exclusive or in the sense that a∨c b is true
if and only if exactly one of them is true. It is to say that

ω(a ∨c b) = ω(a) + ω(b), ω(a ∧c b) = ω(a)ω(b).

In quantum logic, there is no such thing as a truth evaluator; one can only
say wether a particular assertion is true or false with a certain probability. A
quantum reality is then a particular choice of mapping from P to Z2 but it
makes no sense any longer to speak about a homomorphism because the de-
Morgan rule fails in general: the lattice is not distributive. As such, it may
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very well be that you have a quantal reality ω for which ω(a) = ω(b) = 1, but
ω(a ∧q b) = 0. To get an idea of what more general realities are about, let us
describe a classical system in a quantum mechanical fashion. An example is
give by means of the weather, “the sun shines”, modelled by |l〉, or “it is dark”
given by |d〉. Quantum mechanically, one disposes of a complex two dimensional
Euclidean space spanned by the extremal vectors |l〉, |d〉. Consider now a general
state

|ψ〉 = α|l〉+ β|d〉

and study the class of truth functionals ω which merely depend upon

|α|2

|α|2 + |β|2
,
|β|2

|α|2 + |β|2

something which reduces to a parameter 0 ≤ λ ≤ 1 due to

|α|2

|α|2 + |β|2
+

|β|2

|α|2 + |β|2
= 1.

When all truth evaluators merely depend upon this parameter only, the complex
plane may be reduced to the line segment connecting both extremal vectors
|l〉, |d〉 to one and another. An example of such a gneralized reality is provided
by

ωlε : [0, 1]→ Z3

given by means of the prescription

ωlε(
√
λ|l〉+

√
(1− λ)|d〉) = χ(λ+ ε− 1) + 2χ(λ− ε)χ(1− ε− λ).

ωl and is henceforth connected to the question whether the light shines and ε is
the tolerance of the observer. This truth evaluator says “yes”, given by means
of 1, in case 1− ε ≤ λ ≤ 1, under determined or “vague” 2 when ε ≤ λ ≤ 1− ε
and no, given by 0, when 0 ≤ λ ≤ ε. We have that χ is the so called character-
istic function defined on the real numbers by means of χ(x) = 1 in case x ≥ 0
and zero otherwise. The issue is that we departed from a quantum mechanical
description of the weather and by reduction of the allowed questions arrived to
a classical system where, moreover, ωlε is nonlinear.

Most physicists would suggest at this moment that we did not make a sufficient
distinction between classical and quantum logic as yet because ∧q,∨q are com-
mutative, assiociative but ∧q is not distributive with regard to ∨q which is the
case for ∧c, ∨c. In our most general setting, one has that ∧ and ∨ are neither
commutative, nor associative

∨(1×∨)(a, b, c) = T∨dR(1×T∨dR)(a, b, c) 6= T∨dR(T∨dR×1)(a, b, c) = ∨(∨×1)(a, b, c)

and likewise so for ∧. The main distinction between classical and quantum logic
resides in the fact that the set of propositions constitutes a distributive lattice
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in the former case whereas it does not in the latter; this results in the statement
that the classical rule

µ(a|b)µ(b) = µ(b|a)µ(a)

is no longer true in the quantal case. Here, µ is the probability measure that
a is true; in other words, the truth determinations of a and b depend upon
the order in which they occur. This has so far not been accounted given that
a homomorphism ∨c,q,∧c,q does not make any distinction in the order of the
factors. Therefore, classically, for our homomorphism ωc(a ∧c b) is determined
by the unordered tuple {ωc(a), ωc(b)}. Quantum mechanically, it is as such
that the reality ωq(a ∧q b) is not provided by the ordered couple (ωq(a), ωq(b))
as elements of Z2 but also depends upon a, b themselves. It is not so that

µ|v〉(a|b) =
µ|v〉(a ∧q b)
µ|v〉(b)

due to commutativity of ∧q as well as a ∧q b = 0 for distinct one dimensional
Hermitian projection operators a, b on a Hilbert space H. The exact formula is
given by

µ|v〉(a|b) =
Tr(|v〉〈v|bab)
Tr(|v〉〈v|b)

and the reader notices that the non-commutativity of a and b is of vital impor-
tance. Henceforth, the ontological mapping defined in quantum theory is given
by κ : P → L(H) where P is the set of prepositions with a yes or no answer
onto the lattice of Hermitian projection operators defined on the Hilbert space
of states of the system. The classical Lagrange formula

µ(a|b)µ(b) = µ(b|a)µ(a)

where µ is determined by the state of the system is abandoned upon provided
that ∧q a la Von Neumann offers no alternative. The natural question henceforth
is whether we may find a natural ∧ as well as a consistent set of realities

ωρq : P → Z2 × [0, 1]

attached to density matrices ρ defined on H, such that

ωρq (a) = (1, λ)

and
ω′ρq (a) := (0, 1− λ)

is defined as the complementary observation. It is clear that ωq is not always
given by a homomorphism; prior to proceeding, it is important to understand
∨q. It is clearly so that in quantum theory, we have an extended ontology; we do
not only pose the question “what is the probability that a∧c b holds given that
a as well as b are true” such as the case in classical logic, but we insist on the
formulation “what is the chance that a ∧q b holds given that a after b has been
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experimentally established”. The right answer is easy if a ∧ b is represented by
the Hermitian operator bab which is logical given that the order of measurement
matters. In general, one shows that

a ∧q b = lim
n→∞

(
1

2
(ab+ ba)

)n
and in the framework of our deformation theory ∧ is given by means of

V (a, b) = (1, bab)

at least this is so for atomistic elements a, b. For atomistic elements, bab
Tr(ab) is

again a rank one Hermitian projection operator; however for projection oper-
ators of general rank, this is no longer the case. Here, we have to extend our
definition of V as going from P ×P → C×C where C are the so called positive
operators on Hilbert space. An operator A is positive if and only if A is self
adjoint and

〈v|A|v〉 > 0

for all v 6= 0. As an exercise, the reader understands that the definition of ≤
extends to the Hermitian operators by means of A ≤ B if and only if

〈v|(B −A)|v〉 > 0.

Show that in such a case, the definitions of ∧q and ∨q can be extended in a
rathr aritrary fashion (we shall provide for a construction below). Indeed, it is
impossible to define A ∧ B as the largest Hermitian operator smaller or equal
than A,B and A∨B as the smallest Hermitian operator greater or equal to A,B
respectively (see the following example). Nevertheless, it is possible to define a
weaker notion of maximality for A∧B meaning that if A∧B ≤ C ≤ A,B then
C = A ∧B. As an xample, consider

A =

(
0 0
0 4

)
, B =

(
3 2
2 3

)
the matter having eigenvalues 1, 5 and the reader may verify that the operators

C =

(
0 0
0 2

)
, D =

(
b 0
0 5

2

)
for 32b = 89

4 − ( 27
2 )2 are both intersections in the second sense but not in the

first as the reader may verify. A rather canonical construction hinges on the
spectral theorem for Hermitian operators, something which we shall study in
the next section. Briefly, it says that any Hermitian operator A can be written
as

A =
∑
i

λiPi

where the λi are the real eigenvalues and the Pi Hermitian projection operators
such that PiPj = δijPi. Therefore, take A,B and order all eigenvalues

λ0 < λ1 . . . < λk
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with k ≤ 2n where n is the dimension of Hilbert space. Note that some of the λi
may belong to A as well as B; in that case, we consider the projection operators
Ri := Pi ∨qQi where the Qi refer to B otherwise Ri equals Pi or Qi. Start now
with λ0, the smallest eigenvalue, and consider the operator C0 = λ0R0; clearly
C0 ≤ A,B. Proceed now towards the minimal λj such that Sj := ∨ji=2Ri obeys
[Sj , R0] = 0 and consider the projection operator

T1 := Sj(1−R0)

then the reader verifies that this is an Hermitian projection operator and that
T1R0 = 0. In case no such j exists, then define A ∧q B = λ0R0 + λ1(1 − R0),
otherwise proceed with C1 := λ0R0 + λ1T1. The reader now understands that
he has to look at λj+1 and construct the smallest Sk := ∨ki=j+1Ri such that

[Sk, R0 + T1] = 0.

