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Abstract

In 1997, Andrew Beal announced the following conjecture: Let A,B,C,m, n, and l be
positive integers with m,n, l > 2. If Am + Bn = C l then A,B, and C have a common
factor. We begin to construct the polynomial P (x) = (x − Am)(x − Bn)(x + C l) =
x3− px+ q with p, q integers depending on Am, Bn and C l. We resolve x3− px+ q = 0
and we obtain the three roots x1, x2, x3 as functions of p and a parameter θ. Since
Am, Bn,−C l are the only roots of x3 − px + q = 0, we discuss the conditions that
x1, x2, x3 are integers and have or do have not a common factor. Three numerical
examples are given.

1. Introduction

In 1997, Andrew Beal [1] announced the following conjecture :

Conjecture 1.1. Let A,B,C,m, n, and l be positive integers with m,n, l > 2. If:

Am +Bn = C l (1.1)

then A,B, and C have a common factor.

The purpose of this paper is to give a complete proof of Beal’s conjecture. Our idea is to construct
a polynomial P (x) of order three having as roots Am, Bn and −C l with the condition (1.1).
We obtain P (x) = x3 − px + q where p, q are depending of Am, Bn and C l. Then we express
Am, Bn,−C l the roots of P (x) = 0 in function of p and a parameter θ that depends of the

A,B,C. The calculations give that A2m =
4p

3
cos2

θ

3
. As A2m is an integer, it follows that cos2

θ

3
must be written as

a

b
where a, b are two positive coprime integers. Beside the trivial cases, there

are two main hypothesis to study:

- the first hypothesis is: 3 | a and b | 4p,
- the second hypothesis is: 3 | p and b | 4p.

We discuss the conditions of divisibility of p, a, b so that the expression of A2m is an integer.
Depending of each individual case, we obtain that A,B,C have or do have not a common factor.
Our proof of the conjecture contains many cases to study. there are many cases where we use
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elementary number theory and some cases need more research to obtain finally the solution. I
think that my new idea detailed above overcomes the apparent limitations of the methods I am
using.

The paper is organized as follows. In section 1, it is an introduction of the paper. The trivial
case, where Am = Bn, is studied in section 2. The preliminaries needed for the proof are given
in section 3 where we consider the polynomial P (x) = (x−Am)(x−Bn)(x+C l) = x3 − px+ q.
The section 4 is the preamble of the proof of the main theorem. Section 5 treats the cases of the
first hypothesis 3 | a and b | 4p. We study the cases of the second hypothesis 3 | p and b | 4p in
section 6. Finally, we present three numerical examples and the conclusion in section 7.

In 1997, Andrew Beal [1] announced the following conjecture :

Conjecture 1.2. Let A,B,C,m, n, and l be positive integers with m,n, l > 2. If:

Am +Bn = C l (1.2)

then A,B, and C have a common factor.

2. Trivial Case

We consider the trivial case when Am = Bn. The equation (1.2) becomes:

2Am = C l (2.1)

then 2 | C l =⇒ 2 | C =⇒ C = 2q.C1 with q ⩾ 1, 2 ∤ C1 and 2Am = 2qlC l
1 =⇒ Am = 2ql−1C l

1.
As l > 2, q ⩾ 1, then 2 | Am =⇒ 2 | A =⇒ A = 2rA1 with r ⩾ 1 and 2 ∤ A1. The equation
(2.1),becomes:

2× 2rmAm1 = 2qlC l
1 (2.2)

As 2 ∤ A1 and 2 ∤ C1, we obtain the first condition :

there exists two positive integers r, qwith r.q ⩾ 1 so that ql = mr + 1 (2.3)

Then from (2.2):

Am1 = C l
1 (2.4)

2.1 Case 1 A1 = 1 =⇒ C1 = 1

Using the condition (2.3) above, we obtain 2.(2r)m = (2q)l and the Beal conjecture is verified.

2.2 Case 2 A1 > 1 =⇒ C1 > 1

From the fundamental theorem of the arithmetic, we can write:

A1 = aα1
1 . . . aαI

I , a1 < a2 < · · · < aI =⇒ Am1 = amα1
1 . . . amαI

I (2.5)

C1 = cβ11 . . . cβJJ , c1 < c2 < · · · < cJ =⇒ C l
1 = clβ11 . . . clβJJ (2.6)

where ai (respectively cj) are distinct positive prime numbers and αi (respectively βj) are inte-
gers > 0.
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From (2.4) and using the uniqueness of the factorization of Am1 and C l
1, we obtain necessary:

I = J
ai = ci, i = 1, 2, . . . , I
mαi = lβi

(2.7)

As one ai | Am =⇒ ai | Bm =⇒ ai | B and in this case, the Beal conjecture is verified.

We suppose in the following that Am > Bn.

3. Preliminaries

Let m,n, l ∈ N∗ > 2 and A,B,C ∈ N∗ such:

Am +Bn = C l (3.1)

We call:

P (x) = (x−Am)(x−Bn)(x+ C l) = x3 − x2(Am +Bn − C l)

+ x[AmBn − C l(Am +Bn)] + C lAmBn (3.2)

Using the equation (3.1), P (x) can be written as:

P (x) = x3 + x[AmBn − (Am +Bn)2] +AmBn(Am +Bn) (3.3)

We introduce the notations:

p = (Am +Bn)2 −AmBn = A2m +AmBn +B2n

q = AmBn(Am +Bn)

As Am ̸= Bn, we have p > (Am −Bn)2 > 0. Equation (3.3) becomes:

P (x) = x3 − px+ q

Using the equation (3.2), P (x) = 0 has three different real roots : Am, Bn and −C l.

Now, let us resolve the equation:

P (x) = x3 − px+ q = 0 (3.4)

To resolve (3.4) let:

x = u+ v

Then P (x) = 0 gives:

P (x) = P (u+ v) = (u+ v)3 − p(u+ v) + q = 0 =⇒ u3 + v3 + (u+ v)(3uv − p) + q = 0 (3.5)

To determine u and v, we obtain the conditions:

u3 + v3 = −q

uv = p/3 > 0

Then u3 and v3 are solutions of the second order equation:

X2 + qX + p3/27 = 0 (3.6)
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Its discriminant ∆ is written as :

∆ = q2 − 4p3/27 =
27q2 − 4p3

27
=

∆̄

27

Let:

∆̄ = 27q2 − 4p3 = 27(AmBn(Am +Bn))2 − 4[(Am +Bn)2 −AmBn]3

= 27A2mB2n(Am +Bn)2 − 4[(Am +Bn)2 −AmBn]3 (3.7)

Denoting :

α = AmBn > 0

β = (Am +Bn)2

we can write (3.7) as:

∆̄ = 27α2β − 4(β − α)3 (3.8)

As α ̸= 0, we can also rewrite (3.8) as :

∆̄ = α3

(
27

β

α
− 4

(
β

α
− 1

)3
)

We call t the parameter :

t =
β

α
∆̄ becomes :

∆̄ = α3(27t− 4(t− 1)3)

Let us calling :

y = y(t) = 27t− 4(t− 1)3

Since α > 0, the sign of ∆̄ is also the sign of y(t). Let us study the sign of y. We obtain y′(t):

y′(t) = y′ = 3(1 + 2t)(5− 2t)

y′ = 0 =⇒ t1 = −1/2 and t2 = 5/2, then the table of variations of y is given below:

Figure 1. The table of variations

The table of the variations of the function y shows that y < 0 for t > 4. In our case, we are
interested for t > 0. For t = 4 we obtain y(4) = 0 and for t ∈]0, 4[=⇒ y > 0. As we have
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t = β
α > 4 as Am ̸= Bn:

(Am −Bn)2 > 0 =⇒ β = (Am +Bn)2 > 4α = 4AmBn

Then y < 0 =⇒ ∆̄ < 0 =⇒ ∆ < 0. Then, the equation (3.6) does not have real solutions u3

and v3. Let us find the solutions u and v with x = u + v is a positive or a negative real and
u.v = p/3.

3.1 Expressions of the roots

Proof. The solutions of (3.6) are:

X1 =
−q + i

√
−∆

2

X2 = X1 =
−q − i

√
−∆

2

We may resolve:

u3 =
−q + i

√
−∆

2

v3 =
−q − i

√
−∆

2

Writing X1 in the form:

X1 = ρeiθ

with:

ρ =

√
q2 −∆

2
=

p
√
p

3
√
3

and sinθ =

√
−∆

2ρ
> 0

cosθ = − q

2ρ
< 0

Then θ [2π] ∈ ] +
π

2
,+π[, let:

π

2
< θ < +π ⇒ π

6
<

θ

3
<

π

3
⇒ 1

2
< cos

θ

3
<

√
3

2
(3.9)

and:

1

4
< cos2

θ

3
<

3

4
(3.10)

hence the expression of X2:

X2 = ρe−iθ (3.11)

Let:

u = reiψ (3.12)

and j =
−1 + i

√
3

2
= ei

2π
3 (3.13)

j2 = ei
4π
3 = −1 + i

√
3

2
= j̄ (3.14)
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j is a complex cubic root of the unity ⇐⇒ j3 = 1. Then, the solutions u and v are:

u1 = reiψ1 = 3
√
ρei

θ
3 (3.15)

u2 = reiψ2 = 3
√
ρjei

θ
3 = 3

√
ρei

θ+2π
3 (3.16)

u3 = reiψ3 = 3
√
ρj2ei

θ
3 = 3

√
ρei

4π
3 e+i

θ
3 = 3

√
ρei

θ+4π
3 (3.17)

and similarly:

v1 = re−iψ1 = 3
√
ρe−i

θ
3 (3.18)

v2 = re−iψ2 = 3
√
ρj2e−i

θ
3 = 3

√
ρei

4π
3 e−i

θ
3 = 3

√
ρei

4π−θ
3 (3.19)

v3 = re−iψ3 = 3
√
ρje−i

θ
3 = 3

√
ρei

2π−θ
3 (3.20)

We may now choose uk and vh so that uk + vh will be real. In this case, we have necessary :

v1 = u1 (3.21)

v2 = u2 (3.22)

v3 = u3 (3.23)

We obtain as real solutions of the equation (3.5):

x1 = u1 + v1 = 2 3
√
ρcos

θ

3
> 0 (3.24)

x2 = u2 + v2 = 2 3
√
ρcos

θ + 2π

3
= − 3

√
ρ

(
cos

θ

3
+
√
3sin

θ

3

)
< 0 (3.25)

x3 = u3 + v3 = 2 3
√
ρcos

θ + 4π

3
= 3

√
ρ

(
−cos

θ

3
+
√
3sin

θ

3

)
> 0 (3.26)

We compare the expressions of x1 and x3, we obtain:

2 3
√
pcos

θ

3

?︷︸︸︷
> 3

√
p

(
−cos

θ

3
+
√
3sin

θ

3

)

3cos
θ

3

?︷︸︸︷
>

√
3sin

θ

3
(3.27)

As
θ

3
∈ ] +

π

6
,+

π

3
[, then sin

θ

3
and cos

θ

3
are > 0. Taking the square of the two members of the

last equation, we get:

1

4
< cos2

θ

3
(3.28)

which is true since
θ

3
∈ ] +

π

6
,+

π

3
[ then x1 > x3. As A

m, Bn and −C l are the only real solutions

of (3.4), we consider, as Am is supposed great than Bn, the expressions:

Am = x1 = u1 + v1 = 2 3
√
ρcos

θ

3

Bn = x3 = u3 + v3 = 2 3
√
ρcos

θ + 4π

3
= 3

√
ρ

(
−cos

θ

3
+
√
3sin

θ

3

)

−C l = x2 = u2 + v2 = 2 3
√
ρcos

θ + 2π

3
= − 3

√
ρ

(
cos

θ

3
+
√
3sin

θ

3

)
(3.29)
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4. Preamble of the Proof of the Main Theorem

Theorem 4.1. Let A,B,C,m, n, and l be positive integers with m,n, l > 2. If:

Am +Bn = C l (4.1)

then A,B, and C have a common factor.

Proof. Am = 2 3
√
ρcos

θ

3
is an integer ⇒ A2m = 4 3

√
ρ2cos2

θ

3
is also an integer. But :

3
√
ρ2 =

p

3
(4.2)

Then:

A2m = 4 3
√

ρ2cos2
θ

3
= 4

p

3
.cos2

θ

3
= p.

4

3
.cos2

θ

3
(4.3)

As A2m is an integer and p is an integer, then cos2
θ

3
must be written under the form:

cos2
θ

3
=

1

b
or cos2

θ

3
=

a

b
(4.4)

with b ∈ N∗; for the last condition a ∈ N∗ and a, b coprime.

Notations: In the following of the paper, the scalars a, b, ..., z, α, β, ..., A,B,C, ... and ∆,Φ, ...
represent positive integers except the parameters θ, ρ, or others cited in the text, are reals.

4.1 Case cos2
θ

3
=

1

b
We obtain:

A2m = p.
4

3
.cos2

θ

3
=

4.p

3.b
(4.5)

As
1

4
< cos2

θ

3
<

3

4
⇒ 1

4
<

1

b
<

3

4
⇒ b < 4 < 3b ⇒ b = 1, 2, 3.

4.1.1 b = 1 b = 1 ⇒ 4 < 3 which is impossible.

4.1.2 b = 2 b = 2 ⇒ A2m = p.
4

3
.
1

2
=

2.p

3
⇒ 3 | p ⇒ p = 3p′ with p′ ̸= 1 because 3 ≪ p, we

obtain:

A2m = (Am)2 =
2p

3
= 2.p′ =⇒ 2 | p′ =⇒ p′ = 2αp21

with 2 ∤ p1, α+ 1 = 2β

Am = 2βp1 (4.6)

BnC l = 3
√
ρ2
(
3− 4cos2

θ

3

)
= p′ = 2αp21 (4.7)

From the equation (4.6), it follows that 2 | Am =⇒ A = 2iA1, i ⩾ 1 and 2 ∤ A1. Then, we have
β = i.m = im. The equation (4.7) implies that 2 | (BnC l) =⇒ 2 | Bn or 2 | C l.
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Case 2 | Bn: - If 2 | Bn =⇒ 2 | B =⇒ B = 2jB1 with 2 ∤ B1. The expression of BnC l becomes:

Bn
1C

l = 22im−1−jnp21

- If 2im − 1 − jn ⩾ 1, 2 | C l =⇒ 2 | C according to C l = 2imAm1 + 2jnBn
1 and the conjecture

(1.2) is verified.

- If 2im− 1− jn ⩽ 0 =⇒ 2 ∤ C l, then the contradiction with C l = 2imAm1 + 2jnBn
1 .

Case 2 | C l: If 2 | C l: with the same method used above, we obtain the identical results.

4.1.3 b = 3 b = 3 ⇒ A2m = p.
4

3
.
1

3
=

4p

9
⇒ 9 | p ⇒ p = 9p′ with p′ ̸= 1, as 9 ≪ p then

A2m = 4p′. If p′ is prime, it is impossible. We suppose that p′ is not a prime, as m ⩾ 3, it follows
that 2 | p′, then 2 | Am. But BnC l = 5p′ and 2 | (BnC l). Using the same method for the case
b = 2, we obtain the identical results.

4.2 Case a > 1, cos2
θ

3
=

a

b
We have:

cos2
θ

3
=

a

b
; A2m = p.

4

3
.cos2

θ

3
=

4.p.a

3.b
(4.8)

where a, b verify one of the two conditions:

{3 | a and b | 4p} or {3 | p and b | 4p} (4.9)

and using the equation (3.10), we obtain a third condition:

b < 4a < 3b (4.10)

For these conditions, A2m = 4 3
√

ρ2cos2 θ3 = 4
p

3
.cos2

θ

3
is an integer.

