## Summation of Infinite Number Series and Calculations of Dimensions in String Theory

## - Rishi Raj

In this research paper I shall discuss how many results one can derive from Ramanujan Summation which will also help us to increase our understanding of the dimensions of string theory which I have shown at the end of the paper.

Ramanujan summation says that,

$$
S=1+2+3+4+\ldots=-1 / 12
$$

It is proved in the following way,

$$
\begin{gathered}
4 S=4+8+12+16+\ldots \\
S-4 S=-3 S \\
-3 S=1-2+3-4+5-6+\ldots
\end{gathered}
$$

Using the formula of integration $1 /(1+x)^{2}$ when $x=1$, we get

$$
\begin{gathered}
-3 S=1-2+3-4+5-6+\ldots=1 / 4 \\
\therefore S=1+2+3+4+\cdots=-\frac{1}{12}
\end{gathered}
$$

This is just one of the infinite results which we can get using the above mentioned process. Let us suppose that the sum of infinite numbers is equal to $-1 / 8$ or $-1 / 16$. Now I will use the same process mentioned above to derive these results.

$$
S=1+2+3+4+\cdots=-\frac{1}{8}
$$

$3 S=3+6+9+12+\ldots$

$$
S-3 S=-2 S
$$

Using the formula of integration $1 /(1+x)^{2}$ when $x=1$, we get

$$
-2 S=1+2-3+4-5+6-. .=-1 / 4
$$

$$
\therefore S=1+2+3+4+5+6+\cdots=-\frac{1}{8}
$$

The same is with the result $-1 / 16$

$$
\begin{gathered}
S=1+2+3+4+\cdots=-\frac{1}{16} \\
5 S=5+10+15+20+\ldots
\end{gathered}
$$

$$
S-5 S=4 S
$$

Using the formula of integration $1 /(1+x)^{2}$ when $x=1$, we get

$$
\begin{gathered}
4 \mathrm{~S}=1-2+3-4+5-6+\ldots=1 / 4 \\
\therefore S=1+2+3+4+5+\cdots=-\frac{1}{16}
\end{gathered}
$$

Now as I have shown that there are infinite numbers of results we can obtain from Ramanujan summation I would further like to improve the string theory formula for the calculation of dimensions which is

$$
\sum_{n=1}^{\infty} n \rightarrow-\frac{1}{12}
$$

Now to correct the above formula with my results I improve the formula as

$$
\sum_{n=1}^{\infty} n \rightarrow-\frac{1}{4 n}
$$

There are 2 main points upon which it stands or two limits of the summation of infinite numbers. They are-:

1. The value of $-1 / 4 n$ i.e. 4 multiplied with any number, must not be less than or equal to $-1 / 4$.
2. The formula of integration $1 /(1+x)^{2}$ in which x should always be equal to 1 i.e. $\mathrm{x}=1$.

So that's what I have obtained from my calculations. One of the things which I expect is that being a formula of math and physics it must stand at all levels.

## References

1. Quora, What is Ramanujan summation?, anonymous
2. The world as I see it, Albert Einstein, Mass Publishers, 1935