In case no such k exists A ∧q B = λ0R0 + λ1T1 + λj+1(1− R0 − T1) otherwise
we consider

C2 = λ0R0 + λ1T1 + λj+1T2

where T2 = Sk(1−R0−T1) and the procedure continues. It is obvious that the
final result is no necessarily an optimal Hermitian operator which is smaller or
equal to both A,B. The construction of ∨q is similar, but then one starts at the
largest eigenvalue of both operators. W is henceforth determined on the rank
1 matrices by means of the identity. Therefore, for rank one projectors a, b it
holds that

a ∧ b = T ◦ ∧q ◦R(a, b) = bab.

Subsequently, one has that

ωρq (a) = (1,Tr(ρa))

or
ωρq (a) = (0, 1− Tr(ρa))

for a of rank one. Clearly, by definition

ωρq,1(a|b) :=
π2(ωρq (a ∧ b))
π2(ωρq (b))

equals the probability that a is measured after b. Here πj equals the projection
on the j’th factor. Elaborate further on this theory and determine a suitable ∨
operation. Hint: the latter is cannot be given by a∨b = a+b in the deformation
framework provided that ∨q does not allow one to determine the projection of
a on b as is given by Tr(ab). This is something which is mandatory to extract
the sum operation. To define ∨ it is advised to use the classical rule

¬(a ∨c b) = (¬a) ∧c (¬b)
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and using ¬¬ = 1, it holds that

a ∨ b = ¬((¬a) ∧ (¬b)).

In quantum theory, ¬(a) is provided by 1− a and henceforth, we arrive at

a ∨ b = 1− (1− a) ∧ (1− b)

which leads to a violation of the de Morgan rule given that

a ∧ (b ∨ c) = a.(1− (1− b).(1− c)) = −ab− ac+ abc

whereas

(a ∧ b) ∨ (a ∧ c) = 1− (1− ab).(1− ac) = −ab− ac+ abac.

General exercise.
Determine matrix representations of deformed logic’s in terms of commutative
albeit possible non-associative ones. It is to say that

∧ = (∧̃ijk)i,j,k:1...n

where
∧̃ijk(aj , bk) = ∧̃ijk(bk, aj)

constitute S symmetrical logics on the product space ×nP where P provides for
elementary propositions. Classify first the S symmetric deformations of Boolean
logic on general proposition sets.
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Chapter 3

Classical metric spaces and
connection theory
thereupon.

In this section, we expand pon well known notions in differential geometry to
the extend that one can define Riemann and Torsion functions on a general
path metric space. The construction goes by means of a generalized conncec-
tion which gives rise to the definition of a non commutative and non associative
sum even ultra-locally in case the limit exists. In that vein may these classical
constructions be perceived as quantuantum mechanical given that precise val-
ues of the curvature and torsion tensors may not be within reach. In the next
section, we try to define non-comutative geometry from the operational point
of view wich is a considerably less flexible language.

Let X be any topological space (we do not insist upon it being metrical yet)
and consider an equivalence relation R ⊂ X×X which is topologically open. R
defines vectors, that is (x, y) ∈ R is a vector connecting x with y; the correspon-
dance to the usual vectors on a manifold being that (x, y) has to be thought of
as the vector at x such that thenimage of the exponential map equals y, so they
defined in a way relative to a meric and not a coordinate system. As said in the
introduction, the notion of transport can easily be generalized and is defined by
means of the following

∇X : {(x, y, z) : y, z ∈ R(x, ·)} → X ×X : (x, y, z)→ ∇(x,y)(x, z) = (y, w)

is called the transported relation regarding (x, z) over (x, y) from x to y and
as such it indicates a preffered path or geodesic at least locally. ∇X should
obey the following further properties: (a) for any x, there exists an open O
around it, such that {x} × O ⊂ R and such that for any y, z ∈ O holds that
∇(x,y)(x, z) ∈ R, allowing one to define the composition of two transporters (b)
∇X is continuous in the product topology (c)∇X(x, x, z) = (x, z), ∇X(x, y, x) =
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(y, y) indicating that transport over the zero vector is the identity map and
the zero vector gets transported into the zero vector. Before we proceed, it
is useful to defientwo projections π1 : R → X : (x, y) → x and π2 : R →
X : (x, y) → y. We shall impose a furter condition on R which is that for
any x and sufficiently small neighborhood O around it, that for any y, z, p, q it
holds that (π2(∇(x,y)(x, z)), π2(∇(x,p)(x, q))) ∈ R meaning that for sufficiently
small vectors sufficiently small vectors around a point, the resulting endpoints
of the parallel transport again constitute a vector. Another, useful operation
is the reversion P which maps (x, y) into (y, x), something which has to do
with the linear structure of vectors. To localize, the reversion, we define P̃ (x, y)
as ∇P (x,y)(P (x, y)) ∈ R(x), so again, taking the minus sign is a geometrical
operation. On R, it is now possible to define two kinds of (non-commutative)
sums; the first one is mere composition, that is

(x, y) ◦ (y, z) = (x, z)

being non local operation and the second one

(x, y)⊕ (x, z) = ∇(x,y)(x, z) ◦ (x, y)

being a local operation. The reader notices that the reversion also defines a
minus operation

(x, y)	 (x, z) = (x, y)⊕ P̃ (x, z).

So, the reader understands that the local notion of a sum is a geometrical one
and not one which merely originates from the manifold structure. Now, we can
easily define the torsion functor

T : X ×R(x)×R(x)→ R(x) : (x, y, z)→ ((x, y)⊕ (x, z))	 ((x, z)⊕ (x, y))

and we shall prove that in a way this coincides with the usual definition in case
y, z converge to x at the same rate. The Riemann function may be defined in a
sufficiently small neighborhood of x as

R(x, p, q, r) = ((x, p)⊕ ((x, q)⊕ (x, r)))	 ((x, q)⊕ ((x, p)⊕ (x, r))).

The reader notices here that we did not include the commutator in this definition
as we have no natural substitute for a vectorfield, neither commutator and
all draggings are supposed to define commuting vectorfields anyway. We shall
investigate these two definitions in further detail in the next section. There is no
meaningful topological way to define this, you need a metric for that. Finally,
we may consider functions between two metrical spaces (X, dX), (Y, dY ) with
vector structures R, T and transporters ∇X , ∇Y defined upon it: we then say
that F : X → Y is differentiable in a surrounding of x ∈ X in case for any
open V ⊂ T (F (x)) there exists an open neighborhood O ⊂ R(x) such that
the canonical bi-continuous mapping DF (w, v) : (w, v) ∈ O2 → V2, v, w ∈ O
defined by (F (v), F (w)) = DF (v, w) satisfing

DF (((x, y)⊕ (x,w)) = DF (∇(x,y)(x,w)) ◦DF (x, y)

38



also obeys

d2(DF ((x, y)⊕ (x,w))	 (DF (x, y)⊕DF (x,w)))

ε
→ 0

in case d1(x, y) = εa, d1(x,w) = εb, where a, b > 0 constants, which is the
linearity condition. To define the torsion and Riemann “tensor”, we need addi-
tional information. A connection is called weakly metric compatible if and only
if

d(∇(xy)(xz)) = d((xz))

which is, by itself insufficient to select for an “integrable” class of connections;
for example, consider R2 with the standard Euclidean metric and define the
connection ∇(x,y)(x, z) = (y, y + R(z − x)) where R is the rotation over the
minimum of the angle θ between the vector y − x and z − x and π − θ in
opposite orientation to the one defined by z − x and y − x. Then the reader
convinces himself that the angle is not preserved and that the torsion function
vanishes identically. So, we must insist upon a stronger metric compatibility
which says that the angles are preserved. For doing this, we need a path metric
defined by the property that for any x, y ∈ X it holds that there exists a z ∈ X
such that

d(x, z) = d(y, z) =
d(x, y)

2
.

