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ABSTRACT: 

 In this article, we are going to solve the problem P=NP for a particular kind of 
problems called basic problems of numerical determination. We are going to propose 3 
fundamental Axioms permitting to solve the problem P=NP for basic problems of numerical 
determination, those Axioms can also be considered as pure logical assertions, intuitively 
evident and never contradicted, permitting to understand the solution of the problem P=NP for 
basic problems of numerical determination. We will see that those Axioms imply that the 
problem P=NP in undecidable for basic problems of numerical determination. Nonetheless we 
will see that it is possible to give a theoretical justification (which is not a classical proof) of 
the proposition “P≠NP”. We will then study a 2nd problem, named “PN=DPN problem” 
analogous to the problem P=NP but which is fundamental in mathematics.  

I)INTRODUCTION 

 In this article, we are going to give a solution to the problem P=NP. To begin with, we 
are going to define a class of problems called basic problems of numerical determination. 
This definition is important because it contains a very general kind of problems that are 
potentially of class P or of class NP, and consequently because it constitutes a very concrete 
basis permitting to justify intuitively the Axioms that we are going to introduce, and also to 
test their validity. We remind that the conjecture P=NP (Any problem belonging to class P 
belongs to class NP and conversely) has never been proved nor its negation P≠NP. In this 
article we are going to propose 3 assertions of pure logic, intuitively evident and never 
contradicted, called Axioms for this reason, permitting to give a solution to the problem P=NP 
for basic problems of numerical determination. It is legitimate in a mathematical theory to 
introduce Axioms, propositions that are evident or own an intuitively evident justification and 
that have never been contradicted. Moreover, the fact that none fundamental results linked to 
the problem P=NP have ever been obtained using classical mathematical theories suggests 
that obtaining the solution of the problem P=NP needs to introduce and to use new Axioms, 
and cannot be obtained using only classical mathematical theories. It seems to be evident that 
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the Axioms that we are going to admit cannot be proved using classical mathematical 
theories.     

 The theory presented on this article is not a purely mathematical theory but a logical 
mathematical theory. It is very likely that the solution of the problem P=NP obtained by this 
theory could not be obtained by a purely mathematical theory (Not containing logical 
concepts). We can consider the theory exposed in this article as a logical theory. Nonetheless, 
it is apparently in agreement with all (established) results relative to the problem P=NP. 

 In this article, the approach of the problem P=NP is completely new and does not use 
any anterior published article concerning this problem. But we will see that its conclusion is 
in agreement with all articles previously published about this problem. We are going to justify 
that it is not possible to prove P=NP nor P≠NP for basic problems of numerical determination. 
Nonetheless, we will see that we can give a theoretical justification, which is not a classical 
proof but is based on the laws of random in number theory, of the proposition “P≠NP”.  We 
will then study a 2nd problem, named “PN=DPN problem” analogous to the problem P=NP but 
which is fundamental in mathematics.   

II)SOLUTION OF THE PROBLEM P=NP 

A)BASIC PROBLEMS OF NUMERICAL DETERMINATION  (DEFINITION). 

By definition, a basic  problem of numerical determination contains the following data: 

For any natural n different from 0: 

-A finite set A(n) defined as a function of n. 

-An increasing function k(n) belonging to F(N,N) (That is possibly constant), with a given 
polynomial Pk of F(N,N) such that for any natural n k(n)<Pk(n). 

-In some cases r (r being a given number) finite sets B1(n),..,Br(n) with for i belonging to 
{1,..,r} Bi(n) defined by a proposition of the kind PBi(Bi(n),A(n),n). (Some Bi can also be 
defined simultaneously by a proposition of the kind PBi1,..,Bis(Bi1(n),..,Bis(n),A(n),n). It can 
exist several possible Bi(n) for a natural n, but the number of possible Bi(n) must be finite). 

-A proposition P(a1,..,ak(n),A(n),n, k(n), B1(n),..,Br(n)) defined for any sequence (a1,..,ak(n)) of 
elements of A(n).  

We define an explicit numerical function as a function belonging to F(Ap,B), with p 
natural >0, A,B=N or Z, (We will admit that we can replace Ap by the set SFA whose the 
elements are the elements of A and the finite sequences whose the terms belong to A) defined 
explicitly with the classical operations in N or Z (addition, multiplication, power….) or using 
Int(f(n)) f being an increasing reel function tending towards infinity with n, and explicitly 
defined using classical reel functions (Log, exp..) and the classical operations in R (and 
symbols representing reels ex. “1/3”, “3/7”…)  rDE, rDE function defined by, p, q being 2 
integers with q≠0 rDE(p,q) remainder of the Euclidean division of p by q, and the sum of the 
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product of the terms of a finite sequence of integers (Represented by “П” and “Σ”), or 
“absolute value”(Of an integer), or the symbols representing integers “0”, “1”, “2”….and the 
terms a1,…,ap of an element of the starting set. 

For instance with the starting set SFA : 

f(a1,…,ap)=П(a1,…,ap), represented par f(a1,…,ap)=Пi=1,..,pai. 

Starting set N : 

f(n)=П(1,..,n) represented par f(n)=Пi=1,..,ni for n>0 and f(0)=0. 

f(n)=n3+n2 +1. 

Starting set N2 : 

f(a1,p)=a1
p  except if (a1,p)=(0,0) then f(0,0)=0. 

So it will always be possible to identify an explicit numerical function with an infinite 
subset of Ap×B. In the case Ap=N, f being an explicit numerical function element of F(N,N), 
then f will be identified with the infinite sequence (That is also a set) ((i,f(i)))N. 