Let us study the conditions given by the equation (4.9) in the following two sections.

5. Hypothesis : {3 | a and b | 4p}

We obtain :

3 | a =⇒ ∃a′ ∈ N∗ / a = 3a′ (5.1)

5.1 Case b = 2 and 3 | a
A2m is written as:

A2m =
4p

3
.cos2

θ

3
=

4p

3
.
a

b
=

4p

3
.
a

2
=

2.p.a

3
(5.2)

Using the equation (5.1), A2m becomes :

A2m =
2.p.3a′

3
= 2.p.a′ (5.3)
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but cos2
θ

3
=

a

b
=

3a′

2
> 1 which is impossible, then b ̸= 2.

5.2 Case b = 4 and 3 | a
A2m is written :

A2m =
4.p

3
cos2

θ

3
=

4.p

3
.
a

b
=

4.p

3
.
a

4
=

p.a

3
=

p.3a′

3
= p.a′ (5.4)

and cos2
θ

3
=

a

b
=

3.a′

4
<

(√
3

2

)2

=
3

4
=⇒ a′ < 1 (5.5)

which is impossible. Then the case b = 4 is impossible.

5.3 Case b = p and 3 | a
We have :

cos2
θ

3
=

a

b
=

3a′

p
(5.6)

and:

A2m =
4p

3
.cos2

θ

3
=

4p

3
.
3a′

p
= 4a′ = (Am)2 (5.7)

∃a” / a′ = a”2 (5.8)

and BnC l = p−A2m = b− 4a′ = b− 4a”2 (5.9)

The calculation of AmBn gives :

AmBn = p.

√
3

3
sin

2θ

3
− 2a′

or AmBn + 2a′ = p.

√
3

3
sin

2θ

3
(5.10)

The left member of (5.10) is an integer and p also, then 2

√
3

3
sin

2θ

3
is written under the form :

2

√
3

3
sin

2θ

3
=

k1
k2

(5.11)

where k1, k2 are two coprime integers and k2 | p =⇒ p = b = k2.k3, k3 ∈ N∗.

5.3.1 We suppose that k3 ̸= 1 We obtain :

Am(Am + 2Bn) = k1.k3 (5.12)

Let µ be a prime integer with µ | k3, then µ | b and µ | Am(Am + 2Bn) =⇒ µ | Am or
µ | (Am + 2Bn).

** A-1-1- If µ | Am =⇒ µ | A and µ | A2m, but A2m = 4a′ =⇒ µ | 4a′ =⇒ (µ = 2, but 2 | a′) or
(µ | a′). Then µ | a it follows the contradiction with a, b coprime.

** A-1-2- If µ | (Am + 2Bn) =⇒ µ ∤ Am and µ ∤ 2Bn then µ ̸= 2 and µ ∤ Bn. We write
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µ | (Am + 2Bn) as:

Am + 2Bn = µ.t′ (5.13)

It follows :

Am +Bn = µt′ −Bn =⇒ A2m +B2n + 2AmBn = µ2t′2 − 2t′µBn +B2n

Using the expression of p:

p = t′2µ2 − 2t′Bnµ+Bn(Bn −Am) (5.14)

As p = b = k2.k3 and µ | k3 then µ | b =⇒ ∃µ′ and b = µµ′, so we can write:

µ′µ = µ(µt′2 − 2t′Bn) +Bn(Bn −Am) (5.15)

From the last equation, we obtain µ | Bn(Bn −Am) =⇒ µ | Bn or µ | (Bn −Am).

** A-1-2-1- If µ | Bn which is in contradiction with µ ∤ Bn.

** A-1-2-2- If µ | (Bn −Am) and using that µ | (Am + 2Bn), we arrive to :

µ | 3Bn


µ | Bn

or
µ = 3

(5.16)

** A-1-2-2-1- If µ | Bn =⇒ µ | B, it is the contradiction with µ ∤ B cited above.

** A-1-2-2-2- If µ = 3, then 3 | b, but 3 | a then the contradiction with a, b coprime.

5.3.2 We assume now k3 = 1 Then :

A2m + 2AmBn = k1 (5.17)

b = k2 (5.18)

2
√
3

3
sin

2θ

3
=

k1
b

(5.19)

Taking the square of the last equation, we obtain:

4

3
sin2 2θ

3
=

k21
b2

16

3
sin2 θ

3
cos2

θ

3
=

k21
b2

16

3
sin2 θ

3
.
3a′

b
=

k21
b2

Finally:

42a′(p− a) = k21 (5.20)

but a′ = a”2, then p− a is a square. Let:

λ2 = p− a = b− a = b− 3a”2 =⇒ λ2 + 3a”2 = b (5.21)

The equation (5.20) becomes:

42a”2λ2 = k21 =⇒ k1 = 4a”λ (5.22)
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taking the positive root, but k1 = Am(Am + 2Bn) = 2a”(Am + 2Bn), then :

Am + 2Bn = 2λ =⇒ λ = a” +Bn (5.23)

** A-2-1- As Am = 2a” =⇒ 2 | Am =⇒ 2 | A =⇒ A = 2iA1, with i ⩾ 1 and 2 ∤ A1, then
Am = 2a” = 2imAm1 =⇒ a” = 2im−1Am1 , but im ⩾ 3 =⇒ 4 | a”. As λ = a” + Bn, taking
its square, we obtain λ2 = a”2 + 2a”.Bn + B2n =⇒ λ2≡B2n(mod 4) =⇒ λ2≡B2n≡0(mod 4) or
λ2≡B2n≡1(mod 4).

** A-2-1-1- We suppose that λ2≡B2n≡0(mod 4) =⇒ 4 | λ2 =⇒ 2 | (b − a). But 2 | a because
a = 3a′ = 3a”2 = 3× 22(im−1)A2m

1 and im ⩾ 3. Then 2 | b, it follows the contradiction with a, b
coprime.

** A-2-1-2- We suppose now that λ2≡B2n≡1(mod 4). As Am = 2im−1Am1 and im− 1 ⩾ 2, then
Am≡0(mod 4). As B2n≡1(mod 4), then Bn verifies Bn≡1(mod 4) or Bn≡3(mod 4) which gives
for the two cases BnC l≡1(mod 4).

We have also p = b = A2m + AmBn + B2n = 4a′ + Bn.C l = 4a”2 + BnC l =⇒ BnC l =
λ2 − a”2 = Bn.C l, then λ, a” ∈ N∗ are solutions of the Diophantine equation :

x2 − y2 = N (5.24)

with N = BnC l > 0. Let Q(N) be the number of the solutions of (5.24) and τ(N) is the number
of suitable factorization of N , then we announce the following result concerning the solutions of
the equation (5.24) (see theorem 27.3 in [2]):

- If N≡2(mod 4), then Q(N) = 0.

- If N≡1 or N≡3(mod 4), then Q(N) = [τ(N)/2].

- If N≡0(mod 4), then Q(N) = [τ(N/4)/2].

[x] is the integral part of x for which [x] ⩽ x < [x] + 1.

In our case, we have N = Bn.C l≡1(mod4), then Q(N) = [τ(N)/2]. As λ, a” is a couple
of solutions of the Diophantine equation (5.24), then ∃ d, d′ positive integers with d > d′ and
N = d.d′ so that :

d+ d′ = 2λ (5.25)

d− d′ = 2a” (5.26)

** A-2-1-2-1- As C l > Bn, we take d = C l and d′ = Bn. It follows:

C l +Bn = 2λ = Am + 2Bn (5.27)

C l −Bn = 2a” = Am (5.28)

Then the case d = C l and d′ = Bn gives a priory no contradictions.

** A-2-1-2-2- Now, we consider the case d = BnC1 and d′ = 1. We rewrite the equations (5.25-
5.26):

BnC l + 1 = 2λ (5.29)

BnC l − 1 = 2a” (5.30)

11
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We obtain 1 = λ−a”, but from (5.23), we have λ = a”+Bn, it follows Bn = 1 and C l−Am = 1,
we know [?] that the only positive solution of the last equation is C = 3, A = 2,m = 3 and
l = 2 < 3, then the contradiction.

** A-2-1-2-3- Now, we consider the case d = clr−1
1 C l

1 where c1 is a prime integer with c1 ∤ C1 and
C = cr1C1, r ⩾ 1. It follows that d′ = c1.B

n. We rewrite the equations (5.25-5.26):

clr−1
1 C l

1 + c1.B
n = 2λ (5.31)

clr−1
1 C l

1 − c1.B
n = 2a” (5.32)

As l ⩾ 3, from the last two equations above, it follows that c1 | (2λ) and c1 | (2a”). Then c1 = 2,
or c1 | λ and c1 | a”.

** A-2-1-2-3-1- We suppose c1 = 2. As 2 | Am and 2 | C l because l ⩾ 3, it follows 2 | Bn, then
2 | (p = b). Then the contradiction with a, b coprime.

** A-2-1-2-3-2- We suppose c1 ̸= 2 and c1 | a” and c1 | λ. c1 | a” =⇒ c1 | a and c1 | (Am = 2a”).
Bn = C l−Am =⇒ c1 | Bn. It follows that c1 | (p = b). Then the contradiction with a, b coprime.

The other cases of the expressions of d and d′ with d, d′ not coprime so that N = BnC l = d.d′

give also contradictions.

** A-2-1-2-4- Now, let C = cr1C1 with c1 a prime, r ⩾ 1 and c1 ∤ C1, we consider the case d = C l
1

and d′ = crl1 B
n so that d > d′. We rewrite the equations (5.25-5.26):

C l
1 + crl1 B

n = 2λ (5.33)

C l
1 − crl1 B

n = 2a” (5.34)

We obtain crl1 B
n = λ− a” = Bn =⇒ crl1 = 1, then the contradiction.

** A-2-1-2-5- Now, let C = cr1C1 with c1 a prime, r ⩾ 1 and c1 ∤ C1, we consider the case
d = C l

1B
n and d′ = crl1 so that d > d′. We rewrite the equations (5.25-5.26):

C l
1B

l + crl1 = 2λ (5.35)

C l
1B

l − crl1 = 2a” (5.36)

We obtain crl1 = λ− a” = Bn =⇒ c1 | Bn, then c1 | Am = 2a”. If c1 = 2, the contradiction with
BnC l≡1(mod 4). Then c1 | a” =⇒ c1 | a =⇒ c1 | (p = b), it follows a, b are not coprime, then
the contradiction.

Cases like d′ < C l a divisor of C l or d′ < Bl a divisor of Bn with d′ < d and d.d′ = N = BnC l

give contradictions.

** A-2-1-2-6- Now, we consider the case d = b1.C
l where b1 is a prime integer with b1 ∤ B1 and

B = br1B1, r ⩾ 1. It follows that d′ = bnr−1
1 Bn

1 . We rewrite the equations (5.25-5.26):

b1C
l + bnr−1

1 Bn
1 = 2λ (5.37)

b1C
l − bnr−1

1 Bn
1 = 2a” (5.38)

12
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As n ⩾ 3, from the last two equations above, it follows that b1 | 2λ and b1 | (2a”). Then b1 = 2,
or b1 | λ and b1 | a”.

** A-2-1-2-6-1- We suppose b1 = 2 =⇒ 2 | Bn. As 2 | (Am = 2a” =⇒ 2 | a” =⇒ 2 | a, but 2 | Bn

and 2 | Am then 2 | (p = b). It follows the contradiction with a, b coprime.

** A-2-1-2-6-2- We suppose b1 ̸= 2, then b1 | λ and b1 | a” =⇒ b1 | Am and b1 | a” =⇒ b1 | a, but
b1 | Bn and b1 | Am then b1 | (p = b). It follows the contradiction with a, b coprime.

The other cases of the expressions of d and d′ with d, d′ not coprime and d > d′ so that
N = C lBm = d.d′ give also contradictions.

Finally, from the cases studied in the above paragraph A-2-1-2, we have found one suitable
factorization of N that gives a priory no contradictions, it is the case N = Bn.C l = d.d′ with
d = C l, d′ = Bn but 1 ≪ τ(N), it follows the contradiction with Q(N) = [τ(N)/2] ⩽ 1. We
conclude that the case A-2-1-2 is to reject.

Hence, the case k3 = 1 is impossible.

Let us verify the condition (4.10) given by b < 4a < 3b. In our case, the condition becomes :

p < 3A2m < 3p with p = A2m +B2n +AmBn (5.39)

and 3A2m < 3p =⇒ A2m < p that is verified. If :

p < 3A2m =⇒ 2A2m −AmBn −B2n

?︷︸︸︷
> 0

Studying the sign of the polynomial Q(Y ) = 2Y 2 − BnY − B2n and taking Y = Am > Bn, the
condition 2A2m −AmBn −B2n > 0 is verified, then the condition b < 4a < 3b is true.

In the following of the paper, we verify easily that the condition b < 4a < 3b implies to verify
that Am > Bn which is true.

5.4 Case b | p ⇒ p = b.p′, p′ > 1, b ̸= 2, b ̸= 4 and 3 | a

A2m =
4.p

3
.
a

b
=

4.b.p′.3.a′

3.b
= 4.p′a′ (5.40)

We calculate BnC l:

BnC l = 3
√

ρ2
(
3sin2 θ

3
− cos2

θ

3

)
= 3
√

ρ2
(
3− 4cos2

θ

3

)
(5.41)

but 3
√

ρ2 =
p

3
, using cos2

θ

3
=

3.a′

b
, we obtain:

BnC l = 3
√
ρ2
(
3− 4cos2

θ

3

)
=

p

3

(
3− 4

3.a′

b

)
= p.

(
1− 4.a′

b

)
= p′(b− 4a′) (5.42)

13
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As p = b.p′, and p′ > 1, so we have :

BnC l = p′(b− 4a′) (5.43)

and A2m = 4.p′.a′ (5.44)

** B-1- We suppose that p′ is prime, then A2m = 4a′p′ = (Am)2 =⇒ p′ | a′. But BnC l =
p′(b− 4a′) =⇒ p′ | Bn or p′ | C l.

** B-1-1- If p′ | Bn =⇒ p′ | B =⇒ B = p′B1 with B1 ∈ N∗. Hence : p′n−1Bn
1C

l = b − 4a′. But
n > 2 ⇒ (n− 1) > 1 and p′ | a′, then p′ | b =⇒ a and b are not coprime, then the contradiction.

** B-1-2- If p′ | C l =⇒ p′ | C. The same method used above, we obtain the same results.

** B-2- We consider that p′ is not a prime integer.

** B-2-1- p′, a are supposed coprime: A2m = 4a′p′ =⇒ Am = 2a”.p1 with a′ = a”2 and p′ = p21,
then a”, p1 are also coprime. As Am = 2a”.p1 then 2 | a” or 2 | p1.

** B-2-1-1- 2 | a”, then 2 ∤ p1. But p′ = p21.

** B-2-1-1-1- If p1 is prime, it is impossible with Am = 2a”.p1.

** B-2-1-1-2- We suppose that p1 is not prime, we can write it as p1 = ωm =⇒ p′ = ω2m, then:
BnC l = ω2m(b− 4a′).

** B-2-1-1-2-1- If ω is prime, it is different of 2, then ω | (BnC l) =⇒ ω | Bn or ω | C l.

** B-2-1-1-2-1-1- If ω | Bn =⇒ ω | B =⇒ B = ωjB1 with ω ∤ B1, then Bn
1 .C

l = ω2m−nj(b− 4a′).

** B-2-1-1-2-1-1-1- If 2m−n.j = 0, we obtain Bn
1 .C

l = b−4a′. As C l = Am+Bn =⇒ ω | C l =⇒
ω | C, and ω | (b − 4a′). But ω ̸= 2 and ω is coprime with a′ then coprime with a, then ω ∤ b.
The conjecture (1.2) is verified.