The latter is equivalent to stating that there exists a curve, called a geodesic,
γ : [0, 1]→ X which minimizes the length functional L for paths with endpoints
x, y and, moreover, L(γ) = d(x, y). The latter is defined by

L(γ) = sup
0=t0<t1...<tn=1,n>0

n−1∑
j=0

d(γ(tj), γ(tj+1))

and γ can be parametrized in arc-length parametrization by means of the Radon
Nikodym derivative. Furthermore, this only makes sense if the geodesic con-
necting two points x, y close enough to one and another exists and is unique
so that we can associate vectors to geodesics. Consider a point x ∈ X and
take a sequence of points yn, zn placed on two half geodesics emanating from x
converging in the limit for n to infinity towards x. In case the limit

lim
n→∞

d(x, yn)2 + d(x, zn)2 − d(yn, zn)2

2d(x, yn)d(x, zn)

exists, we define the angle θx(y, z) between both geodesics by equating the latter
expression to cos(θx(y, z)). So, we must also require that ∇X preserves angles;
in short, θx(y, z) = θp(π2(∇(x,p)(x, y)), π2(∇(x,p)(x, z))) for x, p, y, z sufficiently
close to one and another. Obviously, this is still not enough given that one
may consider the connection ∇(x,y)(x, z) = (y, y − (z − x)) and notice that
(x, y) ⊕ (x, y) = (x, x) = 0. The reader sees immediately that angles as well
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as distances are preserved and that the torsion vanishes since (x, y) ⊕ (x, z) =
(x, y − (z − x)) and (x, z)⊕ (x, y) = (x, z − (y − x)) so that

((x, y)⊕ (x, z))	 ((x, y)⊕ (x, z)) = (x, y − (z − x))⊕ P̃ (x, z − (y − x)) =

(x, y − (z − x))⊕ (x, y − (z − x)) = (x, x) = 0

since P̃ (x, z− (y−x)) = ∇(z−(y−x),x)(z− (y−x), x) = (x, x− (z− y)) = (x, y−
(z−x)). So, therefore we need to impose the strongest form, which amounts to
an integrability condition which is that the d geodesics are auto-parallel curves
meaning that for any geodesic γ from x to y in arclength parametrization, it
holds that

∇(γ(t),γ(s))(γ(t), γ(s)) = (γ(s), γ(2s− t))

for s > t sufficiently small. In that case, we find back the ordinary Levi-Civita
connection with vanishing torsion in case for metrics on a manifold. To allow for
torsion, one may impose that for any vector x, y sufficiently small, there exists
a unique curve γ from x to y in arclength parametrization such that for t < s
sufficiently small, the above condition holds. We shall henceforth insist upon the
last integrability condition. To give a nontrivial example of our construction,
take two manifolds glued together at a point p, with identified induced metrics
on both meaning there exist two orthonormal basis at p which are identified by
means of a linear mapping T : TMp → TNp : v → T (v) and T−1 of course for
the opposite directions. Then, for general vectors a ∈ Mp corresponding to a
unique vector (p, x) and b ∈ TNp corresponding to a unique vector (p, y), one
can define a⊕ b ≡ a⊕M T−1(b) in M resultng in a vector (p, z) and vice versa
for b⊕ a ≡ b⊕N T (a). So, usually, the torsion function does not vanish, but it
does so for infinitesimal vectors a = εa′, b = εb′ keeping a′ and b′ fixed. In the
limit for ε to zero (as we shall show in full detail below) will a⊕ T−1(b) reduce
to ε(a′ + T−1b′) +O(ε2) so that in first order of ε, we have that

(a⊕ T−1(b))	 (b⊕ T (a)) = ε(a′ + T−1(b′)− T−1(b′ + T (a′)) +O(ε2) = O(ε2)

and we will show below that even the second order term in ε vanishes in case
the torsion tensors are anti-podal. Notice that differentiability is a priori a
metric dependent concept but as the reader may verify, this is not the case for
smooth metrics and general metric compatible connections defined by scalar
products on a manifold. Here, the metric locally trivializes and the connection
gives subleading corrections so that the sum reduces to the ordinary one. Let
us work this out in full detail here so that the reader understands that the usual
manifold definitions follow from ours. Given a metric tensor, gµν the reader
verifies that the general connection is given by

Γ̂δµν = Γδµν −
1

2

(
T δ
µν + T δ

νµ − T δ µν
)

where
T δ µν
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is the Torsion tensor which is anti-symmetric in µν and in the previous expres-
sion, lowering and raising of indices has been done by means of the metric tensor.
Now, take two vectors V , W at x, take ε > 0 and consider the exponential map
defined by εV , equivalent to (x, y) and εW , equivlent to (x, z) respectively. Up
to second order in ε those are given by

y = x+ εV − ε2

2
Γ̂(V, V )

and likewise for W . Parallel transport of εW along εV gives

W (y) = εW − ε2Γ̂(V,W )

and likewise for V,W interchanged. Hence,

∇(x,y) (x, z) =

(
y, x+ εV − ε2

2
Γ̂(V, V ) + εW − ε2Γ̂(V,W )− ε2

2
Γ̂(W,W )

)
and likewise for V,W interchanged. The reader notices that Γ̂(V, V ) can be

retrieved from the geodesic equation and therefore Γ̂(V,W ) from the transport
equation, both in order ε2. We shall make this now precise. One sees now that

(x, y)⊕ (x, z) =

(
x, x+ ε(V +W )− ε2

2

(
Γ̂(V +W,V +W ) + T (V,W )

))
implying that

π2 ((x, z)⊕ (x, y)) = x+ ε
(
W + V − ε

2
T (W,V )

)
−ε

2

2
Γ̂
(
W + V +

ε

2
T (W,V ),W + V +

ε

2
T (W,V )

)
.

Hence,

((x, y)⊕ (x, z))	 ((x, z)⊕ (x, y)) = (x, x+ ε2T (W,V ) +O(ε3))

so, as promised, the torsion tensor emerges in leading order ε2. To make this
precise in our setting, consider the generalized geodesics γy, γz in arclength
parametrization representing with γy(0) = x, γy(1) = y and likewise for γz.
Furthermore, choose any reference direction γq then we have that with

T̂ := T (s) := π2(T (x, γy(s), γz(s)))

that

θ(T̂ , γq), lim
s→0

d(x, T (s))

s2

are well defined and fully capture the Torsion tensor without coordinates. In
order to find the Riemann tensor, we need to be a bit more careful and expand
terms up to the third power of ε; more in particular,

(x, y) :=

(
x, x+ εV − ε2

2
Γ̂(V, V )− ε3

6

(
(V Γ̂)(V, V )− Γ̂(Γ̂(V, V ), V )− Γ̂(V, Γ̂(V, V ))

))
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and

W (y) = W − εΓ̂(V,W )− ε2

2

(
(V (Γ̂))(V,W )− Γ̂(Γ̂(V, V ),W )− Γ̂(V, Γ̂(V,W ))

)
so that

π2 ((x, y)⊕ (x, z)) = x+εV−ε
2

2
Γ̂(V, V )−ε

3

6

(
(V Γ̂)(V, V )− Γ̂(Γ̂(V, V ), V )− Γ̂(V, Γ̂(V, V ))

)
+

ε

(
W − εΓ̂(V,W )− ε2

2

(
(V Γ̂)(V,W )− Γ̂(Γ̂(V, V ),W )− Γ̂(V, Γ̂(V,W ))

))
−ε

2

2

(
Γ̂(W,W )− ε

(
Γ̂(Γ̂(V,W ),W ) + Γ̂(W, Γ̂(V,W ))− (V Γ̂)(W,W )

))
−ε

3

6

(
(W Γ̂)(W,W )− Γ̂(Γ̂(W,W ),W )− Γ̂(W, Γ̂(W,W ))

)
.