We will admit that it will be always possible to find an equivalent problem in which 
the elements of A(n) and Bi(n) are integers or finite families or finite sequences defined using 
integers and finite sequences or families. We will call a numerical basic problem of numerical 
determination such a problem. We will also assume that in this numerical problem, the 
propositions defining A(n), Bi(n), k(n) and P(a1,..,ak(n),A(n),n, k(n), B1(n),..,Br(n)) use and 
define only sets or sequences whose the elements or the terms integers or are defined from 
integers and finite families or sequences (And consequently are themselves integers or finite 
family or finite sequence) and all the infinite sets that it use are either of the kind Ap or SFA 
(A=N or Z) or are explicit numerical functions. We will say that the elements of the sets or 
the terms of the sequences used by a numerical proposition are numerical elements that can be 
defined by the 2 following rules: 

a) Any integer is a numerical element. 

b) Any family or finite set whose the elements are numerical elements is a numerical 
element. 

There will be an exception: The previous propositions could use sets of the kind 
F(Np,N) but only in order to define an explicit numerical function. Nonetheless we can avoid 
this exception replacing “f is element of F(Np,N)” by “f is a mapping between Np and N”. 
(Those propositions are analogous to propositions defined in Section E and named numerical 
propositions. It will be possible to add conditions in order that they be numerical 
propositions.)   

A basic problem of numerical determination cannot use mathematical algorithms, 
formal system or any equivalent mathematical logical concept. We take this condition in order 
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to avoid logical singularities and also because all classical interesting problems linked to the 
problem P=NP verify this condition. 

 PB being a basic problem of numerical determination, we will define PB(n) as the part 
of PB relative to n (with A(n),Bi(n),k(n)…). We will say that PB(n) is the order n of PB. 

 By definition solving this problem signifies that for each natural n, we determine (if it 
exists) a sequence (a1,..,ak(n)) of elements of A(n) verifying P(a1,..,ak(n),A(n),n, k(n), 
B1(n),..,Br(n)). (We will then say that (a1,…,ak(n)) is a solution of PB(n).). 

(We will extend the previous definition of basic problems of numerical determination to 
similar problems with the difference that k(n) must also be determined with the condition 
k(n)<Pk(n), Pk given polynomial of F(N,N). What follows remains valid if we consider a 
much greater class of problems.  

According to the definition of a problem of class P, PB being a basic problem of 
numerical determination, we will say that PB is of class P it exists a sequence of algorithms 
(AlgDPB(n))N (In what follows we will omit the sign “N” to represent that a sequence indexed 
on N), polynomial (Which means that it exists a polynomial PDPB such that for any natural n, 
the running time of AlgDPB(n) is inferior to PDPB(n)) and determinist which means that 
AlgDPB(n) determines a sequence (a1,..,ak(n)) solution of PB(n) (If it exists). AlgDPB(n) can 
naturally use the data of PB (A(n), Bi(n)…We will say that (AlgDPB(n)) is a polynomial 
determinist sequence of algorithms solving PB. 

 According to the definition of class NP, PB being a basic problem of numerical 
determination, we will say that PB belongs to class NP if it belongs to class P or if its exists a 
polynomial sequence of algorithms (AlgNDPB(n)) non-determinist which means that for any 
sequence (a1,..,ak(n)) of elements of A(n), AlgNDPB(n) permits to verify if (a1,..,ak(n)) is a 
solution of PB(n). We will then say that (AlgNDPB(n)) is a polynomial non-determinist 
sequence of algorithms verifying PB.    

What follows remains valid if in previous definitions we do not take P is included in 
NP or if AlgDPB(n) must permit to obtain all the solutions of PB(n)). 

It exists some problems that are of class P or of class NP that are not basic problems of 
numerical determination but this latter kind of problems constitute most of the interesting and 
classical of problems of class P or class NP.  

For instance we can consider the classical basic problem of numerical determination 
consisting in finding if it exists 2 distinct divisors a1 and a2 of a natural n. 

Then we have for this basic problem of numerical determination A(n)={1,..,n},k(n)=2 
and P(a1,a2,n) : « a1 et a2 are 2 distinct naturals different from n and a1×a2=n ».  

Concerning the example of the Clay mathematics institute (1) we consider 400 
students, we have 100 rooms and a list LP containing 100 pairs of students, and we want to 
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find a list LRN of 100 students with the condition that this list does not contain any pair of 
students belonging to LP. This problem is equivalent to the following basic problem of 
numerical determination with n=400: 

-A(n) is a set containing the names of n students (Represented by e1,..,en). In the 
example, n=400. 

-k(n)=Int(n/4) (k(400)=100 in the example. 

-B1(n) is defined by PB1(B1(n),A(n),n): “Card(B1(n)=Int(n/4) and the elements of B1(n) 
are pairs of elements of A(n)”. (B1(400)=LP in the example). 

-P(a1,…,ak(n),k(n),B1(n)): “For any i,j distinct of {1,..,k(n)}, {ai,aj} does not belong to 
B1 and ai≠aj}. (a1,….,ak(400) are the elements of LRN in the example). 

(We can replace ei by (1,i) to obtain an equivalent numerical problem.) 

P=NP, for the basic problems of numerical determination, signifies that any basic 
problem of numerical determination belonging to class P belongs to class NP and conversely. 
We are going to prove, using assertions of pure logic intuitively evident and never 
contradicted that we called “Axioms”, that this problem is undecidable which means: 

-If P=NP, it is impossible to prove it. 

-If P≠NP, it is impossible to prove it. 

In what follows we will consider only basic problems of numerical determination. 

B)IMPOSSIBILITY TO PROVE P≠NP FOR BASIC PROBLEMS OF NUMERICAL 
DETERMINATION. 

In this section we will consider only basic problems of numerical determination. 

 In order to prove P≠NP, we must prove either than P is not included in NP either that 
NP is not included in P. According to the definition that we gave P is included in NP. 
Consequently we must prove that NP is not included in P, which means finding a problem of 
class NP that is not of class P. 

But we admit the following Axiom: 

AXIOM 1: 

It is impossible to prove that a basic problem of numerical determination does not 
admit a polynomial determinist sequence of algorithms solving it (Meaning that it is not of 
class P). 

