Colour charge and electric charge for fermions

Dirac has shown how the Klein-Gordon equation can be factored into two linear parts using 4x4 Dirac gamma matrices. [Dirac, P.A.M., The Principles of Quantum Mechanics, 4th edition (Oxford University Press) ISBN 0-19-852011-5]

$$\left(\partial_t^2 - \partial_x^2 - \partial_y^2 - \partial_z^2 + m^2\right)I = \left(-i\left[s\gamma^0\partial_t + r\gamma^1\partial_x + g\gamma^2\partial_y + b\gamma^3\partial_z\right] - mI\right)\left(i\left[s\gamma^0\partial_t + r\gamma^1\partial_x + g\gamma^2\partial_y + b\gamma^3\partial_z\right] - mI\right)$$

where r,g,b and s equal +1 or -1.

For leptons r,g,b all equal -1 and for quarks two of r,g,b are equal to +1 and the third equals -1.

The polarities of r,g,b are all negated for anti-particles.

When s = +1, count the number of plus signs (say) for r,g,b which is 0 for leptons and 2 for quarks.

When s = -1, count the number of minus signs (say) for r,g,b which is 3 for leptons and 1 for quarks.

For material particles r,g,b are all equal, which is always true for leptons and true for three distinct quarks together or a quark and an appropriate anti-quark.

r	g	b	s = +	$\underline{s} = -$
—	—	—	0	- 3
_	+	+	+2	- 1
+	—	+	+ 2	- 1
+	+	—	+ 2	- 1
_	—	+	+ 1	- 2
—	+	—	+ 1	- 2
+	_	_	+ 1	- 2
+	+	+	+3	0