** B-2-1-1-2-1-1-2- If 2m−nj ⩾ 1, in this case with the same method, we obtain ω | C l =⇒ ω | C
and ω | (b− 4a′) and ω ∤ a and ω ∤ b. The conjecture (1.2) is verified.

** B-2-1-1-2-1-1-3- If 2m − nj < 0 =⇒ ωn.j−2mBn
1 .C

l = b − 4a′. As ω | C using C l = Am + Bn

then C = ωh.C1 =⇒ ωn.j−2m+h.lBn
1 .C

l
1 = b− 4a′. If n.j − 2m+ h.l < 0 =⇒ ω | Bn

1C
l
1, it follows

the contradiction that ω ∤ B1 or ω ∤ C1. Then if n.j − 2m+ h.l > 0 and ω | (b− 4a′) with ω, a, b
coprime and the conjecture (1.2) is verified.

** B-2-1-1-2-1-2- We obtain the same results if ω | C l.

** B-2-1-1-2-2- Now, p′ = ω2m and ω not prime, we write ω = ωf1 .Ω with ω1 prime ∤ Ω and f ⩾ 1

an integer, and ω1 | A. Then BnC l = ω2f.m
1 Ω2m(b− 4a′) =⇒ ω1 | (BnC l) =⇒ ω1 | Bn or ω1 | C l.

14
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** B-2-1-1-2-2-1- If ω1 | Bn =⇒ ω1 | B =⇒ B = ωj1B1 with ω1 ∤ B1, thenBn
1 .C

l = ω2mf−nj
1 Ω2m(b−

4a′):

** B-2-1-1-2-2-1-1- If 2f.m − n.j = 0, we obtain Bn
1 .C

l = Ω2m(b − 4a′). As C l = Am + Bn =⇒
ω1 | C l =⇒ ω1 | C =⇒ ω1 | (b − 4a′). But ω1 ̸= 2 and ω1 is coprime with a′, then coprime with
a, we deduce ω1 ∤ b. Then the conjecture (1.2) is verified.

** B-2-1-1-2-2-1-2- If 2f.m − n.j ⩾ 1, we have ω1 | C l =⇒ ω1 | C =⇒ ω1 | (b − 4a′) and ω1 ∤ a
and ω1 ∤ b. The conjecture (1.2) is verified.

** B-2-1-1-2-2-1-3- If 2f.m − n.j < 0 =⇒ ωn.j−2m.f
1 Bn

1 .C
l = Ω2m(b − 4a′). As ω1 | C using

C l = Am + Bn, then C = ωh1 .C1 =⇒ ωn.j−2m.f+h.lBn
1 .C

l
1 = Ω2m(b − 4a′). If n.j − 2m.f + h.l <

0 =⇒ ω1 | Bn
1C

l
1, it follows the contradiction with ω1 ∤ B1 and ω1 ∤ C1. Then if n.j−2m.f+h.l > 0

and ω1 | (b− 4a′) with ω1, a, b coprime and the conjecture (1.2) is verified.

** B-2-1-1-2-2-2- We obtain the same results if ω1 | C l.

** B-2-1-2- If 2 | p1, then 2 | p1 =⇒ 2 ∤ a′ =⇒ 2 ∤ a. But p′ = p21.

** B-2-1-2-1- If p1 = 2, we obtain Am = 4a” =⇒ 2 | a” as m ⩾ 3, then the contradiction with
a, b coprime.

** B-2-1-2-2- We suppose that p1 is not prime and 2 | p1, as Am = 2a”p1, p1 is written as
p1 = 2m−1ωm =⇒ p′ = 22m−2ω2m. It follows BnC l = 22m−2ω2m(b− 4a′) =⇒ 2 | Bn or 2 | C l.

** B-2-1-2-2-1- If 2 | Bn =⇒ 2 | B, as 2 | A, then 2 | C. From BnC l = 22m−2ω2m(b − 4a′), it
follows if 2 | (b− 4a′) =⇒ 2 | b but as 2 ∤ a′, there is no contradiction with a, b coprime and the
conjecture (1.2) is verified.

** B-2-1-2-2-2- If 2 | C l, using the same method as above, we obtain the identical results.

** B-2-2- p′, a′ are supposed not coprime. Let ω be a prime integer so that ω | a′ and ω | p′.

** B-2-2-1- We suppose firstly ω = 3. As A2m = 4a′p′ =⇒ 3 | A, but 3 | p′ =⇒ 3 | p, as p =
A2m +B2n +AmBn =⇒ 3 | B2n =⇒ 3 | B, then 3 | C l =⇒ 3 | C. We write A = 3iA1, B = 3jB1,
C = 3hC1 and 3 coprime with A1, B1 and C1 and p = 32imA2m

1 +32njB2n
1 +3im+jnAm1 Bn

1 = 3k.g
with k = min(2im, 2jn, im+ jn) and 3 ∤ g. We have also (ω = 3) | a and (ω = 3) | p′ that gives
a = 3αa1 = 3a′ =⇒ a′ = 3α−1a1, 3 ∤ a1 and p′ = 3µp1, 3 ∤ p1 with A2m = 4a′p′ = 32imA2m

1 =
4× 3α−1+µ.a1.p1 =⇒ α+ µ− 1 = 2im. As p = bp′ = b.3µp1 = 3µ.b.p1. The exponent of the term
3 of p is k, the exponent of the term 3 of the left member of the last equation is µ. If 3 | b it is a
contradiction with a, b coprime. Then, we suppose that 3 ∤ b, and the equality of the exponents:
min(2im, 2jn, im + jn) = µ, recall that α + µ − 1 = 2im. But BnC l = p′(b − 4a′) that gives
3(nj+hl)Bn

1C
l
1 = 3µp1(b−4×3(α−1)a1). We have also Am+Bn = C l gives 3imAm1 +3jnBn

1 = 3hlC l
1.
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Let ϵ = min(im, jn), we have ϵ = hl = min(im, jn). Then, we obtain the conditions:

k = min(2im, 2jn, im+ jn) = µ (5.45)

α+ µ− 1 = 2im (5.46)

ϵ = hl = min(im, jn) (5.47)

3(nj+hl)Bn
1C

l
1 = 3µp1(b− 4× 3(α−1)a1) (5.48)

** B-2-2-1-1- α = 1 =⇒ a = 3a1 = 3a′ and 3 ∤ a1, the equation (5.46) becomes:

µ = 2im

and the first equation (5.45) is written as:

k = min(2im, 2jn, im+ jn) = 2im

- If k = 2im, then 2im ⩽ 2jn =⇒ im ⩽ jn =⇒ hl = im, and (5.48) gives µ = 2im = nj + hl =
im+ nj =⇒ im = jn = hl. Hence 3 | A, 3 | B and 3 | C and the conjecture (1.2) is verified.

- If k = 2jn =⇒ 2jn = 2im =⇒ im = jn = hl. Hence 3 | A, 3 | B and 3 | C and the conjecture
(1.2) is verified.

- If k = im + jn = 2im =⇒ im = jn =⇒ ϵ = hl = im = jn case that is seen above and we
deduce that 3 | A, 3 | B and 3 | C, and the conjecture (1.2) is verified.

** B-2-2-1-2- α > 1 =⇒ α ⩾ 2 and a′ = 3α−1a1.

- If k = 2im =⇒ 2im = µ, but µ = 2im+ 1− α that is impossible.

- If k = 2jn = µ =⇒ 2jn = 2im+1−α. We obtain 2jn < 2im =⇒ jn < im =⇒ 2jn < im+jn,
k = 2jn is just the minimum of (2im, 2jn, im+ jn). We obtain jn = hl < im and the equation
(5.48) becomes:

Bn
1C

l
1 = p1(b− 4× 3(α−1)a1)

The conjecture (1.2) is verified.

- If k = im+ jn ⩽ 2im =⇒ jn ⩽ im and k = im+ jn ⩽ 2jn =⇒ im ⩽ jn =⇒ im = jn =⇒
k = im+ jn = 2im = µ but µ = 2im+ 1− α that is impossible.

- If k = im + jn < 2im =⇒ jn < im and 2jn < im + jn = k that is a contradiction with
k = min(2im, 2jn, im+ jn).

** B-2-2-2- We suppose that ω ̸= 3. We write a = ωαa1 with ω ∤ a1 and p′ = ωµp1 with ω ∤ p1.
As A2m = 4a′p′ = 4ωα+µ.a1.p1 =⇒ ω | A =⇒ A = ωiA1, ω ∤ A1. But BnC l = p′(b − 4a′) =
ωµp1(b− 4a′) =⇒ ω | BnC l =⇒ ω | Bn or ω | C l.

** B-2-2-2-1- ω | Bn =⇒ ω | B =⇒ B = ωjB1 and ω ∤ B1. From Am + Bn = C l =⇒ ω |
C l =⇒ ω | C. As p = bp′ = ωµbp1 = ωk(ω2im−kA2m

1 + ω2jn−kB2n
1 + ωim+jn−kAm1 Bn

1 ) with
k = min(2im, 2jn, im+ jn). Then :

- If µ = k, then ω ∤ b and the conjecture (1.2) is verified.

- If k > µ, then ω | b, but ω | a we deduce the contradiction with a, b coprime.

- If k < µ, it follows from :

ωµbp1 = ωk(ω2im−kA2m
1 + ω2jn−kB2n

1 + ωim+jn−kAm1 Bn
1 )
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that ω | A1 or ω | B1 that is a contradiction with the hypothesis.

** B-2-2-2-2- If ω | C l =⇒ ω | C =⇒ C = ωhC1 with ω ∤ C1. From Am + Bn = C l =⇒ ω |
(C l −Am) =⇒ ω | B. Then, we obtain the same results as B-2-2-2-1- above.

5.5 Case b = 2p and 3 | a
We have :

cos2
θ

3
=

a

b
=

3a′

2p
=⇒ A2m =

4p.a

3b
=

4p

3
.
3a′

2p
= 2a′ = (Am)2 =⇒ 2 | a′ =⇒ 2 | a

Then 2 | a and 2 | b that is a contradiction with a, b coprime.

5.6 Case b = 4p and 3 | a
We have :

cos2
θ

3
=

a

b
=

3a′

4p
=⇒ A2m =

4p.a

3b
=

4p

3
.
3a′

4p
= a′ = (Am)2 = a”2

with Am = a”

Let us calculate AmBn, we obtain:

AmBn =
p
√
3

3
.sin

2θ

3
− 2p

3
cos2

θ

3
=

p
√
3

3
.sin

2θ

3
− a′

2
=⇒

AmBn +
A2m

2
=

p
√
3

3
.sin

2θ

3

Let:

A2m + 2AmBn =
2p

√
3

3
sin

2θ

3
(5.49)

The left member of (5.49) is an integer and p is an integer, then
2
√
3

3
sin

2θ

3
will be written as :

2
√
3

3
sin

2θ

3
=

k1
k2

where k1, k2 are two integers coprime and k2 | p =⇒ p = k2.k3.

** C-1- Firstly, we suppose that k3 ̸= 1. Then :

A2m + 2AmBn = k3.k1

Let µ be a prime integer and µ | k3, then µ | Am(Am + 2Bn) =⇒ µ | Am or µ | (Am + 2Bn).

** C-1-1- If µ | (Am = a”) =⇒ µ | (a”2 = a′) =⇒ µ | (3a′ = a). As µ | k3 =⇒ µ | p =⇒ µ | (4p =
b), then the contradiction with a, b coprime.

** C-1-2- If µ | (Am + 2Bn) =⇒ µ ∤ Am and µ ∤ 2Bn, then:

µ ̸= 2 and µ ∤ Bn (5.50)

µ | (Am + 2Bn), we write:

Am + 2Bn = µ.t′

17
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Then:

Am +Bn = µt′ −Bn =⇒ A2m +B2n + 2AmBn = µ2t′2 − 2t′µBn +B2n

=⇒ p = t′2µ2 − 2t′Bnµ+Bn(Bn −Am)

As b = 4p = 4k2.k3 and µ | k3 then µ | b =⇒ ∃µ′ so that b = µ.µ′, we obtain:

µ′.µ = µ(4µt′2 − 8t′Bn) + 4Bn(Bn −Am)

The last equation implies µ | 4Bn(Bn −Am), but µ ̸= 2 then µ | Bn or µ | (Bn −Am).

** C-1-1-1- If µ | Bn =⇒ then the contradiction with (5.50).

** C-1-1-2- If µ | (Bn −Am) and using µ | (Am + 2Bn), we have :

µ | 3Bn =⇒


µ | Bn

or
µ = 3

** C-1-1-2-1- If µ | Bn then the contradiction with (5.50).

** C-1-1-2-2- If µ = 3, then 3 | b, but 3 | a then the contradiction with a, b coprime.

** C-2- We assume now that k3 = 1, then:

A2m + 2AmBn = k1 (5.51)

p = k2

2
√
3

3
sin

2θ

3
=

k1
p

We take the square of the last equation, we obtain :

4

3
sin2 2θ

3
=

k21
p2

16

3
sin2 θ

3
cos2

θ

3
=

k21
p2

16

3
sin2 θ

3
.
3a′

b
=

k21
p2

Finally:

a′(4p− 3a′) = k21 (5.52)

but a′ = a”2, then 4p− 3a′ is a square. Let :

λ2 = 4p− 3a′ = 4p− a = b− a

The equation (5.52) becomes :

a”2λ2 = k21 =⇒ k1 = a”λ (5.53)

taking the positive root. Using (5.51), we have:

k1 = Am(Am + 2Bn) = a”(Am + 2Bn)

18
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Then :

Am + 2Bn = λ

Now, we consider that b− a = λ2 =⇒ λ2 + 3a”2 = b, then the couple (λ, a”) is a solution of the
Diophantine equation:

X2 + 3Y 2 = b (5.54)

with X = λ and Y = a”. But using one theorem on the solutions of the equation given by (5.54),
b is written under the form (see theorem 37.4 in [3]):

b = 22s × 3t.pt11 · · · ptgg q2s11 · · · q2srr

where pi are prime integers so that pi≡1( mod 6), the qj are also prime integers so that qj≡5( mod
6). Then, as b = 4p :

- If t ⩾ 1 =⇒ 3 | b, but 3 | a, then the contradiction with a, b coprime.

** C-2-2-1- Hence, we suppose that p is written under the form:

p = pt11 · · · ptgg q2s11 · · · q2srr

with pi≡1(mod 6) and qj≡5(mod 6). Finally, we obtain that :

p≡1(mod 6) (5.55)

We will verify if this condition does not give contradictions.

We will present the table of the value modulo 6 of p = A2m + AmBn + B2n in function of the
values of Am, Bn(mod 6). We obtain the table below:

Table 1. Table of p (mod 6)

Am , Bn 0 1 2 3 4 5

0 0 1 4 3 4 1

1 1 3 1 1 3 1

2 4 1 0 1 4 3

3 3 1 1 3 1 1

4 4 3 4 1 0 1

5 1 1 3 1 1 3

** C-2-2-1-1- Case Am≡0(mod 6) =⇒ 2 | (Am = a”) =⇒ 2 | (a′ = a”2) =⇒ 2 | a, but 2 | b, then
the contradiction with a, b coprime. All the cases of the first line of the table 1 are to reject.

** C-2-2-1-2- Case Am≡1(mod 6) and Bn≡0(mod 6), then 2 | Bn =⇒ Bn = 2B′ and p is writ-
ten as p = (Am + B′)2 + 3B′2 with (p, 3) = 1, if not 3 | p, then 3 | b, but 3 | a, then the
contradiction with a, b coprime. Hence, the pair (Am +B′, B′) verifies the equation:

(Am +B′)2 + 3B′2 = p (5.56)

that we can write it as:

(Am +B′)2 −B′2 = p− 4B′2 = A2m +B2n +AmBn −B2n = C lAm = N (5.57)
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Then (Am +B′, B′) is a solution of the Diophantine equation:

x2 − y2 = N (5.58)

where N = C lAm≡1(mod 6). Let Q(N) be the number of the solutions of (5.58) and τ(N) is the
number of suitable factorization of N , then we recall the following result concerning the solutions
of the equation (5.58) (see theorem 27.3 in [2]):

- If N≡2(mod 4), then Q(N) = 0.