 This Axiom 1, that is not demonstrable formally as any axiom, admits the following 
intuitive justification: 
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By hypothesis, PB being a basic problem of numerical determination, Card(A(n) and 
Card(Bi(n) will be defined by explicit numerical functions, P(a1,..,ak(n),A(n),n, k(n), 
B1(n),..,Br(n)) will also possibly use some explicit numerical functions. So P(a1,..,ak(n),A(n),n, 
k(n), B1(n),..,Br(n)) will express properties of naturals (Including properties of Card(A(n)), 
A(n) defined for any natural n or properties of explicit numerical functions). Because of this a 
sequence (Alg(n)) solution of PB will possibly be defined using very complex explicit 
numerical functions. Intuitively we understand that it is very likely that the basic Axioms 
(Axioms of set theory, Peano’s Axioms (Defining N) are insufficient for permitting to prove 
that it does not exist any solution for any given basic problem of numerical determination.  
Moreover, this Axiom 1 has never been contradicted, it has never been proved that a basic 
problem of numerical determination does not admit any solution, which would be necessary 
in order to prove the invalidity of this Axiom 1. We remind that any Axiom, even if is true 
does not admit formal proof. 

 So because of this Axiom 1, it is impossible to prove that a given basic problem of 
numerical determination is not of class P, and consequently to prove that NP is not included in 
P, and consequently to prove P≠NP for basic problems of numerical determination. 

C)IMPOSSIBILITY TO PROVE P=NP FOR BASIC PROBLEMS OF NUMERICAL 
DETERMINATION. 

In this section we will consider only basic problems of numerical determination. 

 In order to prove P=NP, we must prove that any problem of class NP is of class P. 

 But we admit the following Axiom: 

AXIOM 2: 

 In order to prove that a basic problem of numerical determination is of class P, we 
must necessarily give a polynomial determinist sequence of algorithms solving it. 

 This Axiom 2 owns the following intuitive justification: It does not exist general 
Axioms permitting to justify that it exists a polynomial determinist sequence of algorithms 
solving a given basic problem of numerical determination without explicitly determining such 
a sequence or a way to obtain it. This is confirmed also by the fact that it has never been 
proved that a given basic problem of numerical determination was of class P by another way 
than giving explicitly a polynomial determinist sequence of algorithms solving it. As the 
Axiom 1 it has never been contradicted. In order to prove the invalidity of this Axiom 2, it 
should be necessary to prove that a basic problem of numerical determination belongs to class 
P without giving explicitly the polynomial determinist sequence of algorithms solving it (or a 
way to obtain this polynomial determinist sequence of algorithms). 

 A consequence of this Axiom 2 is the following logical assertion, that can also be 
considered as its 2nd part: 
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ASSERTION 1: 

 In order to prove that NP is included in P (For the basic problems of numerical 
determination), it will be necessary to provide a (general) polynomial algorithm permitting to 
determine, for any basic problem of numerical determination PB of class NP, a polynomial 
sequence of algorithms solving PB. 

 But it is evident that it will be impossible to find such a polynomial algorithm which 
we admit in the 3rd following Axiom: 

AXIOM 3: 

 It does not exist a general algorithm permitting to determine, for any basic problem of 
numerical determination PB, a polynomial determinist sequence of algorithms solving PB. 

 Proving the invalidity of this Axiom would imply to find such a general algorithm, 
which seems to be completely impossible. Indeed it is evident that, we do not have enough 
information permitting to build a general algorithm obtaining a polynomial determinist 
sequence solving PB for any PB, even if we have P=NP. We have not a single line of such a 
general algorithm. 

 So we justified using the preceding Axioms 2,3 that it is impossible to prove P=NP, 
for basic problems of numerical determination  because in order to prove P=NP we must 
prove that NP is included in P. 

 So we have as consequence of the preceding Axioms 1,2,3 the following theorem: 

THEOREM 1: 

 Considering the class of the basic problems of numerical determination, the 
proposition P=NP is undecidable. 

 So we justified, using the previous Axioms 1,2,3 (That can also be considered as 
evident logical assertions) that even whatever P=NP be true or wrong for the basic problems 
of numerical determination, it is in both case impossible to prove it. Using the Axiom 1 and 
generalizing immediately Axioms 2 and 3, with the same intuitive justifications, we obtain 
that the problem P=NP is also undecidable for all basic problems of numerical determination 
with the condition upon k(n):k(n)<n3+100. (We can replace n3+100 by any non-constant 
polynomial of F(N,N) or take k(n) as a determinate function of F(N,N) tending towards 
infinity when n tends towards infinity, for instance k(n)=Int(n/4) as in our 2nd example). 

 So as a consequence of the Axiom 1 and of the generalizations of Axioms 2 and 3 the 
following Corollary: 

COROLLARY 1: 

 If we consider the class of basic problems of numerical determination PB with the 
condition on kPB(n), kPB(n)<Pol(n), Pol non constant polynomial of F(N,N), or kPB(n)=f(n), f 
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increasing function of n belonging to F(N,N) tending towards infinity when n tends towards 
infinity, then also for this class of problems P=NP is undecidable. 

 So we justified using the introduced Axioms that if P=NP is true, we cannot prove it 
and if P≠NP, we also cannot prove it. 

 We remind that we can also consider the Axioms 1,2,3 as assertions of pure logic, 
never contradicted, that permit to solve the problem P=NP and understand why it is 
undecidable for basic problems of numerical determination. The fact that we considered only 
one kind of problems, basic problems of numerical determination, makes more easily to 
understand and test Axioms (Or logical assertions) 1,2,3. As usual Axioms, even if they are 
true, it is quasi-certain that Axioms (Or logical assertions) 1,2,3 cannot be demonstrated 
formally.      

D)THEORETICAL JUSTIFICATION OF “P≠NP” BY THE RANDOM NUMBER 
THEORY. 