We seek now for the associated geodesic of time ε which maps to this endpoint;
that is we have to solve for

Z(V,W, ε) = V +W − ε

2
T (V,W ) +

ε2

6
K(V,W )

such that

x+ εZ − ε2

2
Γ̂(Z,Z)− ε3

6

(
(ZΓ̂)(Z,Z)− Γ̂(Γ̂(Z,Z), Z)− Γ̂(Z, Γ̂(Z,Z))

)
equals the previous expression up to third order in ε. This leads to

(W Γ̂)(W,W )− Γ̂(Γ̂(W,W ),W )− Γ̂(W, Γ̂(W,W )+(V Γ̂)(V, V )− Γ̂(Γ̂(V, V ), V )−

Γ̂(V, Γ̂(V, V )) + 3(V Γ̂)(W,W )− 3
(

Γ̂(Γ̂(V,W ),W ) + Γ̂(W, Γ̂(V,W ))
)

+

3
(

(V Γ̂)(V,W )− Γ̂(Γ̂(V, V ),W )− Γ̂(V, Γ̂(V,W ))
)

must be equal to

−K(V,W )−3

2

(
Γ̂(V +W,T (V,W )) + Γ̂(T (V,W ), V +W )

)
+((V+W )Γ̂)(V+W,V+W )−

Γ̂(Γ̂(V +W,V +W ), V +W )− Γ̂(V +W, Γ̂(V +W,V +W ))

which leads to

K(V,W ) = (W Γ̂)(V, V )+(W Γ̂)(V,W )+(W Γ̂)(W,V )+(V Γ̂)(W,V )−2(V Γ̂)(V,W )−2(V Γ̂)(W,W )

−5

2
Γ̂(Γ̂(V,W ), V ) + 2Γ̂(Γ̂(V, V ),W ) +

1

2
Γ̂(Γ̂(W,V ), V )+

1

2
Γ̂(Γ̂(W,V ),W ) +

1

2
Γ̂(Γ̂(V,W ),W )− Γ̂(Γ̂(W,W ), V ) +

1

2
Γ̂(V, Γ̂(V,W ))+

42



1

2
Γ̂(W, Γ̂(V,W )) +

1

2
Γ̂(V, Γ̂(W,V ))+

1

2
Γ̂(W, Γ̂(W,V ))− Γ̂(V, Γ̂(W,W ))− Γ̂(W, Γ̂(V, V )).

The kinetic term can be rewritten as

2
(

(W Γ̂)(V,W )− (V Γ̂)(W,W )
)

+
(

(W Γ̂)(V, V )− (V Γ̂)(W,V )
)

+2
(

(V Γ̂)(W,V )− (V Γ̂)(V,W )
)

+
(

(W Γ̂)(W,V )− (W Γ̂)(V,W )
)

which suggests for two distinct Riemann tensors and two derivatives of torsion
tensors. Further computation yields that

K(V,W ) = 2R̂(W,V )W+R̂(W,V )V+2∇̂V T (W,V )+∇̂WT (W,V )+
1

2
T (V, T (V,W ))+

1

2
T (W,T (W,V )).

The reader must note here that we used the following defition of the Riemann
tensor

R̂(X,Y )Z = ∇̂X∇̂Y Z − ∇̂Y ∇̂XZ − ∇̂[X,Y ]Z;

Note also that K(V, λV ) = 0 and the reader immediately calculates that

Z(S,Z(V,W, ε), ε) = S + V +W − ε

2
(T (V,W ) + T (S, V ) + T (S,W )) +

ε2

6
(K(S, V +W ) +K(V,W ) + 3T (S, T (V,W )))

and therefore

D(S, V,W, ε) := Z(Z(S,Z(V,W, ε), ε),−Z(V,Z(S,W, ε), ε)) = −εT (S, V )+

ε2

6
(K(V,W ) +K(S, V +W )−K(V, S +W )−K(S,W )) +

ε2

6
(3T (S, T (V,W ))− 3T (V, T (S,W )) + 3T (S + V +W,T (S, V )))

and the expression of order ε2

6 reduces to

2
(
R̂(S, V )W + R̂(W,S)V + R̂(V,W )S

)
+6R̂(V, S)W+3R̂(V, S)V+3R̂(V, S)S+3∇̂ST (V, S)+3∇̂V T (V, S)

+∇̂V T (W,S)+2∇̂WT (V, S)−∇̂ST (W,V )+3T (S, T (V,W ))−3T (V, T (S,W ))+3T (S+V+W,T (S, V ))

In the absence of torsion, our vectorfield reduces to

ε2

2
(2R̂(V, S)W + R̂(V, S)V + R̂(V, S)S).

In general, the reader may enjoy observing that D(S, V,W, ε) = −D(V, S,W, ε);
in order to eliminate the quadratic terms in the above expression, it is useful to
consider

E(S, V,W, ε) := D(S, V,W, ε)−D(S, V,−W, ε) =

43



ε2
(

2

3

(
R̂(S, V )W + R̂(W,S)V + R̂(V,W )S

)
− 2R̂(S, V )W +

1

3
∇̂V T (W,S)

)
+ε2

(
−2

3
∇̂WT (S, V ) +

1

3
∇̂ST (V,W ) + T (S, T (V,W )) + T (V, T (W,S)) + T (W,T (S, V ))

)
so that we now have a tensor! The reader immediately notices that in the
absence of torsion this expresion reduces to

−2ε2R̂(S, V )W

by means of the first Bianchi identity, so we would have isolated the Riemann
curvature. In general, the first Bianchi identity reads

R̂(S, V )W + R̂(W,S)V + R̂(V,W )S =

T (T (S, V ),W )+T (T (W,S), V )+T (T (V,W ), S)+∇̂ST (V,W )+∇̂WT (S, V )+∇̂V T (W,S)

so that the above expression reduces to

ε2
(
−2R̂(S, V )W + ∇̂ST (V,W ) + ∇̂V T (W,S) +

1

3
(T (S, T (V,W )) + T (V, T (W,S)) + T (W,T (S, V )))

)
.

In order to get rid of the torsion terms, the reader may verify that

1

3
(E(S, V,W, ε) + E(W,S, V, ε) + E(V,W, S, ε)) =

ε2 (T (S, T (V,W )) + T (V, T (W,S)) + T (W,T (S, V )))

using the first Bianchi identity again. So, therefore

8

9
E(S, V,W, ε)−1

9
E(V,W, S, ε)−1

9
E(W,S, V, ε) = ε2

(
−2R̂(S, V )W + ∇̂ST (V,W ) + ∇̂V T (W,S)

)
There is no way to further reduce this and eliminate the remaining derivatives
of the Torsion tensor and the reader is invited to play a bit around and consider
different sum operations in order to extract those. Finally, we return to the case
without torsion, which is considerably easier and we now turn the prescription
into our novel language; the reader may verify that to third order in ε our
definition of E(S, V,W, ε) coincides with

E(x, p, q, r) := [((x, p)⊕ ((x, q)⊕ (x, r)))	 ((x, q)⊕ ((x, p)⊕ (x, r)))]	[(
(x, p)⊕ ((x, q)⊕ P̃ (x, r))

)
	
(

(x, q)⊕ ((x, p)⊕ P̃ (x, r))
)]

and we have applied the same limiting procedure as we did tor the torsion tensor
previously. The reader may repeat that exercise and define E(x, p, q, r)(s) with
s ∈ R+ and show that

d(E(x, p, q, r)(s)) ∼ 2s3||R̂(S, V )W ||.
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Considering the angle with a reference direction, the entire Riemann tensor may
be retrieved in a coordinate independent way. Note also that we have a very
nice “arithmetic” interpretation of torsion and curvature; that is, they express
the failure of ⊕ to be commutative and perhaps associative to some extend. In
the next section, we shall abandon the case with torsion and give an entirely
different prescription for the Riemann tensor. This treatment shall be more ba-
sic and rough, which may not be a bad thing given the connections constructed
so far are extremely subtle. We now finish this section by some comments upon
differentiability and how the usual bundle apparatus of differential geometry
may be generalized to our setting.