- If N≡1 or N≡3(mod 4), then Q(N) = [τ(N)/2].

- If N≡0(mod 4), then Q(N) = [τ(N/4)/2].

As N = C lAm≡1(mod 6) =⇒ N is odd, the cases Q(N) = 0 and Q(N) = [τ(N/4)/2] are
rejected, then N≡1 or N≡3(mod 4), it follows Q(N) = [τ(N)/2].

As Am+B′, B′ is a couple of solutions of the Diophantine equation (5.58), then ∃ d, d′ positive
integers with d > d′ and N = d.d′ so that :

d+ d′ = 2(Am +B′) (5.59)

d− d′ = 2B′ = Bn (5.60)

We will use the same method used for the paragraph above A-2-1-2-.

** C-2-2-1-2-1- As C l > Am, we take d = C l and d′ = Am. It follows:

C l +Am = 2(Am +B′) = 2Am +Bn

C l −Am = Bn = 2B′

Then the case d = C l and d′ = Am gives a priory no contradictions.

** C-2-2-1-2-2- Now, we consider the case d = C lAm and d′ = 1. We rewrite the equations
(5.59-5.60):

C lAm + 1 = 2(Am +B′) (5.61)

C lAm − 1 = 2B′ (5.62)

We obtain 1 = Am, it follows C l − Bn = 1, we know [?] that the only positive solution of the
last equation is C = 3, B = 2, n = 3 and l = 2 < 3, then the contradiction.

** C-2-2-1-2-3- Now, we consider the case d = clr−1
1 C l

1 where c1 is a prime integer with c1 ∤ C1

and C = cr1C1, r ⩾ 1. It follows that d′ = c1.A
m. We rewrite the equations (5.59-5.60):

clr−1
1 C l

1 + c1.A
m = 2(Am +B′) (5.63)

clr−1
1 C l

1 − c1.A
m = 2B′ = Bn (5.64)

As l ⩾ 3, from the last two equations above, it follows that c1 | 2(Am +B′) and c1 | (2B′). Then
c1 = 2, or c1 | (Am +B′) and c1 | B′.

** C-2-2-1-2-3-1- We suppose c1 = 2. As l ⩾ 3, from the equation (5.64) it follows that 2 | Bn,
then 2 | (Am = a”) =⇒ 2 | (a”2 = a′) =⇒ 2 | (a = 3a′), but b = 4p (see 5.6), then the contradic-
tion with a, b coprime.
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** C-2-2-1-2-3-2- We suppose c1 ̸= 2, then c1 | (Am +B′) and c1 | B′. It follows c1 | Am and c1 |
(Bn = 2B′) =⇒ c1 | p =⇒ c1 | b = 4p. From c1 | (Am = a”) =⇒ c1 | (a”2 = a′) =⇒ c1 | (a = 3a′),
then the contradiction with a, b coprime.

The other cases of the expressions of d and d′ with d, d′ not coprime and d > d′ so that
N = C lAm = d.d′ give also contradictions.

** C-2-2-1-2-4- Now, we consider the case d = a1.C
l where a1 is a prime integer with a1 ∤ A1

and A = ar1A1, r ⩾ 1. It follows that d′ = amr−1
1 Am1 . We rewrite the equations (5.59-5.60):

a1C
l + amr−1

1 Am1 = 2(Am +B′) (5.65)

a1C
l − amr−1

1 Am1 = 2B′ = Bn (5.66)

As m ⩾ 3, from the last two equations above, it follows that a1 | 2(Am + B′) and a1 | (2B′).
Then a1 = 2, or a1 | (Am +B′) and a1 | B′.

** C-2-2-1-2-4-1- We suppose a1 = 2 =⇒ 2 | (Am = a′′) =⇒ a1 | (a′′2 = a′) =⇒ a1 | (a = 3a′).
But b = 4p, then the contradiction with a, b coprime.

** C-2-2-1-2-4-2- We suppose a1 ̸= 2, then a1 | (Am + B′) and a1 | B′. It follows a1 | Am and
a1 | (Bn = 2B′) =⇒ a1 | p =⇒ a1 | b = 4p. From a1 | (Am = a′′) =⇒ a1 | (a′′2 = a′) =⇒ a1 | (a =
3a′), then the contradiction with a, b coprime.

The other cases of the expressions of d and d′ with d, d′ not coprime and d > d′ so that
N = C lAm = d.d′ give also contradictions.

** C-2-2-1-2-5- Now, let C = cr1C1 with c1 a prime, r ⩾ 1 and c1 ∤ C1, we consider the case
d = C l

1 and d′ = crl1 A
m so that d > d′. We rewrite the equations (5.59-5.60):

C l
1 + crl1 A

m = 2(Am +B′) (5.67)

C l
1 − crl1 A

m = 2B′ = Bn (5.68)

We obtain crl1 A
m = Am =⇒ crl1 = 1, then the contradiction.

** C-2-2-1-2-6- Now, let C = cr1C1 with c1 a prime, r ⩾ 1 and c1 ∤ C1, we consider the case
d = C l

1A
m and d′ = crl1 so that d > d′. We rewrite the equations (5.59-5.60):

C l
1A

m + crl1 = 2(Am +B′) (5.69)

C l
1A

m − crl1 = 2B′ = Bn (5.70)

We obtain crl1 = Am =⇒ c1 | Am, then c1 | Am = a” =⇒ c1 | (a”2 = a′) =⇒ c1 | (a = 3a′).
As c1 | C and c1 | Am =⇒ c1 | Bn, it follows c1 | (p = b), then the contradiction with a, b coprime.

The other cases of the expressions of d and d′ with d, d′ coprime and d > d′ so that
N = C lAm = d.d′ give also contradictions.

Finally, from the cases studied in the above paragraph C-2-2-1-2, we have found one suit-
able factorization of N that gives a priory no contradictions, it is the case N = C l.Am, but
1 ≪ τ(N), it follows the contradiction with Q(N) = [τ(N)/2] ⩽ 1. We conclude that the case
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Am≡1(mod 6) and Bn≡0(mod 6) of the paragraph C-2-2-1-2 is to reject.

** C-2-2-1-3- Case Am≡1(mod 6) and Bn≡2(mod 6), then Bn is even, see C-2-2-1-2-.

** C-2-2-1-4- Case Am ≡ 1(mod6) and Bn ≡ 3(mod6), then 3 | Bn =⇒ Bn = 3B′. As
p = A2m + AmBn + B2n =⇒ p ≡ 5(mod6) ̸=≡ 1(mod6) (see (5.55)), then the contradic-
tion and the case C-2-2-1-4- is to reject.

** C-2-2-1-5- Case Am ≡ 1(mod 6) and Bn ≡ 5(mod 6), then C l≡0(mod 6) =⇒ 2 | C l, see C-2-
2-1-2-.

** C-2-2-1-6- Case Am ≡ 2(mod 6) =⇒ 2 | a” =⇒ 2 | a, but 2 | b, then the contradiction with
a, b coprime.

** C-2-2-1-7- Case Am ≡ 3(mod 6) and Bn ≡ 1(mod 6), then C l≡4(mod 6) =⇒ 2 | C l =⇒ C l =
2C ′, and C is even, see C-2-2-1-2-.

** C-2-2-1-8- Case Am ≡ 3(mod 6) and Bn ≡ 2(mod 6), then Bn is even, see C-2-2-1-2-.

** C-2-2-1-9- Case Am ≡ 3(mod 6) and Bn ≡ 4(mod 6), then Bn is even, see C-2-2-1-2-.

** C-2-2-1-10- Case Am ≡ 3(mod 6) and Bn ≡ 5(mod 6), then C l≡2(mod 6) =⇒ 2 | C l, and C
is even, see C-2-2-1-2-.

** C-2-2-1-11- Case Am ≡ 4(mod 6) =⇒ 2 | a” =⇒ 2 | a, but 2 | b, then the contradiction with
a, b coprime.

** C-2-2-1-12- Case Am ≡ 5(mod 6) and Bn ≡ 0(mod 6), then Bn is even, see C-2-2-1-2-.

** C-2-2-1-13- Case Am ≡ 5(mod 6) and Bn ≡ 1(mod 6), then C l≡0(mod 6) =⇒ 2 | C l, C is
even, see C-2-2-1-2-.

** C-2-2-1-14- Case Am ≡ 5(mod6) and Bn ≡ 3(mod6), then C l≡2(mod6) =⇒ 2 | C l =⇒
C l = 2C ′, C is even, C-2-2-1-2-.

** C-2-2-1-15- Case Am ≡ 5(mod 6) and Bn ≡ 4(mod 6), then Bn is even, see C-2-2-1-2-.

We have achieved the study all the cases of the table 1 giving contradictions.

Then the case k3 = 1 is impossible.
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5.7 Case 3 | a and b = 2p′, b ̸= 2 with p′ | p
3 | a =⇒ a = 3a′, b = 2p′ with p = k.p′, then:

A2m =
4.p

3
.
a

b
=

4.k.p′.3.a′

6p′
= 2.k.a′

We calculate BnC l:

BnC l = 3
√

ρ2
(
3sin2 θ

3
− cos2

θ

3

)
= 3
√

ρ2
(
3− 4cos2

θ

3

)
but 3

√
ρ2 =

p

3
, then using cos2

θ

3
=

3.a′

b
:

BnC l = 3
√
ρ2
(
3− 4cos2

θ

3

)
=

p

3

(
3− 4

3.a′

b

)
= p.

(
1− 4.a′

b

)
= k(p′ − 2a′)

As p = b.p′, and p′ > 1, then we have:

BnC l = k(p′ − 2a′) (5.71)

and A2m = 2k.a′ (5.72)

** D-1- We suppose that k is prime.

** D-1-1- If k = 2, then we have p = 2p′ = b =⇒ 2 | b, but A2m = 4a′ = (Am)2 =⇒ Am = 2a”
with a′ = a”2, then 2 | a” =⇒ 2 | (a = 3a”2), it follows the contradiction with a, b coprime.

** D-1-2- We suppose k ̸= 2. From A2m = 2k.a′ = (Am)2 =⇒ k | a′ and 2 | a′ =⇒ a′ =
2.k.a”2 =⇒ Am = 2.k.a”. Then k | Am =⇒ k | A =⇒ A = ki.A1 with i ⩾ 1 and k ∤ A1.
kimAm1 = 2ka” =⇒ 2a” = kim−1Am1 . From BnC l = k(p′ − 2a′) =⇒ k | (BnC l) =⇒ k | Bn or
k | C l.

** D-1-2-1- We suppose that k | Bn =⇒ k | B =⇒ B = kj .B1 with j ⩾ 1 and k ∤ B1. It follows
knj−1Bn

1C
l = p′−2a′ = p′−4ka”2. As n ⩾ 3 =⇒ nj−1 ⩾ 2, then k | p′ but k ̸= 2 =⇒ k | (2p′ = b),

but k | a′ =⇒ k | (3a′ = a). It follows the contradiction with a, b coprime.

** D-1-2-2- If k | C l we obtain the identical results.

** D-2- We suppose that k is not prime. Let ω be an integer prime so that k = ωs.k1, with
s ⩾ 1, ω ∤ k1. The equations (5.71-5.72) become:

BnC l = ωs.k1(p
′ − 2a′)

and A2m = 2ωs.k1.a
′

** D-2-1- We suppose that ω = 2, then we have the equations:

A2m = 2s+1.k1.a
′ (5.73)

BnC l = 2s.k1(p
′ − 2a′) (5.74)

** D-2-1-1- Case: 2 | a′ =⇒ 2 | a, but 2 | b, then the contradiction with a, b coprime.

** D-2-1-2- Case: 2 ∤ a′. As 2 ∤ k1, the equation (5.73) gives 2 | A2m =⇒ A = 2iA1, with i ⩾ 1
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and 2 ∤ A1. It follows that 2im = s+ 1.

** D-2-1-2-1- We suppose that 2 ∤ (p′ − 2a′) =⇒ 2 ∤ p′. From the equation (5.74), we obtain that
2 | BnC l =⇒ 2 | Bn or 2 | C l.

** D-2-1-2-1-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2jB1 with 2 ∤ B1 and j ⩾ 1, then
Bn

1C
l = 2s−jnk1(p

′ − 2a′):

- If s − jn ⩾ 1, then 2 | C l =⇒ 2 | C, and no contradiction with C l = 2imAm1 + 2jnBn
1 , and

the conjecture (1.2) is verified.

- If s − jn ⩽ 0, from Bn
1C

l = 2s−jnk1(p
′ − 2a′) =⇒ 2 ∤ C l, then the contradiction with

C l = 2imAm1 + 2jnBn
1 =⇒ 2 | C l.

** D-2-1-2-1-2- Using the same method of the proof above, we obtain the identical results if 2 | C l.

** D-2-1-2-2- We suppose now that 2 | (p′ − 2a′) =⇒ p′ − 2a′ = 2µ.Ω, with µ ⩾ 1 and 2 ∤ Ω. We
recall that 2 ∤ a′. The equation (5.74) is written as:

BnC l = 2s+µ.k1.Ω

This last equation implies that 2 | (BnC l) =⇒ 2 | Bn or 2 | C l.

** D-2-1-2-2-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2jB1 with j ⩾ 1 and 2 ∤ B1. Then
Bn

1C
l = 2s+µ−jn.k1.Ω:

- If s + µ − jn ⩾ 1, then 2 | C l =⇒ 2 | C, no contradiction with C l = 2imAm1 + 2jnBn
1 , and

the conjecture (1.2) is verified.

- If s + µ − jn ⩽ 0, from Bn
1C

l = 2s+µ−jnk1.Ω =⇒ 2 ∤ C l, then contradiction with
C l = 2imAm1 + 2jnBn

1 =⇒ 2 | C l.

** D-2-1-2-2-2- We obtain the identical results if 2 | C l.

** D-2-2- We suppose that ω ̸= 2. We have then the equations:

A2m = 2ωs.k1.a
′ (5.75)

BnC l = ωs.k1.(p
′ − 2a′) (5.76)

As ω ̸= 2, from the equation (5.75), we have 2 | (k1.a′). If 2 | a′ =⇒ 2 | a, but 2 | b, then the
contradiction with a, b coprime.

** D-2-2-1- Case: 2 ∤ a′ and 2 | k1 =⇒ k1 = 2µ.Ω with µ ⩾ 1 and 2 ∤ Ω. From the equation (5.75),
we have 2 | A2m =⇒ 2 | A =⇒ A = 2iA1 with i ⩾ 1 and 2 ∤ A1, then 2im = 1 + µ. The equation
(5.76) becomes:

BnC l = ωs.2µ.Ω.(p′ − 2a′) (5.77)

From the equation (5.77), we obtain 2 | (BnC l) =⇒ 2 | Bn or 2 | C l.

** D-2-2-1-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2jB1, with j ∈ N∗ and 2 ∤ B1.
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** D-2-2-1-1-1- We suppose that 2 ∤ (p′ − 2a′), then we have Bn
1C

l = ωs2µ−jnΩ(p′ − 2a′):

- If µ − jn ⩾ 1 =⇒ 2 | C l =⇒ 2 | C, no contradiction with C l = 2imAm1 + 2jnBn
1 and the

conjecture (1.2) is verified.

- If µ− jn ⩽ 0 =⇒ 2 ∤ C l then the contradiction with C l = 2imAm1 + 2jnBn
1 .