 We have proved, using the introduced Axioms, that for the basic problems of 
numerical determination, it was impossible to prove classically P=NP nor P≈NP. Nonetheless, 
it exists a theory, Random Number Theory (2), that can be used in order to give a theoretical 
justification (which is not a classical proof) of the proposition P≠NP. We have established (2) 

that this theory gave a theoretical justification to weak and strong GOLDBACH Conjectures 
and also to weak and strong twin primes Conjectures, and that it would be very possible that 
there are the only ones theoretical justifications of those Conjectures, classical proofs on those 
Conjectures or of their negations not existing. The Random Number Theory shows that the 
random laws in number theory can lead to justify the validity of some propositions for which 
it does not exist any classical proof nor for their negations. The Random Number Theory 
permits to obtain theoretical justifications of some propositions, using laws of random in 
numbers, permitting to understand the origin of the validity of those propositions, the same 
way as for classical proofs. 

 Using some elements of the Random Number Theory (That we are going to remind), 
we are going to expose a theoretical justification based on random in numbers, of the 
proposition P≠P. 

 The Random Number Theory is based on some propositions, named random pseudo-
Axioms, which are analogous to classical Axioms but express the laws of random in number 
theory. Those random pseudo-Axioms bring to probabilistic models that can be valid with a 
good approximation but also completely wrong. Despite of this problem, random pseudo-
Axioms appear to be the only one solution in order to use random laws in numbers, those ones 
permitting to obtain theoretical justifications for propositions in number theory for which it 
does not exist classical proofs nor for their negations.   We will use the following random 
pseudo-Axiom:  

Pseudo-Axiom 1: 
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 If A is a finite set , B a subset of A, x an element of A, the proposition “x is element of 
B” is modeled by the event of the equiprobable probability space (A,P(A),peqA) “x is element 
of B”. 

 Inside Random Number Theory, according to the definition of “is modeled by”, that 
can exist between a proposition and an event of a probability space, if P is modeled by an 
event Ev, then Non(P) is modeled by the event Non(Ev). 

 If a proposition P is modeled by an event Ev whose the probability is very close to 1 
(We will say that P owns a random pseudo-proof, which is the obtainment of “P is modeled 
by Ev” using classical Axioms and at least one random pseudo-Axiom), we assume in the 
Random Number Theory the fundamental and intuitively evident deduction process which 
leads to admit that P could be true as a consequence of its modelization by an event with a 
probability close to 1. So we will consider that a the random pseudo-proof of P is a theoretical 
justification based on the laws of random in number theory of the validity of P. More 
generally if a proposition Q is obtained using classical Axioms and Propositions owning a 
random pseudo-proof, we will say that the obtainment of Q is also a random pseudo-proof. 
Nonetheless, contrary to the case in which P has a classical proof, P will not be compulsory 
true if it owns a random pseudo-proof. It is only in the case in which it does not exist a 
classical proof of P nor of Non(P) (And therefore that none have ever be found) that a random 
pseudo-proof of P will be interesting. And it is the case for the proposition P=NP. Mod(P,Ev): 
“P is modeled by the event Ev”, with p(Ev)≈1 will mean intuitively: “If the random laws used 
in order to obtain Mod(P,Ev) are valid with a sufficiently good approximation, then P behaves 
as it had a probability very close to 1 to be true”. 

 We illustrate the concepts of random pseudo-proof and of a theoretical justification 
based on random the following way: 

 We consider a box containing 1000 balls, 999 red balls and one white ball. John draws 
a ball from the box without looking at it. 

 The random laws in ball’s boxes are expressed by the following random pseudo-
Axiom 2: 

Pseudo-AXIOM 2: 

 If A is a finite set (or “box”) containing some objects (ex.ball, cards..) and B is a 
subset of A, then if N. (ex. John) draws an object x of A without looking at it, then we will 
have: “The proposition “x is an element of B” is modeled by the event of the equiprobable 
probability space (A,P(A),peq) “x is an element of B”(Therefore with a probability equal to 
Card(B)/Card(A))” (The proposition “x is an element of B” will be equivalent to the 
proposition “N. draws a ball belonging to B”) 

 According to the random laws of balls’ boxes, if P is the proposition “John draws a red 
ball”, P is modeled by an event Ev, with p(Ev)=0,999. This means that P behaves as it had a 
probability equal to 0,999 to be true. The obtainment of Mod(P,Ev), using the random laws of 
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balls’ boxes (Expressed by the pseudo-Axiom 2) will be called the random pseudo-proof of P. 
If P is true, it will be considered as a theoretical justification based on random of P.    

 Nonetheless in the preceding example, we are sure of the probabilistic model 
permitting to obtain Mod(P,Ev). It is generally not the case if P is a proposition in number 
theory, because then the probabilistic model could be valid with a good approximation or 
completely wrong. 

 Let H be the set of the basic problems of numerical determination of class NP written 
with a number of symbols (letters, figures, punctuation..) inferior to 105 (Therefore H is finite 
but Card(H) is high. We will assume Card(H)>10000). Let A=P(H). Let x be the subset of H 
containing all the basic problems of numerical determination of class P. So we have “x is 
element of A”. Let B={H}. So B is included in A. According to the random pseudo-Axiom 1 
we have: 

The proposition “x is element of B” is modeled by the event Ev  of (A,P(A),peqA) “x is 
element of B” with peqA(B)=1/Card(A)=1/2Card(H)≈0 because Card(B)=1 and Card(H)>10000.  

 But the proposition “x is element of B” is equivalent to the proposition “P=NP for the 
basic problems of numerical determination written with less than 105 symbols”. 

 Therefore, Non(“P=NP for the considered problems”) is modeled by Non(Ev) with a 
probability very close to 1 and consequently the proposition “P≠NP for the considered 
problems” owns a random pseudo-proof. Using that “P≈NP for the considered problems” 
involves “P≠NP in the general case”, “P≠NP in the general case” also owns a random pseudo-
proof. So we proved that the laws of random in number theory could be the origin of the 
validity of the proposition P≠NP.  