Given that we dispose of a local notion of a (non-commutative) sum whos in-
finitesimal version may very well become commutative and associative as ex-
plained previously and moreover, we have a natural notion of scalar multiplica-
tion by means of our generalized exponential map which associates to a vector
(x, y) a unique geodesic γ in arclength parametrization such that γ(0) = x and
γ(s) = y, then we define for any sufficiently small positive real number λ,

λ(x, y) = (x, γ(λs))

and in case λ is negative we suggest

λ(x, y) := (−λ)P̃ (x, y)

and the reader immediately verifies that these definitions induce the usual ones
on the tangent bundle of a manifold. The reader should understand therefore,
that it is natural to speak of directions at x defined by means of the geodesics
(with respect tot the connection, so they don’t need to be the geodesics of the
metric) and that also in our general context of a non-commutative and non-
linear sum meaning that

λ((x, y)⊕ (x, z)) 6= (λ(x, y))⊕ (λ(x, z))

the very concept of a linearly independent and generating set of directions at x
is still a well defined concept albeit I believe this does not imply that each vector
can be written in a unique way by means of ⊕ and scalar multiplication. So,
the concept of a basis is somewhat less restrictive but it is still well defined as a
minimal set of independent and generating directions. The dimension is then an
ordinary integer defined by the number of basis directions; these observations
allow one to transport the entire cnstruction of tangent and cotangent spaces
to our setting. But beware, we work very differently here as in the case of
the ordinary theory; here it are the connections which determine the tangent
bundle as well as its dimension, a much more intrinsic approach as the usual one
where the backbone differential structure defines the connections. So, a linear
functional, or covector, is defined by means of a continuous functional ωX on
the displacements (x, y) satisfying

1

ε
(ωX((x, z)⊕ (x, y))− ωX((x, y))− ω((x, z))) = 0
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and
1

ε
(ωX(λ(x, y))− λωX((x, y))) = 0 ∈ R

in the limit for d(x, z) = εa, d(x, y) = εb for a, b > 0 constant and ε→ 0. Note
that we cannot request ωX((y, z) ⊕ (x, y)) = ωX((x, y)) + ω((y, z)) for finite
displacements given that the sum operation allows for ambiguities non-locally.
Furthermore, if ωX were a field, then we could define it to constant meaning
that

ωX(∇(x,y)(x, z)) = ωX((x, z)).

Just as in ordinary functional analysis, we can define the weaker notions of con-
tinuity and differentiability of functions regarding convergence properties with
respect to linear functions which all define semi-norms when suitably rescaled
in the infinitesimal limit given by

||(x, y)|| := |ωX((x, y))|.

All proceeds now in a fairly trivial way: given our geodesics (with or without
torsion), we have, as mentioned before directions which are endowed with a nat-
ural notion of length and angles between them. You can consider generalizations
of tensors in those directions which upon suitable rescaling in the infinitesimal
limit might become ordinary linear objects. We leave such developments to the
reader.

3.1 Riemannian geometry.

In this section, we shall take a very different point of view as in the previous
one; the latter was delicate and subtle and very much in line with the standard
manifold treatment. Note that we have sidestepped the issue of existence of
connections something which seems not totally obvious to prove and might be
too delicate for practical purposes. For example, regarding hyperbolic spaces
with conical singularities, it is rather obvious that no connection exists at the
singular points. To give away the detail, take a couple of equilateral flat triangles
(all angles having 60 degrees) and glue them together along their edges such
that one has the situation where an interior vertex meets n > 6 triangles; in
either the internal angle meaure exceeds 360 degrees. Take now any half line
starting from the vertex, then it will have an angle of π with all other half
lines in a range of (n − 6)2π. Obviously, it is impossible for any mapping to
preserve angles when it returns to a normal region where the measure of the
circle equals 2π. The situation is the reverse for conical spherical spaces where
no mapping towards such points exist. Nevertheless, our coarse grained notion
of curvature is still able to capture the curvature around such vertex whereas
local curvature fails. I invite the reader to think about this; after all, the
integrability condition was together with preservation of distances by far the
most important criterion. But it is not sufficient either, so maybe we should
be clever enough to find a weaker condition as the preservation of angles which
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amounts in the manifold case to precisely that. For example, a weaker criterion
would be that the angles with the direction of propagation need to be preserved
as well as the angles amongst themselves as long as both angles with respect to
the direction of propagation are less than π. This definition would certainly fit
all path metrical spaces and coincide with the usual lore of differential geometry.
This does not change anything to what we have said in the previous section,
but merely generalizes the setting to which it be applied. Nevertheless, the
downside of the connection theory is that in general it is impossible to give
a concrete prescription something which made the Christoffel connection so
powerful. There are people who think you should give an easy prescription to
calculate curvature even without constructing geodesics which might be a very
daunting if not impossible task for a general path metric. Now, I am someone
who is very found of geodesics, which are barely manageable in a general curved
Riemannian space but I also sympathize with such an idea. The least you should
know, I believe are distances and the work done in this section does precisely
that. The price to pay is that we cannot speak any longer of vectors, but we
have to directly calculate the scalar invariants.

With this in mind, we work now on general path metric spaces (X, d). We have
the following definitions:

• Alexandrov curvature: in flat Euclidean geometry, the midpoint r of a line
segment [ab] satisfies

~xr =
1

2
( ~xa+ ~xb)

for any x. Hence, one arrives at

d(x, r)2 =
1

4
(d(x, a)2 + d(x, b)2 + 2d(x, a)d(x, b) cos(θx(a, b))).

We define the nonlocal Alexandrov curvature as

R(x, y, z) =
−2d(x, y)2 − 2d(x, z)2 + d(y, z)2 + 4d(x, r)2

d(x, y)2d(x, z)2 sin2(θx(y, z))
.

Taking again geodesic segments between (x, y) and (x, z) parametrized by
ε and corresponding to the vectors V,W respectively then, as before

y = x+εV − ε
2

2
Γ(V, V )− ε

3

6
((V Γ)(V, V )− Γ(Γ(V, V ), V )− Γ(V,Γ(V, V )))

and
d(x, y)2 = ε2h(V, V )

by the very property of the exponential map. To find the midpoint between
y and z we solve for

x+ εV − ε2

2
Γ(V, V )− ε3

6
((V Γ)(V, V )− Γ(Γ(V, V ), V )− Γ(V,Γ(V, V )))
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+εZ−ε
2

2
Γy(Z,Z)−ε

3

6
((ZΓy)(Z,Z)− Γy(Γy(Z,Z), Z) + Γy(Z,Γy(Z,Z))) =

x+εW−ε
2

2
Γ(W,W )−ε

3

6
((WΓ)(W,W )− Γ(Γ(W,W ),W )− Γ(W,Γ(W,W )))

leading to
Z := W − V + ε (Γ(V, V )− Γ(W,V )) +

ε2
(

1

2
(V Γ)(V, V )− 2

3
(V Γ)(W,V ) +

1

3
(V Γ)(W,W ) +

1

6
(WΓ)(V, V )− 1

3
(WΓ)(W,V )

)
+ε2

(
2

3
Γ(W,Γ(V, V ))− 1

3
Γ(W,Γ(W,V ))− Γ(V,Γ(V, V )) +

1

3
Γ(V,Γ(W,W )) +

1

3
Γ(V,Γ(V,W ))

)
.