** D-2-2-1-1-2- We suppose that 2 | (p′ − 2a′) =⇒ p′ − 2a′ = 2α.P , with α ∈ N∗ and 2 ∤ P . It
follows that Bn

1C
l = ωs2µ+α−jnΩ.P :

- If µ+ α− jn ⩾ 1 =⇒ 2 | C l =⇒ 2 | C, no contradiction with C l = 2imAm1 + 2jnBn
1 and the

conjecture (1.2) is verified.

- If µ+ α− jn ⩽ 0 =⇒ 2 ∤ C l then the contradiction with C l = 2imAm1 + 2jnBn
1 .

** D-2-2-1-2- We suppose now that 2 | Cn =⇒ 2 | C. Using the same method described above,
we obtain the identical results.

5.8 Case 3 | a and b = 4p′, b ̸= 4 with p′ | p
3 | a =⇒ a = 3a′, b = 4p′ with p = k.p′, k ̸= 1 if not b = 4p this case has been studied (see
paragraph 5.6), then we have :

A2m =
4.p

3
.
a

b
=

4.k.p′.3.a′

12p′
= k.a′

We calculate BnC l:

BnC l = 3
√

ρ2
(
3sin2 θ

3
− cos2

θ

3

)
= 3
√

ρ2
(
3− 4cos2

θ

3

)
but 3

√
ρ2 =

p

3
, then using cos2

θ

3
=

3.a′

b
:

BnC l = 3
√
ρ2
(
3− 4cos2

θ

3

)
=

p

3

(
3− 4

3.a′

b

)
= p.

(
1− 4.a′

b

)
= k(p′ − a′)

As p = b.p′, and p′ > 1, we have :

BnC l = k(p′ − a′) (5.78)

and A2m = k.a′ (5.79)

** E-1- We suppose that k is prime. From A2m = k.a′ = (Am)2 =⇒ k | a′ and a′ = k.a”2 =⇒
Am = k.a”. Then k | Am =⇒ k | A =⇒ A = ki.A1 with i ⩾ 1 and k ∤ A1. k

miAm1 = ka” =⇒
a” = kmi−1Am1 . From BnC l = k(p′ − a′) =⇒ k | (BnC l) =⇒ k | Bn or k | C l.

** E-1-1- We suppose that k | Bn =⇒ k | B =⇒ B = kj .B1 with j ⩾ 1 and k ∤ B1.
Then kn.j−1Bn

1C
l = p′ − a′. As n.j − 1 ⩾ 2 =⇒ k | (p′ − a′). But k | a′ =⇒ k | a, then

k | p′ =⇒ k | (4p′ = b) and we arrive to the contradiction that a, b are coprime.

** E-1-2- We suppose that k | C l, using the same method with the above hypothesis k | Bn, we
obtain the identical results.

** E-2- We suppose that k is not prime.
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** E-2-1- We take k = 4 =⇒ p = 4p′ = b, it is the case 5.3 studied above.

** E-2-2- We suppose that k ⩾ 6 not prime. Let ω be a prime so that k = ωs.k1, with s ⩾ 1, ω ∤ k1.
The equations (5.78-5.79) become:

BnC l = ωs.k1(p
′ − a′) (5.80)

and A2m = ωs.k1.a
′ (5.81)

** E-2-2-1- We suppose that ω = 2.

** E-2-2-1-1- If 2 | a′ =⇒ 2 | (3a′ = a), but 2 | (4p′ = b), then the contradiction with a, b coprime.

** E-2-2-1-2- We consider that 2 ∤ a′. From the equation (5.81), it follows that 2 | A2m =⇒ 2 |
A =⇒ A = 2iA1 with 2 ∤ A1 and:

BnC l = 2sk1(p
′ − a′)

** E-2-2-1-2-1- We suppose that 2 ∤ (p′ − a′), from the above expression, we have 2 | (BnC l) =⇒
2 | Bn or 2 | C l.

** E-2-2-1-2-1-1- If 2 | Bn =⇒ 2 | B =⇒ B = 2jB1 with 2 ∤ B1. Then Bn
1C

l = 22im−jnk1(p
′−a′):

- If 2im − jn ⩾ 1 =⇒ 2 | C l =⇒ 2 | C, no contradiction with C l = 2imAm1 + 2jnBn
1 and the

conjecture (1.2) is verified.

- If 2im− jn ⩽ 0 =⇒ 2 ∤ C l, then the contradiction with C l = 2imAm1 + 2jnBn
1 =⇒ 2 | C l.

** E-2-2-1-2-1-2- If 2 | C l =⇒ 2 | C, using the same method described above, we obtain the
identical results.

** E-2-2-1-2-2- We suppose that 2 | (p′ − a′). As 2 ∤ a′ =⇒ 2 ∤ p′, 2 | (p′ − a′) =⇒ p′ − a′ = 2α.P
with α ⩾ 1 and 2 ∤ P . The equation (5.80) is written as :

BnC l = 2s+αk1.P = 22im+αk1.P (5.82)

then 2 | (BnC l) =⇒ 2 | Bn or 2 | C l.

** E-2-2-1-2-2-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2jB1, with 2 ∤ B1. The equation
(5.82) becomes Bn

1C
l = 22im+α−jnk1P :

- If 2im+ α − jn ⩾ 1 =⇒ 2 | C l =⇒ 2 | C, no contradiction with C l = 2imAm1 + 2jnBn
1 and

the conjecture (1.2) is verified.

- If 2im+α− jn ⩽ 0 =⇒ 2 ∤ C l, then the contradiction with C l = 2imAm1 +2jnBn
1 =⇒ 2 | C l.

** E-2-2-1-2-2-2- We suppose that 2 | C l =⇒ 2 | C. Using the same method described above, we
obtain the identical results.

** E-2-2-2- We suppose that ω ̸= 2. We recall the equations:

A2m = ωs.k1.a
′ (5.83)

BnC l = ωs.k1(p
′ − a′) (5.84)
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** E-2-2-2-1- We suppose that ω, a′ are coprime, then ω ∤ a′. From the equation (5.83), we have
ω | A2m =⇒ ω | A =⇒ A = ωiA1 with ω ∤ A1 and s = 2im.

** E-2-2-2-1-1- We suppose that ω ∤ (p′ − a′). From the equation (5.84) above, we have ω |
(BnC l) =⇒ ω | Bn or ω | C l.

** E-2-2-2-1-1-1- If ω | Bn =⇒ ω | B =⇒ B = ωjB1 with ω ∤ B1. Then Bn
1C

l = 22im−jnk1(p
′−a′):

- If 2im− jn ⩾ 1 =⇒ ω | C l =⇒ ω | C, no contradiction with C l = ωimAm1 + ωjnBn
1 and the

conjecture (1.2) is verified.

- If 2im− jn ⩽ 0 =⇒ ω ∤ C l, then the contradiction with C l = ωimAm1 + ωjnBn
1 =⇒ ω | C l.

** E-2-2-2-1-1-2- If ω | C l =⇒ ω | C, using the same method described above, we obtain the
identical results.

** E-2-2-2-1-2- We suppose that ω | (p′ − a′) =⇒ ω ∤ p′ as ω and a′ are coprime. ω | (p′ − a′) =⇒
p′ − a′ = ωα.P with α ⩾ 1 and ω ∤ P . The equation (5.84) becomes :

BnC l = ωs+αk1.P = ω2im+αk1.P (5.85)

then ω | (BnC l) =⇒ ω | Bn or ω | C l.

** E-2-2-2-1-2-1- We suppose that ω | Bn =⇒ ω | B =⇒ B = ωjB1, with ω ∤ B1. The equation
(5.85) is written as Bn

1C
l = 22im+α−jnk1P :

- If 2im+ α− jn ⩾ 1 =⇒ ω | C l =⇒ ω | C, no contradiction with C l = ωimAm1 + ωjnBn
1 and

the conjecture (1.2) is verified.

- If 2im+α−jn ⩽ 0 =⇒ ω ∤ C l, then the contradiction with C l = ωimAm1 +ωjnBn
1 =⇒ ω | C l.

** E-2-2-2-1-2-2- We suppose that ω | C l =⇒ ω | C, using the same method described above, we
obtain the identical results.

** E-2-2-2-2- We suppose that ω, a′ are not coprime, then a′ = ωβ.a” with ω ∤ a”. The equation
(5.83) becomes:

A2m = ωsk1a
′ = ωs+βk1.a”

We have ω | A2m =⇒ ω | A =⇒ A = ωiA1 with ω ∤ A1 and s+ β = 2im.

** E-2-2-2-2-1- We suppose that ω ∤ (p′ − a′) =⇒ ω ∤ p′ =⇒ ω ∤ (b = 4p′). From the equation
(5.84), we obtain ω | (BnC l) =⇒ ω | Bn or ω | C l.

** E-2-2-2-2-1-1- If ω | Bn =⇒ ω | B =⇒ B = ωjB1 with ω ∤ B1. Then Bn
1C

l = 2s−jnk1(p
′ − a′):

- If s − jn ⩾ 1 =⇒ ω | C l =⇒ ω | C, no contradiction with C l = ωimAm1 + ωjnBn
1 and the

conjecture (1.2) is verified.

- If s− jn ⩽ 0 =⇒ ω ∤ C l, then the contradiction with C l = ωimAm1 + ωjnBn
1 =⇒ ω | C l.

** E-2-2-2-2-1-2- If ω | C l =⇒ ω | C, using the same method described above, we obtain the
identical results.
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** E-2-2-2-2-2- We suppose that ω | (p′ − a′ = p′ − ωβ.a”) =⇒ ω | p′ =⇒ ω | (4p′ = b), but
ω | a′ =⇒ ω | a. Then the contradiction with a, b coprime.

The study of the cases of 5.8 is achieved.

5.9 Case 3 | a and b | 4p

a = 3a′ and 4p = k1b. As A
2m =

4p

3
cos2

θ

3
=

4p

3

3a′

b
= k1a

′ and BnC l:

BnC l = 3
√

ρ2
(
3sin2 θ

3
− cos2

θ

3

)
=

p

3

(
3− 4cos2

θ

3

)
=

p

3

(
3− 4

3a′

b

)
=

k1
4
(b− 4a′)

As BnC l is an integer, we must obtain 4 | k1, or 4 | (b− 4a′) or (2 | k1 and 2 | (b− 4a′)).

** F-1- If k1 = 1 ⇒ b = 4p : it is the case 5.6.

** F-2- If k1 = 4 ⇒ p = b : it is the case 5.3.

** F-3- If k1 = 2 and 2 | (b − 4a′): in this case, we have A2m = 2a′ =⇒ 2 | a′ =⇒ 2 | a.
2 | (b− 4a′) =⇒ 2 | b then the contradiction with a, b coprime.

** F-4- If 2 | k1 and 2 | (b − 4a′): 2 | (b − 4a′) =⇒ b − 4a′ = 2αλ, α and λ ∈ N∗ ⩾ 1 with 2 ∤ λ;
2 | k1 =⇒ k1 = 2tk′1 with t ⩾ 1 ∈ N∗ with 2 ∤ k′1 and we have:

A2m = 2tk′1a
′ (5.86)

BnC l = 2t+α−2k′1λ (5.87)

From the equation (5.86), we have 2 | A2m =⇒ 2 | A =⇒ A = 2iA1, i ⩾ 1 and 2 ∤ A1.

** F-4-1- We suppose that t = α = 1, then the equations (5.86-5.87) become :

A2m = 2k′1a
′ (5.88)

BnC l = k′1λ (5.89)

From the equation (5.88) it follows that 2 | a′ =⇒ 2 | (a = 3a′). But b = 4a′ + 2λ =⇒ 2 | b, then
the contradiction with a, b coprime.

** F-4-2- We suppose that t+ α− 2 ⩾ 1 and we have the expressions:

A2m = 2tk′1a
′ (5.90)

BnC l = 2t+α−2k′1λ (5.91)

** F-4-2-1- We suppose that 2 | a′ =⇒ 2 | a, but b = 2αλ+ 4a′ =⇒ 2 | b, then the contradiction
with a, b coprime.

** F-4-2-2- We suppose that 2 ∤ a′. From (5.90), we have 2 | A2m =⇒ 2 | A =⇒ A = 2iA1 and
BnC l = 2t+α−2k′1λ =⇒ 2 | BnC l =⇒ 2 | Bn or 2 | C l.

** F-4-2-2-1- We suppose that 2 | Bn. We have 2 | B =⇒ B = 2jB1, j ⩾ 1 and 2 ∤ B1. The
equation (5.91) becomes Bn

1C
l = 2t+α−2−jnk′1λ:
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- If t+ α− 2− jn > 0 =⇒ 2 | C l =⇒ 2 | C, no contradiction with C l = 2imAm1 + 2jnBn
1 and

the conjecture (1.2) is verified.

- If t+ α− 2− jn < 0 =⇒ 2 | k′1λ, but 2 ∤ k′1 and 2 ∤ λ. Then this case is impossible.

- If t + α − 2 − jn = 0 =⇒ Bn
1C

l = k′1λ =⇒ 2 ∤ C l then it is a contradiction with
C l = 2imAm1 + 2jnBn

1 .

** F-4-2-2-2- We suppose that 2 | C l. We use the same method described above, we obtain the
identical results.

** F-5- We suppose that 4 | k1 with k1 > 4 ⇒ k1 = 4k′2, we have :

A2m = 4k′2a
′ (5.92)

BnC l = k′2(b− 4a′) (5.93)

** F-5-1- We suppose that k′2 is prime, from (5.92), we have k′2 | a′. From (5.93), k′2 | (BnC l) =⇒
k′2 | Bn or k′2 | C l.

** F-5-1-1- We suppose that k′2 | Bn =⇒ k′2 | B =⇒ B = k′β2 .B1 with β ⩾ 1 and k′2 ∤ B1. It

follows that we have k′nβ−1
2 Bn

1C
l = b− 4a′ =⇒ k′2 | b then the contradiction with a, b coprime.

** F-5-1-2- We obtain identical results if we suppose that k′2 | C l.

** F-5-2- We suppose that k′2 is not prime.

** F-5-2-1- We suppose that k′2 and a′ are coprime. From (5.92), k′2 can be written under
the form k′2 = q2j1 .q22 and q1 ∤ q2 and q1 prime. We have A2m = 4q2j1 .q22a

′ =⇒ q1 | A and

BnC l = q2j1 .q22(b− 4a′) =⇒ q1 | Bn or q1 | C l.

** F-5-2-1-1- We suppose that q1 | Bn =⇒ q1 | B =⇒ B = qf1 .B1 with q1 ∤ B1. We obtain

Bn
1C

l = q2j−fn1 q22(b− 4a′):

- If 2j − f.n ⩾ 1 =⇒ q1 | C l =⇒ q1 | C but C l = Am + Bn gives also q1 | C and the conjecture
(1.2) is verified.

- If 2j− f.n = 0, we have Bn
1C

l = q22(b− 4a′), but C l = Am+Bn gives q1 | C, then q1 | (b− 4a′).
As q1 and a′ are coprime, then q1 ∤ b, and the conjecture (1.2) is verified.

- If 2j − f.n < 0 =⇒ q1 | (b − 4a′) =⇒ q1 ∤ b because a′ is coprime with q1, and C l = Am + Bn

gives q1 | C, and the conjecture (1.2) is verified.

** F-5-2-1-2- We obtain identical results if we suppose that q1 | C l.

** F-5-2-2- We suppose that k′2, a
′ are not coprime. Let q1 be a prime so that q1 | k′2 and q1 | a′.

We write k′2 under the form qj1.q2 with j ⩾ 1, q1 ∤ q2. From A2m = 4k′2a
′ =⇒ q1 | A2m =⇒ q1 | A.