 It is very likely that the preceding example of Clay mathematics Institute be a basic 
problem of numerical determination belonging to class NP and not belonging to class P, in 
agreement with the theoretical justification based on random that P≠NP. But it will be 
impossible to prove this classically if the Axiom 1 is valid.  

 We could also replace H by H/X, X being the set of the basic problems of numerical 
determination for which we proved they are of class P. 

E)THE PROBLEM PN=DPN. 

 We are now going to study a 2nd problem, named problem “PN=DPN”, completely 
analogous to the problem P=NP in its resolution, but which is fundamental in mathematics. 

 We define the problem PN=DPN the following way: We will say that a proposition P 
belongs to the class PN (We will then say that P is a numerical proposition) if P is a 
mathematical proposition using exclusively, in addition to the symbol that it defines: 

(i)Primitive relational concepts between propositions (“Non”, “or”, “is equivalent to”…) 
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(ii)Typical concepts of number theory: “is prime”, “is prime with”, “is pair”, “divides”, 
“0”,”1”, “2”..,Np ,Zp, “finite”, “ infinite”, “is congruent modulo p” (Defined by, a, b being any 
integers: “a is congruent modulo p with b is equivalent to “It exists an integer k such that a-
b=kp), explicit numerical functions, “Card”, “=” (Between sets or integers or sequences), “>”, 
“<” (Between integers), or “NS” giving the number of terms of a finite sequence, or dS(i, ) i 
natural non nil, giving the ith term of a finite sequence with at least i terms. 

(iii)Explicit numerical functions and expressions defining explicit numerical functions. 

We remind that an explicit numerical function is a function belonging to F(Ap,B), with p 
natural >0, A,B=N or Z, (We admit that we can replace Ap by the set SFA whose the elements 
are the elements of A and the finite sequences whose the terms belong to A) defined explicitly 
with the classical operations in N or Z (addition, multiplication, power….).or using some 
expressions Int(f(n)), f increasing reel function tending towards the infinity with n, explicitly 
defined using classical reel functions (exp, Log..) and classical operations in R, (And symbols 
representing reels, ex. “1/3”, “3/7”…) or the function rDE or the product or the summation of 
the terms of a given finite sequence of integers (Represented by “П” and “Σ”), or the absolute 
value (Of an integer) or the symbols representing integers “0”, “1”, “2”….So we can identify 
an explicit numerical function with an infinite set, and with a sequence indexed on N if Ap=N.  

(iv)The classical concepts in set theory “is element of”, “is included in”, “is a (finite, infinite) 
set”, “is a (finite) sequence (on an infinite subset of N)”. 

(v)The classical quantificators: “Whatever be”; “It exists”, and “(is) defined by”. 

(vi)Infinite or finite sets B, subsets of Ap, A=N or Z, (p natural) defined by an expression “B 
is defined by P(B,Ap,B1,..,Bk,a1,..,at)”, P(B,Ap,..,Bk,a1,..,at) mathematical proposition using 
points (i) to (v), the infinite sets Bj defined as B or equal to Aq (A=N or Z), numerical 
elements (meaning defined from integers and finite sets or sequences) defined by B, pre-
defined numerical elements a1,..,at, A

p, B1,..,Bk and as infinite sets only among B, Ap, B1,..,Bk 
and explicit numerical functions. The definition of B can also use none Bj or none aj or not 
use Ap. We could suppress the condition that B must be a subset of Ap but then we will have 
always the condition expressed by point (ix). 

 (vii)Sets C(n) defined for n belonging to B, B subset of N defined as in (vi), with C(n) 
defined by an expression such as ““C(n) is defined by P(C(n),n, C1(n),..,Cl(n), 
B1,..,Bk,a1,..,at)”, P(C(n), n, C1(n),..,Bk,a1,..,at) mathematical proposition using elements 
defined in points (i) to (v), numerical elements defined by C(n), Ci(n), pre-defined numerical 
elements a1,..,at and the Bj, the sets Bj being defined as in (vi), the finite sets Ci(n) defined as 
C(n) and as infinite sets only the Bj and some explicit numerical functions. The proposition 
could use none Bj or none aj or none Ci(n) or not n if it uses at least one Ci(n). 

 If C(n) is defined using none Ci(n), the numerical proposition could then use the 
sequences (C(n))B or (Card(C(n))B. 
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 (viii)Expressions of the kind “limn→∞(Card(C(n))/f(n))=1”, with (C(n))B sequence of finite 
sets defined as in (vii) and f explicit numerical function. 

(ix) Any set or sequence used in a numerical proposition will have elements or terms that are 
defined using integers and finite families or sequences. We will say that the elements of the 
sets or the terms of the sequences used by a numerical proposition are numerical elements that 
can be defined by the 2 following rules: 

a)Any integer is a numerical element. 

b)Any family or finite set whose the elements are numerical elements is a numerical element. 

(There is an exception, a numerical proposition could use sets of the kind F(Np,N) in order to 
define an explicit numerical function (We can avoid this exception replacing “f is element of 
F(Np,N)” by “f is a mapping from Np to N”.) 

 We admit that a numerical proposition can use numerical elements defined from sets 
Ap, A=N or Z, sets B as defined in point (vi), and sets C(n) and (C(n))B as defined in point 
(vii). 

(x)A numerical proposition can only use (except in point (viii) as infinite sets (Named 
numerical sets) only Ap, SFA (A=N or Z), sets B defined as in point (vi) or sequences defined 
as in point (vii). We can generalize point (viii) to numerical sets that are sequences of integers 
indexed on an infinite subset of N. We could obtain SFA as a set B of the point (vi) without the 
condition “B is included in Ap”. 