This implies that the midpoint has coordinates, up to third order in ε
given by

r = x+ε

(
V +W

2

)
−ε

2

2
Γ

(
V +W

2
,
V +W

2

)
−ε

3

6

(
V +W

2
Γ

)(
V +W

2
,
V +W

2

)

−ε
3

6

(
1

2
R(V,W )V +

1

2
R(W,V )W

)
−ε

3

6

(
−2Γ

(
Γ

(
V +W

2
,
V +W

2

)
,
V +W

2

))
This shows that

d(x, r)2 =
ε2

4
(h(V, V ) + h(W,W ) + 2h(V,W ))−ε

4

6
h(R(V,W )V,W )+O(ε)6

and because

d(y, z)2 = ε2 (h(V, V ) + h(W,W )− 2h(V,W )) +
ε4

3
h(R(V,W )V,W )

the Alexandrov curvature equals

− h(R(V,W )V,W )ε4 + . . .

3ε4(h(V, V )h(W,W )− h(V,W )2) + . . .

which in the limit for ε to zero provides for 1
3 times the sectional curvature.

The reader might have guessed this result apart from the front factor based
upon the symmetries of the Alexandrov curvature and the Riemann tensor.

• We now arrive to the notion of Riemann curvature; here, we shall ahve to
take midpoints of midpoints. To understand why this is the case, consider
the following expression

h

(
R

(
V +X

2
,
W + Y

2

)
V +X

2
,
W + Y

2

)
=
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− 1

16
(h(R(V,W )V,W ) + h(R(V, Y )V, Y ) + h(R(X,W )X,W ) + h(R(X,Y )X,Y )) +

1

4

(
h

(
R

(
V +X

2
,W

)
V +X

2
,W

)
+ h

(
R

(
V,
W + Y

2

)
V,
W + Y

2

))
+

1

4

(
h

(
R

(
X,

W + Y

2

)
X,

W + Y

2

)
+ h

(
R

(
V +X

2
, Y

)
V +X

2
, Y

))
+

1

8
h(R(V, Y )X,W ) +

1

8
h(R(X,Y )V,W )

Now, to undo the symmetrization in the curvature terms

1

8
h(R(V, Y )X,W ) +

1

8
h(R(X,Y )V,W )

note that by means of the Bianchi identity, this can be rewritten as

−1

4
h(R(Y,X)V,W ) +

1

8
h(R(V,X)Y,W )

so that we have broken the coefficient symmetry. Considering therefore
the expression

h

(
R

(
V +X

2
,
W + Y

2

)
V +X

2
,
W + Y

2

)
−h
(
R

(
V + Y

2
,
W +X

2

)
V + Y

2
,
W +X

2

)
=

− 1

16
(h(R(V, Y )V, Y ) + h(R(X,W )X,W )− h(R(V,X)V,X)− h(R(Y,W )Y,W )) +

1

4

(
h

(
R

(
V +X

2
,W

)
V +X

2
,W

)
+ h

(
R

(
V,
W + Y

2

)
V,
W + Y

2

))
−1

4

(
h

(
R

(
V + Y

2
,W

)
V + Y

2
,W

)
+ h

(
R

(
V,
W +X

2

)
V,
W +X

2

))
+

1

4

(
h

(
R

(
X,

W + Y

2

)
X,

W + Y

2

)
+ h

(
R

(
V +X

2
, Y

)
V +X

2
, Y

))
−1

4

(
h

(
R

(
Y,
W +X

2

)
Y,
W +X

2

)
+ h

(
R

(
V + Y

2
, X

)
V + Y

2
, X

))
+

3

8
h(R(X,Y )V,W )

which is the result we needed. Denoting by (̂y, z) the midpoint between
y, z, we arrive at the following prescription for the curvature

S(x, y, z, p, q) = −8
(
S(x, (̂y, p), (̂z, q))− S(x, (̂p, z), (̂y, q))

)
−1

2
(S(x, p, z) + S(x, y, q)− S(x, p, y)− S(x, z, q))
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+2
(
S(x, (̂p, y), q) + S(x, (̂q, z), p)− S(x, (̂p, z), q)− S(x, (̂y, q), p)

)
+2
(
S(x, (̂z, q), y) + S(x, (̂p, y), z)− S(x, (̂q, y), z)− S(x, (̂p, z), y)

)
where

S(x, y, z) = −2d(x, y)2 − 2d(x, z)2 + d(y, z)2 + 4d(x, (̂y, z))2.

The reader verifies that all symmetries of the Riemann tensor hold, mean-
ing

S(x, y, z, p, q) = −S(x, z, y, p, q) = −S(x, y, z, q, p) = S(x, p, q, y, z)

and
S(x, y, z, p, q) + S(x, p, y, z, q) + S(x, z, p, y, q) = 0.

This concludes our definition of the Riemann tensor.

• We shall now first define a notion of measure attached to any metric very
much like the canonical volume element attached to a Riemannian metric
tensor; there are several ways to proceed here. Define for any subset
S ⊂ X, the outer measure of scale δ > 0 and dimension d as

µdδ(S) = inf{
∑
i

rdi |B(xi, ri) is a countable cover of open balls of radius ri < δ around xi of S}.

Obviously, the µdδ(S) increase as δ decreases so we define

µd(S) = lim
δ→0

µdδ(S).

The reader verifies that this defines a measure on the Borel sets of X and
morover µd(S) is a decreasing function of d which is infinity for d = 0, in
case X does not consist out of a finite number of points, and 0 for d =∞.
Upon defining α as

α = inf{d|µd(X) = 0} = sup{d|µd(X) =∞}

an equality which holds as the reader should prove and it is µα(S) which
is of interest. α is called the Hausdorff dimension of X. I invite the reader
to “localize” this concept such that one can speak of the local dimension
of a space at a point and not just a global one.

• We define now a one parameter family of “scalar products” by means of

gε(x, a, b) =
d(x, a)d(x, b) cos(θx(a, b))

ε2
.

The reader notices the scaling here as we shall be interested in taking
the limit for ε to zero in a well defined way. Note that we could replace
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the metric compatibility of our connections in the previous section by the
single demand that gε(x, a, b) is preseved under transport meaning that

gε(y, π2(∇(x,y)(x, a)), π2(∇(x,y)(x, a))) = gε(x, a, b).

We want now, in full analogy with the standard treatment in differential
geometry define contractions of the Riemann “tensor” in order to construct
the Ricci and Einstein tensor. Note that we do not necessarily dispose
of a connection here and therefore we have no addition of vectors, seen
as defining a direction. Therefore, we cannot rely upon the notion of a
dual tensor associated to our functionals defind in the previous section.
Nevertheless, we want to construct a notion of inverse which coincides in
the latter cases with the more advanced linear concept. To set the ground
for this discussion, note that there exists a natural generalization of the
Dirac delta function regarding the Hausdorff measure. That is, there exists
a symmetric δ(a, b) such that for all continuous functions f on X, it holds
that ∫

X

dµα(a)δ(a, b)f(a) = f(b).

Defining now the nonlinear dual â of a as

b̂(a) = δ(a, b)

we define inverses gε(x, â, b̂) as∫
B(x,ε)

dµα(b)gε(x, â, b̂)gε(x, b, c)

µα(B(x, ε))
= δ(a, c).

The existence of a uniqueness of the inverse follows from the fact that the
former defines a Toeplitz operator with trivial kernel. It is to say, gε(x, â, b̂)
is the standard Green’s function of the metric regarding the Hausdorff
measure. This holds of course only if the measure is well behaved and we
leave such details to the reader.

