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The Strange Attractor Structure of Turbulence and Effective Field Theories  

Ervin Goldfain 

Abstract 

Recent work has conjectured that, under general boundary conditions, non-equilibrium Renormalization 

Group flows are likely to end up on strange attractors. If this conjecture is true, effective field theories must 

necessarily reflect the properties of these attractors. We start from the observation that, seemingly disparate 

concepts such as the Berry phase, gauge potentials and the curvature tensor of General Relativity (GR), 

share a common geometric foundation. Developing further, we posit that the dynamics of gauge and 

gravitational fields may be derived from the global attributes of strange attractors. The motivation behind 

this ansatz is that the Navier-Stokes equations bridge the gap between fluid turbulence, on the one hand, 

and the mathematics of GR and gauge theory, on the other.   
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1. Introduction 

We have recently found that, under general boundary conditions, non-equilibrium 

Renormalization Group flows are prone to evolve to strange attractors [1, 2]. It is known 

that these attractors provide realistic models for the onset of chaos in nonlinear dynamics, 

as well as for the transition to turbulence in fluids described by the Navier-Stokes 

equations [3, 4]. Here, we start from the idea that, seemingly disparate concepts of 

quantum physics and classical field theory – namely, the Berry phase, gauge potentials 

and the connection coefficients of General Relativity (GR) – share common grounds with 

fluid turbulence and its roots in the geometry of strange attractors. Proceeding along this 

route, we further find that the non-abelian gauge groups of the Standard Model (SM) 
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spring out from sequential bifurcations of Quantum Electrodynamics. Likewise, fermion 

families follow a bifurcation pattern in ascending order of mass. As a result, the entire 

flavor and mass content of the SM replicates the transition to turbulence in fluid 

dynamics via the (nearly) self-similar formation of eddies. Moreover, we find that the 

onset of turbulence in GR equations is compatible with the Cantor Dust picture of Dark 

Matter on astronomical scales [  ].  

The paper is organized as follows: as preamble to the main text, sections two and three 

outline the geometric foundation of Berry phase, gauge and gravitational fields. 

Elaborating from the complex Ginzburg-Landau theory, section four lays out the path 

from the Navier-Stokes equation to the laminar regime of classical electrodynamics and 

GR. The transition to the full gauge and flavor spectrum of the SM via progressive 

turbulence, as well as the unfolding of the Cantor Dust texture of Dark Matter above the 

SM scale, form the object of section five. Summary and concluding remarks are detailed 

in the last section. 

The reader is cautioned upfront on the provisional nature of this investigation. Given the 

plethora of unsettled questions related to the topics discussed here, these findings must 

be taken with a “grain of salt”. Further studies are required to back up, consolidate or rule 

out our conclusions.  

2. Preamble #1: Berry phase in quantum physics 

A quantum system adiabatically transported around a closed path C in the space of 

external parameters acquires a non-vanishing phase (Berry phase, BP in short). Since BP 

is exclusively path-dependent, it provides key insights into the geometric structure of 

quantum mechanics and quantum field theory (QFT). The BP concept is closely tied to 
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holonomy, that is, the extent to which some of variables change as other variables or 

parameters defining a system return to their initial values [5, 6].  

Consider a quantum system described by the time-independent Hamiltonian ( )H t , whose 

associated eigenstate is ( )t  and which is embedded in a slowly changing environment.   

After a periodic evolution of the environmental parameters ( t t T  ), the eigenstate 

returns to itself, apart from a phase angle, 

 ( ) (0)it e     (1) 

If   denotes the eigenvalue of ( )t , a generalization of the phase angle T   in units 

of 1  is given by the “dynamical phase” 

 
0 0

( ) ( ) ( ) ( )
T T

d t dt t H t t dt        (2) 

 Berry has shown that there is a time-independent (but contour dependent) supplemental 

“geometric phase” entering the phase angle, namely, 

 ( )d C      (3) 

where 

 ( )
C

C i dr      (4) 

The dynamical phase d  encodes information about the duration associated with the 

cyclic evolution of the complex vector ( )t  . By contrast, (4) encodes information about 

the geometry of the environment where the transport takes place.  
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3. Preamble #2: The geometry of gauge and gravitational fields 

The gauge field concept may be built from a straightforward geometric interpretation [7, 

8]. Consider the parallel transport of a complex vector   round a closed rectangular 

loop. The difference between the value of  at the starting point (
0

 ) and at the end 

point 
0 f

  is given by 

 
0f ig S F

           (5) 

in which S  denotes the area enclosed by the rectangle and the strength of the gauge 

field is 

 ,F A A ig A A      
         (6) 

Echoing the formation of the Berry phase, the effect of parallel transport is to induce a 

non-vanishing rotation of   in internal space proportional to the strength of the gauge 

field. Likewise, the curvature tensor of GR may be motivated through similar arguments. 