Therefore, a numerical proposition also cannot use logical concepts such as “a 
proposition”, “a proof”…or equivalent concepts, because such a proposition do not use 
concepts defined from points (i) to points (x).   

 For instance the BEZOUT Theorem, the FERMAT’s Conjecture, the weak and strong 
GOLDBACH Conjectures are numerical propositions. But it is not the case for the CAILEY-
HAMILTON Theorem, the CANTOR-BERSTEIN Theorem, the Continuum Hypothesis, the 
problems “P=NP” or “PN=DPN”. 

 Nonetheless, if we consider matrix whose coefficients are integers, we can prove that 
the CAILEY-HAMILTON Theorem is equivalent (with the meaning “own the same 
signification, is interchangeable in its use with”) to a numerical proposition. We remind that 
the CAILEY-HAMILTON Theorem is expressed by the proposition: “For any non nil natural 
n, for any reel matrix n×n A, XA(A)=0n×n, with XA(x) is the polynomial det(A-xIdn×n).” 

 We then define the following numerical proposition: 

n being a non nil natural, we define classically the matrix n×n with integers coefficients: 

A(n)={((1,1),a11),…., ((n,n),ann)}, a11,..,ann being integers. 

 We then define the explicit numerical function fXA(A) from SFZ to Z by: 
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 For any sequence (n,i,j,a11,….,ann), with n non nil natural, i,j non nil naturals inferior 
or equal to n, a11,…,ann being integers, then fXA(A) ((n,i,j, a11,….,ann)) defines the term (i,j) of 
the matrix XA(A), as a function of a11,…,ann. (We will admit as evident that fXA(A) exists, 
because xi,j is defined using a11,..,ann and the operations in Z “+”, “×”, “-“…). 

 In order to define fXA(A), first we define the explicit numerical function gXA such that 
for any natural i inferior or equal to n, gXA(n,i,a11,….,ann) is the coefficient of xi in XA(x). 

 Then we define the explicit numerical function hAp such that if k is a non nil natural  
and i,j non nil naturals inferior or equal to n, hAp(k,n,i,j,a11,…,ann) is the term (i,j) of A(n)k. 
(hAp could be defined by induction on k). 

 Then using gXA and hAp, we can define fXA(A).   

 For an element s of SFZ that is not of the previous kind, we will take fXA(A))(s)=1. 

 Then the CAILEY-HAMILTON Theorem for matrix with integers coefficients is 
equivalent to : 

 For any non nil natural n, for any i,j non nil naturals inferior or equal to n, for any 
integers a11,…,ann, fXA(A)((n,i,j, a11,…, ann)=0.     

 It is clear that we could enlarge the definition of a numerical proposition given 
by points (i) to (viii), for instance permitting to a numerical proposition to use sequences  
(d(i,r))N*, r reel and d(i,r) ith decimal of r (numerical set). We can easily prove the 
fundamental result that if a sequence on an infinite subset B of N (u(n))B is a numerical set 
and for any n element of B u(n) belongs to the starting set of an explicit numerical function f, 
then (f(u(n))B is a sequence on B of integers that is also a numerical set. The point (ix) is 
necessary in order to obtain  that any set used in a numerical proposition is numerable. 
Concerning numerical sets defined in point (viii) we saw that we had an exception if we use 
point (viii) because in that case we use sets that are not numerical sets (For instance division 
in R or in Q).   

Nonetheless, point (viii) is not necessary. Indeed we name strictly numerical 
proposition a proposition defined as a numerical proposition, but suppressing point (viii). 
Then we can show that the proposition of point (viii) is equivalent (with the meaning, “owns 
the same signification, is interchangeable in its use with”) to a strictly numerical proposition, 
which means that point (viii) is the consequence of the other points defining a strictly 
numerical proposition. 

In order to show this, we define the sequence on N* (εp)N*, with εp=1/10p. We remind 
that the proposition of point (viii) signifies: 

P1:“For any ε element of R*+, it exists N element of N such that for any n superior to 
N and element of B, |Card(C(n))/f(n)-1|<ε”. 



14 

 

In order to obtain a strictly numerical proposition equivalent to P1, we replace “For 
any ε element of R*+” by “For any p element of N*” and “<ε” by “<εp=1/10p”. We then 
obtain immediately a strictly mathematical proposition equivalent to P1, multiplying the 2 
terms of the strict inequality by f(n)10p. 

We can generalize what precedes, replacing (Card(C(n))B by a sequence (u(n))B that is 
a numerical set. Indeed, then u(n) is a numerical element that can be used in a strictly 
numerical proposition.  

It is very likely that we can admit Q among numerical sets, and that an explicit 
numerical function from set Qp or SFQ to set Q. We will name such a function an explicit 
numerical function of rationals and explicit numerical functions for which the starting set is 
equal to Ap or SFA (A=N or Z) explicit numerical functions of integers. The definition of an 
explicit numerical function of rationals will be completely analogous to the definition of an 
explicit numerical function of integers except for the function ‘power” because we will admit 
that an explicit numerical function of rationals can use an expression ap only if p is an integer. 
This condition is necessary in order that an equality (or an inequality) between 2 rationals 
defined using rationals and explicit numerical function of rationals be equivalent to an 
equality between 2 integers defined using integers and explicit numerical function of integers. 

Nonetheless, it seems that any numerical proposition using Q as a numerical set or 
explicit numerical functions of rationals is equivalent to a strictly numerical proposition, the 
same way as for the proposition of point (viii)..   

 P being a numerical proposition, we will say that it belongs to class DPN if P or Non(P) 
can be proved by a classical proof, this proof possibly containing any propositions that have 
proved and that are not numerical propositions. For instance FERMAT Theorem is a 
numerical proposition belonging to class DPN despite that its proof uses many propositions 
that are not numerical propositions. The class DPN is therefore included in class PN, and the 
problem PN=DPN consists in searching to determine if the class DPN is equal to class PN, in 
complete analogy with the problem P=NP that consisted to research if the class P was equal to 
class NP. 