Prior to defining contractions with the metric tensor, remark that∫
B(x,ε)

∫
B(x,ε)

dµα(b)dµα(a)gε(x, â, b̂)gε(x, b, a)

is ill defined and requires “a point splitting” procedure to obtain a well
defined answer. Concretely, we consider

α

∫
B(x,ε)

∫
B(x,ε)

dµα(b)dµα(a)
∫
B(a,δ)

dµα(c)gε(x, ĉ, b̂)gε(x, b, a)

µα(B(x, ε))2

an expression which is independent of δ > 0. Note that the dimension α
has been added here to restore for the correct trace.
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• The reader may now define the rescaled Riemann curvature tensors S(x, y, z, p, q, ε) :=
S(x,y,z,p,q)

ε4 and consider contractions with gε(ŷ, q̂) to define the Ricci ten-
sor S(x, z, p, ε) and from thereon the Ricci scalar. We leave this as an
exercise to the reader.
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Chapter 4

Quantum metrics.

As before, we consider a quantum space (S,∧,∨,+, .) as a space of Hermitian
projection operators on Hilbert space H carrying, besides ordinary algebra,
notions of quantal logic. Then, a metric geometry is characterized by a bi-
function

d : S × S → H+

satisfying

d(P, P ) = 0, d(P,Q) = d(Q,P ) > 0, d̃(P,Q) + d̃(Q,R) ≥ d̃(P,R)

where d̃ is a classical metric associated to d in a way to be explained below.
Here H+ is the cone of all positive operators. One notices furthermore that
the so-called inner algebra automorphisms α(A) = gAg† with gg† = g†g = 1
which correspond to a diffeomorphism φ :M→M, in case H = L2(M, µ) for
some compact manifold M and measure µ such that the measure is preserved,
meaning φ?µ = µ, act on functions f by means of g(f) = f ◦ φ. An easy
calculation reveals that∫

M
dµ(x)f(φ(x))g(φ(x)) =

∫
M
d(φ−1? µ)(y)f(y)g(y) =

∫
M
dµ(y)f(y)g(y)

where in the second step we have used the usual diffeomorphism invariance of
the integral and in the third step the invariance of the measure, which shows
that g is unitary. Of course not every unitary transformation corresponds to
a diffeomorphism. If, moreover, the distance function is preserved, then we
recover the Killing fields.

The reader must have noticed that in the above, we spoke about a classical
distance attached to a quantum one. Indeed, this is a crucial aspect of our vision,
which is that the quantum world needs a classical backbone, something which
has been disussed at length by the founding fathers of quantum mechanics such
as Niels Bohr and Werner Heisenberg. We shall proceed therefore in the opposite
way and start from a classical geometry and show how, within an appropriate

53



language, it can be made into a quantum one. To start out simple, consider
flat n + 1 dimensional Euclidean space compactified on a n + 1-dimensional
torus with length between −L and L in every orthonormal direction. Points are
determined by distributional states δ(x− z) := |x〉 where the last symbol is the
Dirac notation of a vector and the unit, or identity operator, is given by

1 =

∫
dx|x〉〈x|.

Consider a translation T (h) defined by (T (h)f)(x) = f(x + h) where the sum
operation is taken modulo 2L, then T (h) is a unitary operator and T (h)† =
T (−h). Therefore, T (h) + T (−h) is self adjoint and one sees that

0 ≤ (T (h)± T (−h))2 = T (h)2 + T (−h)2 ± 2

and therefore
−2 ≤ T (h)2 + T (−h)2 ≤ 2.

Also, we have that TrTs = Tr+s and therefore∫
T

[0,L]
n+1

dr

∫
T

[0,L]
n+1

ds r.s T−rTs =

∫
T

[0,L]
n+1

dr

∫
T

[−L,L]
n+1

ds (r + s).r Ts

=

∫
T

[0,L]
n+1

dr

∫
T

[−L,L]
n+1

ds (r2 + r.s)Ts =

(∫
T

[0,L]
n+1

drr2

)(∫
T

[−L,L]
n+1

ds Ts

)
+
Ln+2

2

∫
T

[−L,L]
n+1

(1, 1, 1, . . . , 1).sTs

which is a positive operator. Moreover,

E =

∫
T

[−L,L]
n+1

ds Ts

obeys ETt = TtE as well as E2 = 2n+1(2L)n+1E given that we have periodic
boundary conditions and therefore E must equal the (distributional if L =∞)
matrix

2n+1|1〉〈1|

given that 〈1|1〉 = (2L)n+1 in the functional representation. Hence, our formula
reads

2n+1

(∫
T

[0,L]
n+1

drr2

)
|1〉〈1|+ Ln+2

2

∫
T

[−L,L]
n+1

(1, 1, 1, . . . , 1).sTs

which is the expression of our concern. Therefore, a good definition of an oper-
ator valued distance d is determined by the “positive scalar product” operator

〈A|B〉op =

∫
T

[0,L]
n+1

dr

∫
T

[0,L]
n+1

ds r.sA†T−rTsB.
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Notice that the quantity

C(|x〉〈x|, |y〉〈y|) =

∫
T

[−L,L]
n+1

dhh2|x〉〈x|T (h)|y〉〈y|

equals
C(|x〉〈x|, |y〉〈y|) = d̃(x, y)2 |x〉〈y|

where d̃ is the distance on the n+ 1 torus. By definition, the distance formula
equals

d(|x〉〈x|, |y〉〈y|)2 =

∫
T

[0,L]
n+1

dr

∫
T

[0,L]
n+1

ds r.s (|y〉〈y| − |x〉〈x|)Tr−s (|y〉〈y| − |x〉〈x|) =

(n+ 1)Ln+3

3
(|x〉〈x|+ |y〉〈y| − |x〉〈y| − |y〉〈x|)+1

2

∫
T

[0,L]
n+1

[(x−y)].s (|x〉〈y|+ |y〉〈x|) .

Unfortunately, this does not provide for the correct distance function; a better
definition would be

d(|x〉〈x|, |y〉〈y|)2 = −
∫
T

[−L,L]
n+1

dr r2 (|y〉〈y| − |x〉〈x|)Tr (|y〉〈y| − |x〉〈x|)

which is a Hermitian quantity due to T †r = T−r and change of integration
variable r → −r but not a positive definite one since

d(|x〉〈x|, |y〉〈y|)2 = d̃(x, y)2 (|x〉〈y|+ |y〉〈x|)

and the right hand side is an operator with mixed positive negative eigenvalues.
A natural root, up to a factor ∞, would be provided by

d(|x〉〈x|, |y〉〈y|) =
1

2
d̃(x, y) ((|x〉+ |y〉)(〈x|+ 〈y|)− (|x〉 − |y〉)(〈x| − 〈y|)) .

Insisting upon retaining positivity of d as well as keeping the quantity relational
forces one to consider only the second part of this expression, in either

d̂(|x〉〈x|, |y〉〈y|) = d̃(x, y)(|x〉 − |y〉)(〈x| − 〈y|)

and it remains to verify the triangle inequality

B(x, y) := d̃(x, y)

 1 −1 0
−1 1 0
0 0 0


Hence, we obtain a quantum triangle inequality

B(x, y)+B(y, z)−B(x, z) ∼

 d̃(x, y)− d̃(x, z) −d̃(x, y) d̃(x, z)

−d̃(x, y) d̃(x, y) + d̃(y, z) d̃(y, z)

d̃(x, z) d̃(y, z) d̃(y, z)− d̃(x, z)
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which is not necessarily a negative definite matrix due to the determinant test.
Hence,

d̃(x, y) + d̃(y, z) ≥ d̃(x, z)

is not conclusive for d̂ which justifies our axiom that the triangle inequality
merely needs to be obeyed classically. However, this problem may be circum-
vented by noticing that the expression

d(|x〉, |y〉)2 := −(〈x| − 〈y|)1

2

∫
T

[−L,L]
n

ds ||s||2 Ts(|x〉 − |y〉) = d̃(x, y)2

which is clearly a satisfying formula. Evidently,

d(|x〉, |y〉)

restricted to those “atomic” states satisfies the full triangle inequality given
that d̃ does. This suggests different results for scalar valued quantal distances
on states than it does for density matrices.