Then from BnC l = qj1q2(b− 4a′), it follows that q1 | (BnC l) =⇒ q1 | Bn or q1 | C l.

** F-5-2-2-1- We suppose that q1 | Bn =⇒ q1 | B =⇒ B = qβ1 .B1 with β ⩾ 1 and q1 ∤ B1. Then,

we have qnβ1 Bn
1C

l = qj1q2(b− 4a′) =⇒ Bn
1C

l = qj−nβ1 q2(b− 4a′).
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- If j−nβ ⩾ 1, then q1 | C l =⇒ q1 | C, but C l = Am+Bn gives q1 | C, then the conjecture (1.2)
is verified.

- If j − nβ = 0, we obtain Bn
1C

l = q2(b − 4a′), but C l = Am + Bn gives q1 | C, then q1 |
(b− 4a′) =⇒ q1 | b because q1 | a′ =⇒ q1 | a, then the contradiction with a, b coprime.

- If j − nβ < 0 =⇒ q1 | (b− 4a′) =⇒ q1 | b, because q1 | a′ =⇒ q1 | a, then the contradiction with
a, b coprime.

** F-5-2-2-2- We obtain identical results if we suppose that q1 | C l.

** F-6- If 4 ∤ (b − 4a′) and 4 ∤ k1 it is impossible. We suppose that 4 | (b − 4a′) ⇒ 4 | b, and
b− 4a′ = 4t.g , t ⩾ 1 with 4 ∤ g, then we have :

A2m = k1a
′

BnC l = k1.4
t−1.g

** F-6-1- We suppose that k1 is prime. From A2m = k1a
′ we deduce easily that k1 | a′. From

BnC l = k1.4
t−1.g we obtain that k1 | (BnC l) =⇒ k1 | Bn or k1 | C l.

** F-6-1-1- We suppose that k1 | Bn =⇒ k1 | B =⇒ B = kj1.B1 with j > 0 and k1 ∤ B1, then

kn.j1 Bn
1C

l = k1.4
t−1.g =⇒ kn.j−1

1 Bn
1C

l = 4t−1.g. But n ⩾ 3 and j ⩾ 1, then n.j − 1 ⩾ 2. We
deduce as k1 ̸= 2 that k1 | g =⇒ k1 | (b− 4a′), but k1 | a′ =⇒ k1 | b, then the contradiction with
a, b coprime.

** F-6-1-2- We obtain identical results if we suppose that k1 | C l.

** F-6-2- We suppose that k1 is not prime ̸= 4, (k1 = 4 see case F-2, above) with 4 ∤ k1.

** F-6-2-1- If k1 = 2k′ with k′ odd > 1. Then A2m = 2k′a′ =⇒ 2 | a′ =⇒ 2 | a, as 4 | b it follows
the contradiction with a, b coprime.

** F-6-2-2- We suppose that k1 is odd with k1 and a′ coprime. We write k1 under the form
k1 = qj1.q2 with q1 ∤ q2, q1 prime and j ⩾ 1. BnC l = qj1.q24

t−1g =⇒ q1 | Bn or q1 | C l.

** F-6-2-2-1- We suppose that q1 | Bn =⇒ q1 | B =⇒ B = qf1 .B1 with q1 ∤ B1. We obtain

Bn
1C

l = qj−f.n1 q24
t−1g.

- If j − f.n ⩾ 1 =⇒ q1 | C l =⇒ q1 | C, but C l = Am + Bn gives also q1 | C and the conjecture
(1.2) is verified.

- If j − f.n = 0, we have Bn
1C

l = q24
t−1g, but C l = Am +Bn gives q1 | C, then q1 | (b− 4a′). As

q1 and a′ are coprime then q1 ∤ b and the conjecture (1.2) is verified.

- If j − f.n < 0 =⇒ q1 | (b− 4a′) =⇒ q1 ∤ b because q1, a
′ are primes. C l = Am +Bn gives q1 | C

and the conjecture (1.2) is verified.

** F-6-2-2-2- We obtain identical results if we suppose that q1 | C l.

** F-6-2-3- We suppose that k1 and a′ are not coprime. Let q1 be a prime so that q1 | k1 and
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q1 | a′. We write k1 under the form qj1.q2 with q1 ∤ q2. From A2m = k1a
′ =⇒ q1 | A2m =⇒ q1 | A.

From BnC l = qj1q2(b− 4a′), it follows that q1 | (BnC l) =⇒ q1 | Bn or q1 | C l.

** F-6-2-3-1- We suppose that q1 | Bn =⇒ q1 | B =⇒ B = qβ1 .B1 with β ⩾ 1 and q1 ∤ B1. Then

we have qnβ1 Bn
1C

l = qj1q2(b− 4a′) =⇒ Bn
1C

l = qj−nβ1 q2(b− 4a′):

- If j − nβ ⩾ 1, then q1 | C l =⇒ q1 | C, but C l = Am + Bn gives q1 | C, and the conjecture
(1.2) is verified.

- If j−nβ = 0, we obtain Bn
1C

l = q2(b−4a′), but q1 | A and q1 | B then q1 | C and we obtain
q1 | (b− 4a′) =⇒ q1 | b because q1 | a′ =⇒ q1 | a, then the contradiction with a, b coprime.

- If j − nβ < 0 =⇒ q1 | (b− 4a′) =⇒ q1 | b, then the contradiction with a, b coprime.

** F-6-2-3-2- We obtain identical results as above if we suppose that q1 | C l.

6. Hypothèse: {3 | p and b | 4p}

6.1 Case b = 2 and 3 | p
3 | p ⇒ p = 3p′ with p′ ̸= 1 because 3 ≪ p, and b = 2, we obtain:

A2m =
4p.a

3b
=

4.3p′.a

3b
=

4.p′.a

2
= 2.p′.a

As:
1

4
< cos2

θ

3
=

a

b
=

a

2
<

3

4
⇒ 1 < 2a < 3 ⇒ a = 1 =⇒ cos2

θ

3
=

1

2
but this case was studied (see case 4.1.2).

6.2 Case b = 4 and 3 | p
we have 3 | p =⇒ p = 3p′ with p′ ∈ N∗, it follows :

A2m =
4p.a

3b
=

4.3p′.a

3× 4
= p′.a

and:
1

4
< cos2

θ

3
=

a

b
=

a

4
<

3

4
⇒ 1 < a < 3 ⇒ a = 2

as a, b are coprime, then the case b = 4 and 3 | p is impossible.

6.3 Case: b ̸= 2, b ̸= 4, b ̸= 3, b | p and 3 | p
As 3 | p, then p = 3p′ and :

A2m =
4p

3
cos2

θ

3
=

4p

3

a

b
=

4× 3p′

3

a

b
=

4p′a

b

We consider the case: b | p′ =⇒ p′ = bp” and p” ̸= 1 (If p” = 1, then p = 3b, see paragraph 6.8
Case k′ = 1). Finally, we obtain:

A2m =
4bp”a

b
= 4ap” ; BnC l = p”.(3b− 4a)

** G-1- We suppose that p” is prime, then A2m = 4ap” = (Am)2 =⇒ p” | a. But BnC l =
p”(3b− 4a) =⇒ p” | Bn or p” | C l.
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** G-1-1- If p” | Bn =⇒ p” | B =⇒ B = p”B1 with B1 ∈ N∗. Then p”n−1Bn
1C

l = 3b − 4a. As
n > 2, then (n− 1) > 1 and p” | a, then p” | 3b =⇒ p” = 3 or p” | b.

** G-1-1-1- If p” = 3 =⇒ 3 | a, with a that we write as a = 3a′2, but Am = 6a′ =⇒ 3 | Am =⇒
3 | A =⇒ A = 3A1, then 3m−1Am1 = 2a′ =⇒ 3 | a′ =⇒ a′ = 3a”. As p”n−1Bn

1C
l = 3n−1Bn

1C
l =

3b − 4a =⇒ 3n−2Bn
1C

l = b − 36a”2. As n > 2 =⇒ n − 2 ⩾ 1, then 3 | b and the contradiction
with a, b coprime.

** G-1-1-2- We suppose that p” | b, as p” | a, then the contradiction with a, b coprime.

** G-1-2- If we suppose p” | C l, we obtain identical results (contradictions).

** G-2- We consider now that p” is not prime.

** G-2-1- p”, a coprime: A2m = 4ap” =⇒ Am = 2a′.p1 with a = a′2 and p” = p21, then a′, p1 are
also coprime. As Am = 2a′.p1, then 2 | a′ or 2 | p1.

** G-2-1-1- We suppose that 2 | a′, then 2 | a′ =⇒ 2 ∤ p1, but p” = p21.

** G-2-1-1-1- If p1 is prime, it is impossible with Am = 2a′.p1.

** G-2-1-1-2- We suppose that p1 is not prime so we can write p1 = ωm =⇒ p” = ω2m. Then
BnC l = ω2m(3b− 4a).

** G-2-1-1-2-1- If ω is prime, ω ̸= 2, then ω | (BnC l) =⇒ ω | Bn or ω | C l.

** G-2-1-1-2-1-1- If ω | Bn =⇒ ω | B =⇒ B = ωjB1 with ω ∤ B1, then Bn
1 .C

l = ω2m−nj(3b−4a).

** G-2-1-1-2-1-1-1- If 2m − n.j = 0, we obtain Bn
1 .C

l = 3b − 4a. As C l = Am + Bn =⇒ ω |
C l =⇒ ω | C, and ω | (3b−4a). But ω ̸= 2 and ω, a′ are coprime, then ω, a are coprime, it follows
ω ∤ (3b), then ω ̸= 3 and ω ∤ b, the conjecture (1.2) is verified.

** G-2-1-1-2-1-1-2- If 2m− nj ⩾ 1, using the method as above, we obtain ω | C l =⇒ ω | C and
ω | (3b− 4a) and ω ∤ a and ω ̸= 3 and ω ∤ b, then the conjecture (1.2) is verified.

** G-2-1-1-2-1-1-3- If 2m − nj < 0 =⇒ ωn.j−2mBn
1 .C

l = 3b − 4a. From Am + Bn = C l =⇒
ω | C l =⇒ ω | C, then C = ωh.C1, with ω ∤ C1, we obtain ωn.j−2m+h.lBn

1 .C
l
1 = 3b − 4a. If

n.j − 2m + h.l < 0 =⇒ ω | Bn
1C

l
1 then the contradiction with ω ∤ B1 or ω ∤ C1. It follows

n.j − 2m+ h.l > 0 and ω | (3b− 4a) with ω, a, b coprime and the conjecture is verified.

** G-2-1-1-2-1-2- Using the same method above, we obtain identical results if ω | C l.

** G-2-1-1-2-2- We suppose that p” = ω2m and ω is not prime. We write ω = ωf1 .Ω with ω1
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prime ∤ Ω, f ⩾ 1, and ω1 | A. Then BnC l = ω2f.m
1 Ω2m(3b− 4a) =⇒ ω1 | (BnC l) =⇒ ω1 | Bn or

ω1 | C l.

** G-2-1-1-2-2-1- If ω1 | Bn =⇒ ω1 | B =⇒ B = ωj1B1 with ω1 ∤ B1, thenBn
1 .C

l = ω2.m−nj
1 Ω2m(3b−

4a):

** G-2-1-1-2-2-1-1- If 2f.m− n.j = 0, we obtain Bn
1 .C

l = Ω2m(3b− 4a). As C l = Am +Bn =⇒
ω1 | C l =⇒ ω1 | C, and ω1 | (3b− 4a). But ω1 ̸= 2 and ω1, a

′ are coprime, then ω, a are coprime,
it follows ω1 ∤ (3b), then ω1 ̸= 3 and ω1 ∤ b, and the conjecture (1.2) is verified.

** G-2-1-1-2-2-1-2- If 2f.m − n.j ⩾ 1, we have ω1 | C l =⇒ ω1 | C and ω1 | (3b − 4a) and ω1 ∤ a
and ω1 ̸= 3 and ω1 ∤ b, it follows that the conjecture (1.2) is verified.

** G-2-1-1-2-2-1-3- If 2f.m − n.j < 0 =⇒ ωn.j−2m.f
1 Bn

1 .C
l = Ω2m(3b − 4a). As ω1 | C using

C l = Am + Bn, then C = ωh1 .C1 =⇒ ωn.j−2m.f+h.lBn
1 .C

l
1 = Ω2m(3b− 4a). If n.j − 2m.f + h.l <

0 =⇒ ω1 | Bn
1C

l
1, then the contradiction with ω1 ∤ B1 and ω1 ∤ C1. Then if n.j − 2m.f + h.l > 0

and ω1 | (3b− 4a) with ω1, a, b coprime and the conjecture (1.2) is verified.

** G-2-1-1-2-2-2- Using the same method above, we obtain identical results if ω1 | C l.

** G-2-1-2- We suppose that 2 | p1: then 2 | p1 =⇒ 2 ∤ a′ =⇒ 2 ∤ a, but p” = p21.

** G-2-1-2-1- We suppose that p1 = 2, we obtain Am = 4a′ =⇒ 2 | a′, then the contradiction
with a, b coprime.

** G-2-1-2-2- We suppose that p1 is not prime and 2 | p1. As Am = 2a′p1, p1 can written as
p1 = 2m−1ωm =⇒ p” = 22m−2ω2m. Then BnC l = 22m−2ω2m(3b− 4a) =⇒ 2 | Bn or 2 | C l.

** G-2-1-2-2-1- We suppose that 2 | Bn =⇒ 2 | B. As 2 | A, then 2 | C. From BnC l =
22m−2ω2m(3b− 4a) it follows that if 2 | (3b− 4a) =⇒ 2 | b but as 2 ∤ a there is no contradiction
with a, b coprime and the conjecture (1.2) is verified.

** G-2-1-2-2-2- We suppose that 2 | C l, using the same method above, we obtain identical results.

** G-2-2- We suppose that p”, a are not coprime: let ω be a prime integer so that ω | a and ω | p”.

** G-2-2-1- We suppose that ω = 3. As A2m = 4ap” =⇒ 3 | A, but 3 | p. As p = A2m + B2n +
AmBn =⇒ 3 | B2n =⇒ 3 | B, then 3 | C l =⇒ 3 | C. We write A = 3iA1, B = 3jB1, C = 3hC1

with 3 coprime with A1, B1 and C1 and p = 32imA2m
1 +32njB2n

1 +3im+jnAm1 Bn
1 = 3k.g with k =

min(2im, 2jn, im+ jn) and 3 ∤ g. We have also (ω = 3) | a and (ω = 3) | p” that gives a = 3αa1,
3 ∤ a1 and p” = 3µp1, 3 ∤ p1 with A2m = 4ap” = 32imA2m

1 = 4× 3α+µ.a1.p1 =⇒ α+ µ = 2im. As
p = 3p′ = 3b.p” = 3b.3µp1 = 3µ+1.b.p1, the exponent of the factor 3 of p is k, the exponent of the
factor 3 of the left member of the last equation is µ+1 added of the exponent β of 3 of the term b,
with β ⩾ 0, let min(2im, 2jn, im+ jn) = µ+1+β and we recall that α+µ = 2im. But BnC l =
p”(3b− 4a), we obtain 3(nj+hl)Bn

1C
l
1 = 3µ+1p1(b− 4× 3(α−1)a1) = 3µ+1p1(3

βb1 − 4× 3(α−1)a1),
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3 ∤ b1. We have also Am + Bn = C l =⇒ 3imAm1 + 3jnBn
1 = 3hlC l

1. We call ϵ = min(im, jn), we
have ϵ = hl = min(im, jn). We obtain the conditions:

k = min(2im, 2jn, im+ jn) = µ+ 1 + β (6.1)

α+ µ = 2im (6.2)

ϵ = hl = min(im, jn)

3(nj+hl)Bn
1C

l
1 = 3µ+1p1(3

βb1 − 4× 3(α−1)a1)

** G-2-2-1-1- α = 1 =⇒ a = 3a1 and 3 ∤ a1, the equation (6.2) becomes:

1 + µ = 2im

and the first equation (6.1) is written as:

k = min(2im, 2jn, im+ jn) = 2im+ β

- If k = 2im =⇒ β = 0 then 3 ∤ b. We obtain 2im ⩽ 2jn =⇒ im ⩽ jn, and 2im ⩽ im + jn =⇒
im ⩽ jn. The third equation gives hl = im and the last equation gives nj+hl = µ+1 = 2im =⇒
im = nj, then im = nj = hl and Bn

1C
l
1 = p1(b− 4a1). As a, b are coprime, the conjecture (1.2)

is verified.

