A BOUND FOR THE ISOTROPIC CONSTANT IN THE SYMMETRIC CASE

J. ASPEGREN

ABSTRACT. In this preprint we will prove an explicit bound for the isotropic constant in the symmetric case.

1. INTRODUCTION

We say that a convex body K is centralized, if

$$0 = \int_K \langle x, \phi \rangle,$$

for all $\phi \in S^{n-1}$. The entries of the covariance matrix of a convex body K are defined as

$$(a_{ij}) = \frac{\int_K x_i x_j}{|K|} - \frac{\int_K x_i \int_K x_j}{|K|^2}.$$ We define the isotropic constant of any convex body K via

$$L_K^2 := \frac{\text{Det}(\text{Cov}K)}{|K|^2}$$

[2]. We define the polar of K as

$$K^\circ := \{ x \in \mathbb{R}^n | \langle x, y \rangle \leq 1 \ \text{for all} \ y \in K \}.$$ The Mahler volume $s(K)$ of K is defined as

$$s(K) := \frac{|K|}{|K^\circ|}.$$ We say that the convex body is in isotropic position if it is centralized and the covariance matrix is a constant times the unit matrix. This kind of position exists [4]. The reverse Santaló inequality says that there is an universal constant c such that

$$c^n |B_n|^2 \leq |K||K^\circ|,$$

where B_n is the n-dimensional euclidean unit ball [1]. The isotropic constant for a ball L_{B_n} is well know to be bounded. We will prove

Theorem 1. For all isotropic symmetric convex bodies K it holds that

$$L_K \leq L_{B_n}^1(s(K))^{-1/n} \leq C,$$

where C is an universal constant.

2010 Mathematics Subject Classification. 52A23.

Key words and phrases. Convex Geometry, Bourgain’s Slicing Problem, Hyperplane Conjecture, Asymptotic Convex Geometry.
2. The proof of the main theorem

Let K be a unit ball. Let $C \in LG(n, \mathbb{R}^n)$ that takes K to the John’s position [1]. So $B_n \subset C(K)$. It means that $C(K)$ contains the unit ball. And moreover $C(K) \subset \sqrt{n}B_n$ [1]. Because $C(K)$ contains the unit ball it follows that $(C(K))^o \subset C(K)$. Now,

$$\{x \in \mathbb{R}^n \mid \langle x, Cy \rangle \leq 1, \ y \in K \} = \{C^{-1}x \in \mathbb{R}^n \mid \langle x, y \rangle \leq 1, \ y \in K \}.$$

Thus, $C^{-1}(K^o) \subset C(K) \subset \sqrt{n}B_n$. So we have also $C^{-1}(K^o) \subset \sqrt{n}B_n$. Now using that there exists $C \in SLG(n, \mathbb{R}^n)$ such that $C(K) \subset \sqrt{n}B_2$ we can calculate

$$(2) \quad L^2_{A(C(K))} \leq \frac{\int_{C(K)}|x|^2}{n|C(K)|} |C(K)|^{-2/n} \leq \frac{|C(K)|n}{|C(K)|n} * |C(K)|^{-2/n} = |C(K)|^{-2/n}. $$

Moreover using that we have $C^{-1}(K^o) \subset \sqrt{n}B_n$ we can calculate

$$(3) \quad L^2_{B(C^{-1}(K))} \leq \frac{\int_{C^{-1}(K^o)}|x|^2}{n|C^{-1}(K^o)|} |C^{-1}(K^o)|^{-2/n} \leq \frac{|C^{-1}(K^o)|n}{|C^{-1}(K^o)|n} * |C^{-1}(K^o)|^{-2/n} = |C^{-1}(K^o)|^{-2/n}, $$

where $A, B \in SLG(n, \mathbb{R}^n)$ and $A(C(K))$ and $B(C^{-1}(K))$ are isotropic modulo scaling. Thus from (2) and (3) we obtain

$$(4) \quad L_{B'}L_{A(C(K))} \leq L_{A(C(K))}L_{B(C^{-1}(K))} \leq \frac{1}{s(K)^{1/n}}, $$

where we use the fact that $L_{B'} \leq L_K$ for all convex bodies K and that

$$|C(K)||C^{-1}(K^o)| = |K||K^o|$$

Combining (4) with Milman-Bourgain (or reverse Santaló) inequality (1) and $L_{B'} > cL_{B_2}$

we obtain

$$L_{T(K)} \leq \frac{1}{L(B_2)s(K)^{1/n}} \leq C,$$

which implies the main theorem 1.

References

Email address: jaspegren@outlook.com