4.1 Differential geometry.

In the previous section we has cast flat, compactified, Euclidean geometry into
a new functional analytic jacket.. Quantum geometry obviously necessitates
spaeaking in a weaker (distributional) sense about points given that they are
“atomistic” in a much weaker sense than it is for classical vectors projection
operators in the Hilbert algebra of fuctions on a metric space. The reader must
have noticed by now that

d̃(x, y) = d(|x〉, |y〉) =
1

4
(〈x|−〈y|)

∫
×n[− ε2 ,

ε
2 ]
dhTh d̂(|x〉〈x|, |y〉〈y|)

∫
×n[− ε2 ,

ε
2 ]
dhTh (|x〉−|y〉)

where the integration in the last formula serves to eliminate the factor of ∞ in
the distributional scalar products. Therefore, it is appealing to consider

4(x, y; z) := d(|x〉〈x|, |y〉〈y|) + d(|y〉〈y|, |z〉〈z|)− d(|x〉〈x|, |z〉〈z|)

but it cannot be related to the previous formula due to the alternating character
of |x〉− |y〉+ |z〉 providing for |x〉+ |z〉 in the sandwish for d̂(|x〉〈x|, |y〉〈y|). This

can be remedied by considering the vector |x〉 + ei
π
3 |y〉 + ei

2π
3 |z〉 providing for

an expression of the kind

d̃(x, y) + d̃(y, z)− d̃(x, z)

such that one has that

(〈x|+e−iπ3 〈y|+e−i 2π3 〈z|)
∫
×n[− ε2 ,

ε
2 ]
dhTh4(x, y; z)

∫
×n[− ε2 ,

ε
2 ]
dhTh (|x〉+eiπ3 |y〉+ei 2π3 |y〉) ≥ 0
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for ε suffiiently small due to the classical triangle inequality. So, this is our
classical-quantum correspondance: for a general state over all points the triangle
inequality is not obvious.

The reader must correctly understand that underlying the quantum geometry is
a fixed classical one just as is the case in this author’s work on quantum gravity.
We now generalize this work to a curved classical background by means of
the exponential map which is after all immediately determined by the geodesic
equation and vierbein and generalizes the idea of a translation group towards
abelian group bundles and non-abelian semigroups. That is, locally, we may
write

T[Tx(v)](w) = Tx((w ⊕ v)x)

where w⊕v is uniquely given if we demand that geodesics do not leave a certain
open region O around x and Tx(v) = expx(v). On the other hand Tx(v) may
be thought of as representing a translation on the tangent space at x in which
case the usual law

Tx(w)Tx(v) = Tx(v + w)

holds. We shall be interested in the first representation which is isomorphic to
the second in flat Euclidean space with respect to a global inertial frame so that
there, the x dependency can be dropped in Tx as well as ⊕x = +. Specifically,
the global action T is

(T (v)f)(x) := f(Tx(v(x)))

where v(x) is a vectorfield onM. The element v(x), seen as an ultralocal vector,
may also serve as Tv(x) on the flat geometry modelled at x. It is the exponential
map which connects both representations as we shall see soon. One also has

[T (w)(T (v)f)](x) := [T (v⊕w)f ](x) = f(Tx(v⊕w)x) = f(TTx(w(x))(v(Tx(w(x))))).

Therefore, the right framework for curved geometry is the one of the induced
non-abelian sum on the vectorfields something which has been extensively used
in the previous chapter where we studied general connections (in this case, the
notion of ⊕ was different as herein since we did not dispose at that point of
a tangent space1). This calls for an extension of our previous setting; one
could work with the Hilbert-algebra H of functions onM whereM is compact,
equipped with the real Leibniz topological dual H?,L on M defined by the
continuous, real linear functionals D satisfying2

D(fg) = D(f)g + fD(g).

The Leibniz rule is there to ensure the locality aspect and enables one to define
D(x) which is what we need; notice that the previous definition of H?,L does

1The reader may enjoy generalizing the content below in that more general framework of
chapter three.

2Hence H?,L equals C∞(M) equipped with something as the Schwartz topology to ensure
continuity of D.
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not depend upon the choice of H whereas quantum mechanically it might (when
taking the closure in a suitable scalar product). Given that H?,L is infinite
dimensional, we cannot integrate over it. Note that we have something as a pull
back defined by

f?D

where [(f?D)(g)](x) = [D(g ◦ f−1)](f(x)) for f ∈ Diff(M) which is an “auto-
morphism” or derivation of H?,L. Formulated more algebraically, every auto-
morphism χ of H?,L induces a whole class of mappings χn ◦χ?D : H?,L → H?,L
by means of

[χn ◦ χ?D](f) = χn[D(χ−1(f))].

Indeed, one checks that

[χ?D](fg) = χ[D(χ−1[fg])] = χn[D(χ−1(f))]χn−1(g) + χn−1fχn[D(χ−1[g])]

which shows its sanity and such concept has been previously developed by Mi-
chor. As in the previous chapter, is better to fix a point x and drag D(x) along
the geodesics emanating from it. This prepares the setting for a generalization
of the geometry defined in the previous section. The crucial part is to use the
standard spectral theorem on H to know that every element can be written as a
sum of complex multiples of Hermitian idempotents which in their turn can be
written as an integral of distributional atomistic characters (a Hilbert algebra
is a commutative C? algebra as well as a Hilbert space, where the C? algebra is
represented on itself). Therefore, the position “basis” of atoms always is a basis
of orthogonal elements in the general distributional sense. A classical metric is
defined in the following way: pick a point x and a scalar product hx(v(x), w(x))
on H?,L(x) which we assume locally to be isomorphic, as a vector space, to Rn.
The pull back of hx is defined as

(χ?h)χ−1(x)((χ?v)χ−1(x), (χ?w)χ−1(x)) := hx(v(x), w(x)).

If one were to define the h field outside of x by means of

[(T−1x (v))?h]Tx(v) = hx

or
hTx(v) = (Tx)?(v)hx.

To rectify this, note that T defines the full connection and therefore the parallel
transporter which we denote with T̂ . With conventions pointed out as in the
proceeding chapter and all explicit calculations therein, we arrive that

(εv)⊕ (εw) = ε(v + w) +O(ε3).

As is well known from differential geometry, this issue does depend upon the
choice of hx if the latter is nondegenerate and symmetric and of fixed sig-
nature. Indeed, take a matrix field O(x), then the connection associated to
O(x)g(x)OT (x) is given by

O(x)γ(x)OT (x)⊗OT (x) +
1

2
(OT )−1g−1O−1(first derivatives of O).
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There are in general n2(n+1)
2 equations and n2 variables so that inconsistencies

arise. This issue is pretty easily solved by demanding that

lim
ε→0

T̂εvh− h
ε

= 0

for the appropriate metric h and any field v ∈ H?,L. Consistency then implies
that

lim
ε→0

T̂εvT̂εwh− T̂ε(v+w)h

ε2
= 0

for any fields v, w and the two conditions on T which define one parameter
subgroups and restrict the coincidental behaviour of ⊕, together with the fact
that T̂ must define an infinitesimal isometry of the metric field, fix the classical
geometry entirely.

Taking this excessive infomation regarding the translations into account it be-
comes utterly clear how to define the quantum distance at hand on a general
metrically complete manifold of any topology using the existence of a distance
minimizing geodesic (Hopf-Rinow theorem). However, we still rely upon the
geometrical concept of a classical geodeic while doing quantum geometry and
I do not comprehend how one could uplift this limitation. A straightforwar
suggestion would be to proceed with non-abelian semigroups defined on vector
(fields) using the connections defined in the previous chapter and take that as
the backbone of a non commutative geometry; however, the functional language
employed here does not really fundamentally contribute in that regard. Perhaps,
there is some slight way out here if one were to generalize this connection therory
even further algebraically.
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