 The problem PN=DPN can be solved exactly the same way as the problem P=NP: We 
begin to prove that it is impossible to prove classically PN=DPN or PN≠DPN:   

We set the Axiom 1B, analogous to the Axiom 1: 

AXIOM 1B: 

 P being a numerical proposition, it is impossible to prove that neither P nor Non(P) 
have a classical proof. (Meaning that P does not belong to the class DPN). 

 This Axiom 1B can be justified intuitively the same way as Axiom 1: P being a 
numerical proposition, it expresses properties of naturals (including properties of Card(A(n)), 
(A(n)) sequence of finite sets or properties of explicit numerical functions). Because of this it 
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is very possible that P admit very complex classical proofs using many complex explicit 
numerical functions. And we understand intuitively that basic Axioms (Axioms of the 
classical set theory, Peano’s Axioms (permitting to define N), Axiom of choice) seem to be 
insufficient to be able to prove that neither P nor Non(P) admit any classical proof, even 
among the more complex classical proofs. Moreover it has never been proved, for any 
numerical proposition P such that we defined, that neither P nor its negation admitted a 
classical proof. We remind that this Axiom 1B, as any axiom cannot be formally proved even 
if it is the case. 

 We remark that this Axiom 1B cannot be generalized to any mathematical proposition 
and not even to any strictly mathematical proposition. (We define a strictly mathematical 
proposition as a proposition not using, directly or indirectly paramathematical logical 
concepts as for instance “a proposition”, “ a demonstration”, “a problem”..). 

 Indeed that Axiom 1B cannot be applied to the Continuum Hypothesis :HC: “It does 
not exist a set whose the cardinality is strictly between N and R”. Indeed, this proposition is 
clearly not a numerical proposition, it uses the set F(N,N) or R, that does not correspond to 
points (vi) and (vii) of the definition of a numerical proposition and moreover whose the 
elements are defined using infinite sequences of naturals which is not possible for sets used in 
a numerical proposition (F(N,N)) is not used to define an explicit numerical function). We 
can understand intuitively why we cannot apply the Axiom 1B to HC because HC uses 
concepts directly obtained from the basic Axioms, replacing R by F(N,N) (Contrary to 
numerical propositions that use explicit numerical functions) and consequently we understand 
intuitively that it should be easier to prove the undecidability of such a proposition relative to 
numerical propositions. Moreover it is intuitively evident that the proof of HC or of Non(HC) 
do not require the use of explicit numerical functions (Which is not the case for numerical 
propositions) and consequently in order to prove the undecidability of HC we do not need to 
consider proofs using explicit numerical functions, which is clearly not the case for numerical 
propositions. We remind that the undecidability of the continuum hypothesis has been proved 
using basic Axioms (3).       

 As a consequence of the Axiom 1 we have the impossibility to prove classically 
PN≠DPN. 

 In order to prove the impossibility to prove classically PN=DPN, we admit the Axiom 
2B, analogous to the Axiom 2: 

AXIOM 2B: 

 In order to prove that a numerical proposition P can be proved classically, it is 
necessary to give explicitly a classical proof of P, or an algorithm permitting to obtain it. 

 This Axiom 2B can be intuitively justified exactly the same way as the Axiom 2. 

 Using this Axiom 2B, exactly the same way as for the problem P=NP, we obtain that 
in order to prove classically PN=DPN, then it would be necessary to provide an algorithm 
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permitting to give a classical proof to any numerical proposition or its negation, which is 
clearly impossible. So we proved the impossibility to prove classically PN=DPN. 

 So using the preceding Axioms we proved the impossibility to prove classically 
PSM=DPSM or its negation. 

 Nonetheless proceeding exactly the same way as for the problem P=NP, we can prove 
that random laws bring to justify theoretically PN≠DPN.  

 We remark that contrary to the case P=NP, it exists strictly mathematical propositions 
for which we can think intuitively that they do not belong to the class DPN, meaning that they 
cannot be proved classically not their negation. It is the case for instance for the weak and 
strong GOLDBACH Conjectures or Twin Prime Conjectures. In agreement with Axiom 1B it 
should be impossible to prove this classically but it is remarkable that those Conjectures own 
theoretical justifications based on random that can be obtained in the Random Number Theory 
(2). It is precisely those theoretical justifications based on random, and also the fact that a 
classical proof for those Conjectures nor for their negation have never be obtained, that bring 
to believe that probably those Conjectures do not own classical proof nor there negations.  

 We remark that the problem PN=DPN is equivalent to the fundamental problem: “Is 
number theory (Restricted to numerical propositions) is complete?” 

 The numerical propositions are interesting because they are simple (They are defined 
very easily with basic concepts of number theory) and we can find easily an infinity of 
numerical propositions, defined using complex explicit numerical functions (For instance 
E(Log(n)), that seem to be undecidable. The existence of such propositions is in agreement 
with the justification based on random of the incompleteness of number theory. It is also this 
kind of proposition for which the Random Theory of Numbers (2) can be applied, giving 
simple theoretical justification based on random for propositions that seem to be true but for 
which a classical proof has never be proved nor for their negation. The use of the concept of 
numerical proposition is also useful in order to give a kind of strictly mathematical 
propositions to which it is possible to apply the Axiom 1B. We remind that it is not valid for 
all strictly mathematical propositions. They also permit to understand the solution of the 
problem P=NP. 

 If a basic problem of numerical determination PB belongs to class NP but not to class 
P, then by definition, it will be not possible to find a sequence of algorithms solving it. 
Moreover because of the Axiom 1, it will be not possible to prove classically (Meaning using 
basic Axioms) that it does not admit a solution. 

 Of a proposition P belongs to class PN but not to class DPN, by definition it will be not 
possible to prove classically P or Non(P). Moreover because of the Axiom 1B it will be not 
possible to prove classically that neither P nor Non(P) admit a classical proof. 