- If k = 2jn or k = im+ jn, we obtain β = 0, im = jn = hl and Bn
1C

l
1 = p1(b− 4a1). As a, b

are coprime, the conjecture (1.2) is verified.

** G-2-2-1-2- α > 1 =⇒ α ⩾ 2.

- If k = 2im =⇒ 2im = µ+1+β, but µ = 2im−α that gives α = 1+β ⩾ 2 =⇒ β ̸= 0 =⇒ 3 | b,
but 3 | a then the contradiction with a, b coprime.

- If k = 2jn = µ + 1 + β ⩽ 2im =⇒ µ + 1 + β ⩽ µ + α =⇒ 1 + β ⩽ α =⇒ β ⩾ 1. If
β ⩾ 1 =⇒ 3 | b but 3 | a, then the contradiction with a, b coprime.

- If k = im + jn =⇒ im + jn ⩽ 2im =⇒ jn ⩽ im, and im + jn ⩽ 2jn =⇒ im ⩽ jn, then
im = jn. As k = im + jn = 2im = 1 + µ + β and α + µ = 2im, we obtain α = 1 + β ⩾ 2 =⇒
β ⩾ 1 =⇒ 3 | b, then the contradiction with a, b coprime.

** G-2-2-2- We suppose that ω ̸= 3. We write a = ωαa1 with ω ∤ a1 and p” = ωµp1 with ω ∤ p1.
As A2m = 4ap” = 4ωα+µ.a1.p1 =⇒ ω | A =⇒ A = ωiA1, ω ∤ A1. But BnC l = p”(3b − 4a) =
ωµp1(3b− 4a) =⇒ ω | BnC l =⇒ ω | Bn or ω | C l.

** G-2-2-2-1- We suppose that ω | Bn =⇒ ω | B =⇒ B = ωjB1 and ω ∤ B1. From Am + Bn =
C l =⇒ ω | C l =⇒ ω | C. As p = bp′ = 3bp” = 3ωµbp1 = ωk(ω2im−kA2m

1 + ω2jn−kB2n
1 +

ωim+jn−kAm1 Bn
1 ) with k = min(2im, 2jn, im+ jn). Then:

- If k = µ, then ω ∤ b and the conjecture (1.2) is verified.

- If k > µ, then ω | b, but ω | a then the contradiction with a, b coprime.

- If k < µ, it follows from:

3ωµbp1 = ωk(ω2im−kA2m
1 + ω2jn−kB2n

1 + ωim+jn−kAm1 Bn
1 )

that ω | A1 or ω | B1 then the contradiction with ω ∤ A1 or ω ∤ B1.

** G-2-2-2-2- If ω | C l =⇒ ω | C =⇒ C = ωhC1 with ω ∤ C1. From Am + Bn = C l =⇒ ω |
(C l−Am) =⇒ ω | B. Then, using the same method as for the case G-2-2-2-1-, we obtain identical
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results.

6.4 Case b = 3 and 3 | p
As 3 | p =⇒ p = 3p′, We write :

A2m =
4p

3
cos2

θ

3
=

4p

3

a

b
=

4× 3p′

3

a

3
=

4p′a

3

As A2m is an integer and a, b are coprime and cos2
θ

3
< 1 (see equation (3.9)), then we have

necessary 3 | p′ =⇒ p′ = 3p” with p” ̸= 1, if not p = 3p′ = 3 × 3p” = 9, but 9 ≪ (p =
A2m +B2n +AmBn), the hypothesis p” = 1 is impossible, then p” > 1, and we obtain:

A2m =
4p′a

3
=

4× 3p”a

3
= 4p”a ; BnC l = p”.(9− 4a)

As
1

4
< cos2

θ

3
=

a

b
=

a

3
<

3

4
=⇒ 3 < 4a < 9 =⇒ as a > 1, a = 2 and we obtain:

A2m = 4p”a = 8p” ; BnC l =
3p”(9− 4a)

3
= p” (6.3)

The two last equations above imply that p” is not a prime. We can write p” as : p” =
∏
i∈I p

αi
i

where pi are distinct primes, αi elements of N∗ and i ∈ I a finite set of indexes. We can write
also p” = pα1

1 .q1 with p1 ∤ q1. From (6.3), we have p1 | A and p1 | BnC l =⇒ p1 | Bn or p1 | C l.

** H-1- We suppose that p1 | Bn =⇒ B = pβ11 .B1 with p1 ∤ B1 and β1 ⩾ 1. Then, we obtain

Bn
1C

l = pα1−nβ1
1 .q1 with the following cases:

- If α1 − nβ1 ⩾ 1 =⇒ p1 | C l =⇒ p1 | C, in accord with p1 | (C l = Am +Bn), it follows that
the conjecture (1.2) is verified.

- If α1 − nβ1 = 0 =⇒ Bn
1C

l = q1 =⇒ p1 ∤ C l, it is a contradiction with p1 | (Am − Bn) =⇒
p1 | C l. Then this case is impossible.

- If α1 − nβ1 < 0, we obtain pnβ1−α1
1 Bn

1C
l = q1 =⇒ p1 | q1, it is a contradiction with p1 ∤ q1.

Then this case is impossible.

** H-2- We suppose that p1 | C l, using the same method as for the case p1 | Bn, we obtain
identical results.

6.5 Case 3 | p and b = p

We have cos2
θ

3
=

a

b
=

a

p
and:

A2m =
4p

3
cos2

θ

3
=

4p

3
.
a

p
=

4a

3

As A2m is an integer, it implies that 3 | a, but 3 | p =⇒ 3 | b. As a and b are coprime, then the
contradiction and the case 3 | p and b = p is impossible.

6.6 Case 3 | p and b = 4p

3 | p =⇒ p = 3p′, p′ ̸= 1 because 3 ≪ p, then b = 4p = 12p′.

A2m =
4p

3
cos2

θ

3
=

4p

3

a

b
=

a

3
=⇒ 3 | a
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as A2m is an integer. But 3 | p =⇒ 3 | [(4p) = b], then the contradiction with a, b coprime and
the case b = 4p is impossible.

6.7 Case 3 | p and b = 2p

3 | p =⇒ p = 3p′, p′ ̸= 1 because 3 ≪ p, then b = 2p = 6p′.

A2m =
4p

3
cos2

θ

3
=

4p

3

a

b
=

2a

3
=⇒ 3 | a

as A2m is an integer. But 3 | p =⇒ 3 | (2p) =⇒ 3 | b, then the contradiction with a, b coprime
and the case b = 2p is impossible.

6.8 Case 3 | p and b ̸= 3 a divisor of p

We have b = p′ ̸= 3, and p is written as p = kp′ with 3 | k =⇒ k = 3k′ and :

A2m =
4p

3
cos2

θ

3
=

4p

3
.
a

b
= 4ak′

BnC l =
p

3
.

(
3− 4cos2

θ

3

)
= k′(3p′ − 4a) = k′(3b− 4a)

** I-1- k′ ̸= 1:

** I-1-1- We suppose that k′ is prime, then A2m = 4ak′ = (Am)2 =⇒ k′ | a. But BnC l =
k′(3b− 4a) =⇒ k′ | Bn or k′ | C l.

** I-1-1-1- If k′ | Bn =⇒ k′ | B =⇒ B = k′B1 with B1 ∈ N∗. Then k′n−1Bn
1C

l = 3b − 4a. As
n > 2, then (n− 1) > 1 and k′ | a, then k′ | 3b =⇒ k′ = 3 or k′ | b.

** I-1-1-1-1- If k′ = 3 =⇒ 3 | a, with a that we can write it under the form a = 3a′2. But
Am = 6a′ =⇒ 3 | Am =⇒ 3 | A =⇒ A = 3A1 with A1 ∈ N∗. Then 3m−1Am1 = 2a′ =⇒
3 | a′ =⇒ a′ = 3a”. But k′n−1Bn

1C
l = 3n−1Bn

1C
l = 3b − 4a =⇒ 3n−2Bn

1C
l = b − 36a”2. As

n ⩾ 3 =⇒ n− 2 ⩾ 1, then 3 | b. Hence the contradiction with a, b coprime.

** I-1-1-1-2- We suppose that k′ | b, but k′ | a, then the contradiction with a, b coprime.

** I-1-1-2- We suppose that k′ | C l, using the same method as for the case k′ | Bn, we obtain
identical results.

** I-1-2- We consider that k′ is not a prime.

** I-1-2-1- We suppose that k′, a coprime: A2m = 4ak′ =⇒ Am = 2a′.p1 with a = a′2 and k′ = p21,
then a′, p1 are also coprime. As Am = 2a′.p1 then 2 | a′ or 2 | p1.

** I-1-2-1-1- We suppose that 2 | a′, then 2 | a′ =⇒ 2 ∤ p1, but k′ = p21.

** I-1-2-1-1-1- If p1 is prime, it is impossible with Am = 2a′.p1.

36



A Complete Proof of Beal’s Conjecture

** I-1-2-1-1-2- We suppose that p1 is not prime and it can be written as p1 = ωm =⇒ k′ = ω2m.
Then BnC l = ω2m(3b− 4a).

** I-1-2-1-1-2-1- If ω is prime ̸= 2, then ω | (BnC l) =⇒ ω | Bn or ω | C l.

** I-1-2-1-1-2-1-1- If ω | Bn =⇒ ω | B =⇒ B = ωjB1 with ω ∤ B1, then Bn
1 .C

l = ω2m−nj(3b−4a).

- If 2m − n.j = 0, we obtain Bn
1 .C

l = 3b − 4a, as C l = Am + Bn =⇒ ω | C l =⇒ ω | C, and
ω | (3b − 4a). But ω ̸= 2 and ω, a′ are coprime, then ω ∤ (3b) =⇒ ω ̸= 3 and ω ∤ b. Hence, the
conjecture (1.2) is verified.

- If 2m − nj ⩾ 1, using the same method, we have ω | C l =⇒ ω | C and ω | (3b − 4a) and
ω ∤ a and ω ̸= 3 and ω ∤ b. Then the conjecture (1.2) is verified.

- If 2m − nj < 0 =⇒ ωn.j−2mBn
1 .C

l = 3b − 4a. As C l = Am + Bn =⇒ ω | C then
C = ωh.C1 =⇒ ωn.j−2m+h.lBn

1 .C
l
1 = 3b − 4a. If n.j − 2m + h.l < 0 =⇒ ω | Bn

1C
l
1, then the

contradiction with ω ∤ B1 or ω ∤ C1. If n.j − 2m+ h.l > 0 =⇒ ω | (3b− 4a) with ω, a, b coprime,
it implies that the conjecture (1.2) is verified.

** I-1-2-1-1-2-1-2- We suppose that ω | C l, using the same method as for the case ω | Bn, we
obtain identical results.

** I-1-2-1-1-2-2- Now k′ = ω2m and ω not a prime, we write ω = ωf1 .Ω with ω1 a prime ∤ Ω and

f ⩾ 1 an integer, and ω1 | A, then BnC l = ω2f.m
1 Ω2m(3b − 4a) =⇒ ω1 | (BnC l) =⇒ ω1 | Bn or

ω1 | C l.

** I-1-2-1-1-2-2-1- If ω1 | Bn =⇒ ω1 | B =⇒ B = ωj1B1 with ω1 ∤ B1, then Bn
1 .C

l =

ω2.fm−nj
1 Ω2m(3b− 4a).

- If 2f.m − n.j = 0, we obtain Bn
1 .C

l = Ω2m(3b − 4a). As C l = Am + Bn =⇒ ω1 | C l =⇒
ω1 | C, and ω1 | (3b − 4a). But ω1 ̸= 2 and ω1, a

′ are coprime, then ω, a are coprime, then
ω1 ∤ (3b) =⇒ ω1 ̸= 3 and ω1 ∤ b. Hence, the conjecture (1.2) is verified.

- If 2f.m− n.j ⩾ 1, we have ω1 | C l =⇒ ω1 | C and ω1 | (3b− 4a) and ω1 ∤ a and ω1 ̸= 3 and
ω1 ∤ b, then the conjecture (1.2) is verified.

- If 2f.m− n.j < 0 =⇒ ωn.j−2m.f
1 Bn

1 .C
l = Ω2m(3b− 4a). As C l = Am +Bn =⇒ ω1 | C , then

C = ωh1 .C1 =⇒ ωn.j−2m.f+h.lBn
1 .C

l
1 = Ω2m(3b− 4a). If n.j − 2m.f + h.l < 0 =⇒ ω1 | Bn

1C
l
1, then

the contradiction with ω1 ∤ B1 and ω1 ∤ C1. Then if n.j − 2m.f + h.l > 0 and ω1 | (3b− 4a) with
ω1, a, b coprime, then the conjecture (1.2) is verified.

** I-1-2-1-1-2-2-2- As in the case ω1 | Bn, we obtain identical results if ω1 | C l.

** I-1-2-1-2- If 2 | p1: then 2 | p1 =⇒ 2 ∤ a′ =⇒ 2 ∤ a, but k′ = p21.

** I-1-2-1-2-1- If p1 = 2, we obtain Am = 4a′ =⇒ 2 | a′, then the contradiction with 2 ∤ a′. Case
to reject.

** I-1-2-1-2-2- We suppose that p1 is not prime and 2 | p1. As Am = 2a′p1, p1 is written under
the form p1 = 2m−1ωm =⇒ p21 = 22m−2ω2m. Then BnC l = k′(3b− 4a) = 22m−2ω2m(3b− 4a) =⇒
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2 | Bn or 2 | C l.

** I-1-2-1-2-2-1- If 2 | Bn =⇒ 2 | B, as 2 | A =⇒ 2 | C. From BnC l = 22m−2ω2m(3b − 4a) it
follows that if 2 | (3b− 4a) =⇒ 2 | b but as 2 ∤ a, there is no contradiction with a, b coprime and
the conjecture (1.2) is verified.