Taking a vector V   on a round trip by parallel transport, the difference between the initial 

and final components of the vector amounts to 

 
1

2
V R V S   

     (7) 

This equation faithfully replicates (5) and signals the presence of a gravitational field, via 

the curvature tensor R
 .  The geometric analogy between gauge theory and General 

Relativity is captured in the table below. 
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Gauge Theory General Relativity 

Gauge transformation Coordinate transformation 

Gauge group 
Group of coordinate 

transformations 

Gauge potential A  Connection coefficient 

  

Field strength F   Curvature tensor R

   

Comparison between the geometry of gauge and gravitational fields 

Considerations developed in sections two and three show that, seemingly disparate 

concepts of quantum physics and classical field theory – namely, the Berry phase, gauge 

potentials and the connection coefficients of GR emerge from a common geometric 

foundation. Drawing on the findings of [  ] and working outside traditional approaches to 

field unification, we further explore how QFT and GR may be linked to the universal 

geometry of strange attractors and fluid turbulence.   

4. Fluid flows and effective field theories 

The object of this section is to show that the roots of classical electrodynamics and GR 

may be traced back to the complex Ginzburg-Landau equation (CGLE). To gradually 

introduce the main ideas and in the interest of clarity, we partition the section in three 

paragraphs. First paragraph outlines the derivation of the Navier-Stokes equation from 

CGLE and the role of kinematic viscosity in the transition from laminar flows to 

turbulence. The second and third paragraphs detail the Navier-Stokes formulation of 

classical electrodynamics and GR, respectively, with emphasis on the steady approach to 

turbulence through progressive changes of the energy scale.     
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4.1 CGLE and the Navier-Stokes equation  

We start by recalling that the CGLE highlights many key properties of out-of-equilibrium 

nonlinear systems with space-time dependence. Specifically, as universal paradigm for 

the emergence of complex behavior, CGLE describes the generic onset of chaos, 

turbulence and spatio-temporal patterns in extended dynamical systems [  ]. It assumes 

the standard form  

 
2

1 3(1 ) (1 )t z z ic z ic z z


         (8) 

in which z  is a complex-valued field, the parameters   and   are positive and the 

coefficients 1c  and 3c  are real [  ]. The nonlinear Schrödinger equation (NSE) is a 

particular embodiment of the CGLE in the limit 0  , namely [  ], 

 
2

1 3ti z c z c z z


      (9) 

In what follows, we work in 1+1 space-time and assume 1  . In its original formulation 

and natural units ( 1 ), the quantum-mechanical version of (9) reads 

 21
( , ) [ ( , )] ( , )

2
i z x t V x t z x t

t m


   


  (10) 

where ( , )V x t  is the potential function. The so-called Madelung transformation enables 

one to turn (10) into the quantum Euler equation for compressible potential flows [  ].  

For the sake of completeness, we repeat here the formal derivation of this transformation. 

Taking the complex-valued field in the canonical form, 
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( , )

( , ) exp[ ( , )]
x t

z x t iS x t
m


   (11) 

and substituting it into (10) leads to 

 ( ) 0u
t





 


  (12) 

 
1

( )
du u

u u Q V
dt t m


      


  (13) 

Here, ( , )u x t  is the flow velocity, 
2

m z   stands for the mass density and  

 
2( )1

2
Q

m






    (14) 

is the Bohm potential [  ]. The flow velocity and its associated probability current are given 

by 

 
1

( , )
i z

u x t S
m m z


      (15) 

 
1

[ ( ) ( )]
2

j u z z z z
mi

         (16) 

Since the Schrödinger equation is conservative, the Madelung transformation naturally 

leads to the Euler equation, which is exclusively valid for inviscid flows. To account for 

fluid viscosity and arrive at the Navier-Stokes equation, one needs to either appeal to an 

extended version of the NSE containing non-conservative terms or bring up the kinematic 

viscosity – a concept linked to the mass of quantum particles as in [  ]  
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1

2m
    (17) 

On account of (17) and for incompressible flows, the Navier-Stokes equation that mirrors 

(13) is given by [  ] 

 21du u
u u p u

dt t





      


   (18) 

where p  is the pressure. An alternative expression for the (18) may be obtained using the 

identity 

 21

2
u u u u        (19) 

where u   represents the vorticity vector [ ]. The corresponding Navier-Stokes 

equation reads 

 
2

2( )
2

u p u
u u

t
 




      


  (20) 

Using (15), the phase of the field amounts to 

 S m udx    (21) 

such that 

 
( , )

exp( )( , )
x t

im udx
m

z x t


    (22) 

… (text to follow) … 