 All brings to believe that previous basic problem of numerical determination or 
propositions exist, considering random pseudo-proof of the Axioms 1 and 1B or also 
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numerical propositions that admit a theoretical justification based on random and for which a 
classical proof has never been found.   

 We could name the analogous Axioms 1 and 1B “Axioms of indeterminism in 
Number Theory”. We remind that those Axioms, as any Axiom, cannot be proved classically, 
they admit an intuitive justification, they have a very simple expression, they have never been 
contradicted despite that they concern an infinity of propositions and they are fundamental. 

 It is possible that the definition of a concept equivalent to a classical formal system 
could be obtained by a numerical proposition. (Even if this needs to be proved). 

 Let SysF be such a formal system, defined by a numerical proposition. 

 Let us now consider the classical proposition belonging to SysF: “P:P is not 
demonstrable in SysF”.   

 We assume that the proposition Q:“P is true in SysF” is also equivalent (meaning with 
the same signification) to a numerical proposition. (This should be true if SysF is itself defined 
by a numerical proposition”). 

We know that SysF being a classical formal system (as formal systems considered by 
GODEL), it is possible to prove classically that Q is true. Therefore we have not the 
proposition “Q and Non(Q) do not admit classical proof” and we have not a contradiction of 
the Axiom 1B. 

Now we consider the proposition R: “P is demonstrable in SysF”. 

We also assume that R is equivalent to a numerical proposition. We know that we can 
prove classically that R is not true, and therefore, as for Q there is none contradiction of the 
Axiom 1B. 

We remind that classical proofs of Q and of Non(R) constitute the classical proof of 
the GODEL incompleteness Theorem. We have showed that even if a classical formal system 
could be defined by a numerical proposition, the GODEL theorem would not invalidate the 
Axiom 1B. We remark that this Axiom 1B concerns also all proofs obtained by classical 
formal systems, because classical formal systems are defined in order that their proofs can be 
identify with classical proofs. 

Thus, if a numerical proposition P is such that neither P nor Non(P) admit a classical 
proof (As it seems to be the case for GOLDBACH weak and strong Conjectures and for an 
infinity of numerical propositions admitting a theoretical justification based on random, that 
seem to be true but for which a classical proof has never been found), it will be never possible 
for a classical formal system, meaning a formal system whose the rules model basic 
mathematical Axioms, to give a demonstration of P or of Non(P). Moreover if the Axiom AB 
is valid, it will be never possible for the preceding formal system to give a demonstration that 
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neither P nor Non(P) admit a classical proof and if the Axiom 1 is valid, to give a 
demonstration that a basic problem of numerical determination does not admit any solution.    

III)CONCLUSION 

 So we did not prove that neither P=NP nor P≠NP was true for basic problems of 
numerical determination, but we justified that in both cases it will be impossible to prove it. 
We remark that the fact that for basic problems of numerical determination it is impossible to 
prove P=NP implies that it is also the case in the general case.  

 The theory that we presented is not a purely mathematical theory but is a logical 
mathematical theory. It is very likely that it is not possible to obtain the solution that we gave 
of the problem P=NP with a purely mathematical theory. We remind that we can consider the 
Axioms 1,2,3 as assertions of pure logic admitted because they have an intuitive evident 
justification and have never been contradicted permitting to solve the problem P+NP for basic 
problems of numerical determination and to understand why it is undecidable. Those Axioms 
can be applied to basic problems of numerical determination but also to much more general 
classes of problems. In fact the conclusion of Axioms 1,2 (It is impossible to prove P=NP) 
can be applied to all mathematical problems concerned by the problem P=NP, and it should 
be very difficult to find a single mathematical problem concerned by the problem P=NP and 
to which the Axiom 1 (Permitting to justify the impossibility to prove P≠NP) is contradicted. 
Moreover, the fact that we have never obtained fundamental result concerning the problem 
P=NP suggests that the solution of this problem needs compulsory to introduce new Axioms, 
and cannot be obtained using only classical mathematical theories. It is very possible that any 
theory solving the problem P=NP must admit Axioms analogous to Axioms we introduced in 
this article. We remind that as usual Axioms, even if they are true, it is quasi-certain that 
Axioms (Or logical assertions) 1,2,3 cannot be demonstrated formally. Nonetheless, it is in 
agreement with all the (established) equations relative to the problem P=NP. We remind that 
our theory can be considered either as a mathematical logical proof (using intuitive Axioms) 
either as a logical justification (Considering our Axioms as logical assertions with intuitive 
justification). In both cases the conclusion is a fundamental mathematical result that a priori 
cannot be obtained without using logical assertions analogous to those introduced in this 
article.   

 We remind that the definition of a basic problem of numerical determination is 
important because it contains a very general kind of problems that are potentially of class P or 
of class NP, and consequently because it constitutes a very concrete basis permitting to justify 
intuitively the Axioms that we introduced, and also to test their validity.  

 So we did not prove P=NP nor P≠NP for basic problems of numerical determination 
but we solved the problem P=NP the same way the proof that it did not exist any algorithm 
permitting to obtain the trisection of the angle or the quadrature of the circle with a compass 
solved those problems. The conclusion of this article is therefore in agreement with all articles 
previously published about the problem P=NP. In order to prove P=NP or its contradiction, it 
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should be necessary at first to prove that the theory exposed in this article and its Axioms are 
wrong, which should be clearly much easier than proving P=NP or its negation. 

 Nonetheless we showed that the random laws in number theory could be at the origin 
of the validity of P≠NP, the theoretical justification of P≠NP being fundamental because 
neither P=NP neither its negation have already been classically proved (And moreover, if our 
Axioms are true, it is impossible to prove any of them.).  

 To end we proposed a solution analogous to the solution of the problem P=NP to the 
problem PN=DPN, this last problem being fundamental in mathematics because it is equivalent 
to the problem “Is Number Theory complete?”. 
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