** I-1-2-1-2-2-2- We obtain identical results as above if 2 | C l.

** I-1-2-2- We suppose that k′, a are not coprime: let ω be a prime integer so that ω | a and ω | p21.

** I-1-2-2-1- We suppose that ω = 3. As A2m = 4ak′ =⇒ 3 | A, but 3 | p. As p = A2m + B2n +
AmBn =⇒ 3 | B2n =⇒ 3 | B, then 3 | C l =⇒ 3 | C. We write A = 3iA1, B = 3jB1, C = 3hC1

with 3 coprime with A1, B1 and C1 and p = 32imA2m
1 + 32njB2n

1 + 3im+jnAm1 Bn
1 = 3s.g with

s = min(2im, 2jn, im+jn) and 3 ∤ g. We have also (ω = 3) | a and (ω = 3) | k′ that give a = 3αa1,
3 ∤ a1 and k′ = 3µp2, 3 ∤ p2 with A2m = 4ak′ = 32imA2m

1 = 4× 3α+µ.a1.p2 =⇒ α + µ = 2im. As
p = 3p′ = 3b.k′ = 3b.3µp2 = 3µ+1.b.p2. The exponent of the factor 3 of p is s, the exponent of the
factor 3 of the left member of the last equation is µ+1 added of the exponent β of 3 of the factor
b, with β ⩾ 0, let min(2im, 2jn, im+ jn) = µ+ 1+ β, we recall that α+ µ = 2im. But BnC l =
k′(4b − 3a) that gives 3(nj+hl)Bn

1C
l
1 = 3µ+1p2(b − 4 × 3(α−1)a1) = 3µ+1p2(3

βb1 − 4 × 3(α−1)a1),
3 ∤ b1. We have also Am+Bn = C l that gives 3imAm1 +3jnBn

1 = 3hlC l
1. We call ϵ = min(im, jn),

we obtain ϵ = hl = min(im, jn). We have then the conditions:

s = min(2im, 2jn, im+ jn) = µ+ 1 + β (6.4)

α+ µ = 2im (6.5)

ϵ = hl = min(im, jn) (6.6)

3(nj+hl)Bn
1C

l
1 = 3µ+1p2(3

βb1 − 4× 3(α−1)a1) (6.7)

** I-1-2-2-1-1- α = 1 =⇒ a = 3a1 and 3 ∤ a1, the equation (6.5) becomes:

1 + µ = 2im

and the first equation (6.4) is written as :

s = min(2im, 2jn, im+ jn) = 2im+ β

- If s = 2im =⇒ β = 0 =⇒ 3 ∤ b. We obtain 2im ⩽ 2jn =⇒ im ⩽ jn, and 2im ⩽ im + jn =⇒
im ⩽ jn. The third equation (6.6) gives hl = im. The last equation (6.7) gives nj+hl = µ+1 =
2im =⇒ im = jn, then im = jn = hl and Bn

1C
l
1 = p2(b−4a1). As a, b are coprime, the conjecture

(1.2) is verified.

- If s = 2jn or s = im+ jn, we obtain β = 0, im = jn = hl and Bn
1C

l
1 = p2(b− 4a1). Then

as a, b are coprime, the conjecture (1.2) is verified.

** I-1-2-2-1-2- α > 1 =⇒ α ⩾ 2.

- If s = 2im =⇒ 2im = µ+1+β, but µ = 2im−α it gives α = 1+β ⩾ 2 =⇒ β ̸= 0 =⇒ 3 | b,
but 3 | a then the contradiction with a, b coprime and the conjecture (1.2) is not verified.

- If s = 2jn = µ + 1 + β ⩽ 2im =⇒ µ + 1 + β ⩽ µ + α =⇒ 1 + β ⩽ α =⇒ β = 1. If
β = 1 =⇒ 3 | b but 3 | a, then the contradiction with a, b coprime and the conjecture (1.2) is not
verified.
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- If s = im + jn =⇒ im + jn ⩽ 2im =⇒ jn ⩽ im, and im + jn ⩽ 2jn =⇒ im ⩽ jn, then
im = jn. As s = im+ jn = 2im = 1 + µ+ β and α + µ = 2im it gives α = 1 + β ⩾ 2 =⇒ β ⩾
1 =⇒ 3 | b, then the contradiction with a, b coprime and the conjecture (1.2) is not verified.

** I-1-2-2-2- We suppose that ω ̸= 3. We write a = ωαa1 with ω ∤ a1 and k′ = ωµp2 with ω ∤ p2.
As A2m = 4ak′ = 4ωα+µ.a1.p2 =⇒ ω | A =⇒ A = ωiA1, ω ∤ A1. But BnC l = k′(3b − 4a) =
ωµp2(3b− 4a) =⇒ ω | BnC l =⇒ ω | Bn or ω | C l.

** I-1-2-2-2-1- ω | Bn =⇒ ω | B =⇒ Bn = ωjB1 and ω ∤ B1. From Am + Bn = C l =⇒ ω |
C l =⇒ ω | C. As p = bp′ = 3bk′ = 3ωµbp2 = ωs(ω2im−sA2m

1 +ω2jn−sB2n
1 +ωim+jn−sAm1 Bn

1 ) with
s = min(2im, 2jn, im+ jn). Then:

- If s = µ, then ω ∤ b and the conjecture (1.2) is verified.

- If s > µ, then ω | b, but ω | a then the contradiction with a, b coprime and the conjecture
(1.2) is not verified.

- If s < µ, it follows from:

3ωµbp1 = ωs(ω2im−sA2m
1 + ω2jn−sB2n

1 + ωim+jn−sAm1 Bn
1 )

that ω | A1 or ω | B1 that is the contradiction with the hypothesis and the conjecture (1.2) is
not verified.

** I-1-2-2-2-2- If ω | C l =⇒ ω | C =⇒ C = ωhC1 with ω ∤ C1. From Am + Bn = C l =⇒ ω |
(C l −Am) =⇒ ω | B. Then we obtain identical results as the case above I-1-2-2-2-1-.

** I-2- We suppose k′ = 1: then k′ = 1 =⇒ p = 3b, then we have A2m = 4a = (2a′)2 =⇒ Am =
2a′, then a = a′2 is even and :

AmBn = 2 3
√
ρcos

θ

3
. 3
√
ρ

(√
3sin

θ

3
− cos

θ

3

)
=

p
√
3

3
sin

2θ

3
− 2a

and we have also:

A2m + 2AmBn =
2p

√
3

3
sin

2θ

3
= 2b

√
3sin

2θ

3
(6.8)

The left member of the equation (6.8) is a naturel number and also b, then 2
√
3sin

2θ

3
can be

written under the form :

2
√
3sin

2θ

3
=

k1
k2

where k1, k2 are two natural numbers coprime and k2 | b =⇒ b = k2.k3.

** I-2-1- k′ = 1 and k3 ̸= 1: then A2m+2AmBn = k3.k1. Let µ be a prime integer so that µ | k3.
If µ = 2 ⇒ 2 | b, but 2 | a, it is a contradiction with a, b coprime. We suppose that µ ̸= 2 and
µ | k3, then µ | Am(Am + 2Bn) =⇒ µ | Am or µ | (Am + 2Bn).

** I-2-1-1- µ | Am: If µ | Am =⇒ µ | A2m =⇒ µ | 4a =⇒ µ | a. As µ | k3 =⇒ µ | b, the
contradiction with a, b coprime.
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** I-2-1-2- µ | (Am + 2Bn): If µ | (Am + 2Bn) =⇒ µ ∤ Am and µ ∤ 2Bn, then µ ̸= 2 and µ ∤ Bn.
µ | (Am + 2Bn), we can write Am + 2Bn = µ.t′. It follows:

Am +Bn = µt′ −Bn =⇒ A2m +B2n + 2AmBn = µ2t′2 − 2t′µBn +B2n

Using the expression of p, we obtain:

p = t′2µ2 − 2t′Bnµ+Bn(Bn −Am)

As p = 3b = 3k2.k3 and µ | k3 then µ | p =⇒ p = µ.µ′, then we obtain:

µ′.µ = µ(µt′2 − 2t′Bn) +Bn(Bn −Am)

and µ | Bn(Bn −Am) =⇒ µ | Bn or µ | (Bn −Am).

** I-2-1-2-1- µ | Bn: If µ | Bn =⇒ µ | B, that is the contradiction with I-2-1-2- above.

** I-2-1-2-2- µ | (Bn −Am): If µ | (Bn −Am) and using that µ | (Am + 2Bn), we obtain :

µ | 3Bn =⇒


µ | Bn =⇒ µ | B
or
µ = 3

** I-2-1-2-2-1- µ | Bn: If µ | Bn =⇒ µ | B, that is the contradiction with I-2-1-2- above.

** I-2-1-2-2-2- µ = 3: If µ = 3 =⇒ 3 | k3 =⇒ k3 = 3k′3, and we have b = k2k3 = 3k2k
′
3, it follows

p = 3b = 9k2k
′
3, then 9 | p, but p = (Am −Bn)2 + 3AmBn then:

9k2k
′
3 − 3AmBn = (Am −Bn)2

that we write as:

3(3k2k
′
3 −AmBn) = (Am −Bn)2 (6.9)

then:

3 | (3k2k′3 −AmBn) =⇒ 3 | AmBn =⇒ 3 | Am or 3 | Bn

** I-2-1-2-2-2-1- 3 | Am: If 3 | Am =⇒ 3 | A and we have also 3 | A2m, but A2m = 4a =⇒ 3 |
4a =⇒ 3 | a. As b = 3k2k

′
3 then 3 | b, but a, b are coprime, then the contradiction and 3 ∤ A.

** I-2-1-2-2-2-2- 3 | Bm: If 3 | Bn =⇒ 3 | B, but the equation (6.9) implies 3 | (Am − Bn)2 =⇒
3 | (Am − Bn) =⇒ 3 | Am =⇒ 3 | A. The last case above has given that 3 ∤ A. Then the case
3 | Bm is to reject.

Finally the hypothesis k3 ̸= 1 is impossible.

** I-2-2- Now, we suppose that k3 = 1 =⇒ b = k2 and p = 3b = 3k2, then we have:

2
√
3sin

2θ

3
=

k1
b

(6.10)

with k1, b coprime. We write (6.10) as :

4
√
3sin

θ

3
cos

θ

3
=

k1
b
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Taking the square of the two members and replacing cos2
θ

3
by

a

b
, we obtain:

3× 42.a(b− a) = k21 =⇒ k21 = 3× 42.a′2(b− a)

it implies that :

b− a = 3α2, α ∈ N∗ =⇒ b = a′2 + 3α2 =⇒ k1 = 12a′α

As:

k1 = 12a′α = Am(Am + 2Bn) =⇒ 3α = a′ +Bn

We consider now that 3 | (b− a) with b = a′2 + 3α2. The case α = 1 gives a′ + Bn = 3 that
is impossible. We suppose α > 1, the pair (a′, α) is a solution of the Diophantine equation:

X2 + 3Y 2 = b (6.11)

with X = a′ and Y = α. But using a theorem on the solutions of the equation given by (6.11), b
is written as (see theorem in [2]):

b = 22s × 3t.pt11 · · · ptgg q2s11 · · · q2srr

where pi are prime numbers verifying pi≡1(mod6), the qj are also prime numbers so that
qj≡5(mod 6), then :

- If s ⩾ 1 =⇒ 2 | b, as 2 | a, then the contradiction with a, b coprime.

- If t ⩾ 1 =⇒ 3 | b, but 3 | (b− a) =⇒ 3 | a, then the contradiction with a, b coprime.

** I-2-2-1- We suppose that b is written as :

b = pt11 · · · ptgg q2s11 · · · q2srr

with pi≡1(mod6) and qj≡5(mod6). Finally, we obtain that b≡1(mod6). We will verify then
this condition.

** I-2-2-1-1- We present the table below giving the value of Am + Bn = C l modulo 6 in
function of the value of Am, Bn(mod 6). We obtain the table below after retiring the lines (re-
spectively the colones) of Am≡0(mod 6) and Am≡3(mod 6) (respectively of Bn≡0(mod 6) and
Bn≡3(mod 6)), they present cases with contradictions:

Table 2. Table of C l(mod 6)

Am , Bn 1 2 4 5

1 2 3 5 0

2 3 4 0 1

4 5 0 2 3

5 0 1 3 4

** I-2-2-1-1-1- For the case C l ≡ 0(mod 6) and C l ≡ 3(mod 6), we deduce that 3 | C l =⇒ 3 |
C =⇒ C = 3hC1, with h ⩾ 1 and 3 ∤ C1. It follows that p−BnC l = 3b− 3lhC l

1B
n = A2m =⇒ 3 |

(A2m = 4a) =⇒ 3 | a =⇒ 3 | b, then the contradiction with a, b coprime.
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** I-2-2-1-1-2- For the case C l ≡ 0(mod 6), C l ≡ 2(mod 6) and C l ≡ 4(mod 6), we deduce that
2 | C l =⇒ 2 | C =⇒ C = 2hC1, with h ⩾ 1 and 2 ∤ C1. It follows that p = 3b = A2m + BnC l =
4a+ 2lhC l

1B
n =⇒ 2 | 3b =⇒ 2 | b, then the contradiction with a, b coprime.

** I-2-2-1-1-3- We consider the casesAm≡1( mod 6) andBn≡4( mod 6) (respectivelyBn≡2( mod
6)): then 2 | Bn =⇒ 2 | B =⇒ B = 2jB1 with j ⩾ 1 and 2 ∤ B1. It follows from 3b =
A2m +BnC l = 4a+ 2jnBn

1C
l that 2 | b, then the contradiction with a, b coprime.

** I-2-2-1-1-4- We consider the case Am≡5(mod6) and Bn≡2(mod6): then 2 | Bn =⇒ 2 |
B =⇒ B = 2jB1 with j ⩾ 1 and 2 ∤ B1. It follows that 3b = A2m +BnC l = 4a+ 2jnBn

1C
l, then

2 | b and we obtain the contradiction with a, b coprime.

** I-2-2-1-1-5- We consider the case Am≡2(mod6) and Bn≡5(mod6): as Am≡2(mod6) =⇒
Am≡2(mod 3), then Am is not a square and also for Bn. Hence, we can write Am and Bn as:

Am = a0.A2

Bn = b0B2

where a0 (respectively b0) regroups the product of the prime numbers of Am with exponent 1
(respectively of Bn) with not necessary (a0,A) = 1 and (b0,B) = 1. We have also p = 3b =
A2m + AmBn + B2n = (Am − Bn)2 + 3AmBn =⇒ 3 | (b − AmBn) =⇒ AmBn≡b(mod 3) but
b = a + 3α2 =⇒ b≡a≡a′2(mod 3), then AmBn≡a′2(mod 3). But Am≡2(mod 6) =⇒ 2a′≡2(mod
6) =⇒ 4a′2≡4(mod 6) =⇒ a′2≡1(mod 3). It follows that AmBn is a square, let AmBn = N 2 =
A2.B2.a0.b0. We call N 2

1 = a0.b0. Let p1 be a prime number so that p1 | a0 =⇒ a0 = p1.a1 with
p1 ∤ a1. p1 | N 2

1 =⇒ p1 | N1 =⇒ N1 = pt1N ′
1 with t ⩾ 1 and p1 ∤ N ′

1, then p2t−1
1 N ′2

1 = a1.b0.
As 2t ⩾ 2 =⇒ 2t − 1 ⩾ 1 =⇒ p1 | a1.b0 but (p1, a1) = 1, then p1 | b0 =⇒ p1 | Bn =⇒ p1 | B.
But p1 | (Am = 2a′), and p1 ̸= 2 because p1 | Bn and Bn is odd, then the contradiction. Hence,
p1 | a′ =⇒ p1 | a. If p1 = 3, from 3 | (b − a) =⇒ 3 | b then the contradiction with a, b coprime.
Then p1 > 3 a prime that divides Am and Bn, then p1 | (p = 3b) =⇒ p1 | b, it follows the contra-
diction with a, b coprime, knowing that p = 3b≡3(mod 6) and we choose the case b≡1(mod 6)
of our interest.

** I-2-2-1-1-6- We consider the last case of the table above Am≡4(mod 6) and Bn≡1(mod 6).
We return to the equation (6.11) that b verifies :

b = X2 + 3Y 2 (6.12)

with X = a′; Y = α

and 3α = a′ +Bn

But p = A2m + AmBn + B2n = 3b = 3(3α2 + a′2) =⇒ A2m + C lBn = 3a′2 + 9α2. As A2m =
(2a′)2 = 4a′2, we obtain:

9α2 − a′2 = C l.Bn

Then the pair (3α, a′) ∈ N∗ × N∗ is a solution of the Diophantine equation:

x2 − y2 = N (6.13)

where N = C l.Bm > 0.
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Let Q(N) be the number of the solutions of (6.13) and τ(N) the number of ways to write
the factors of N , then we announce the following result concerning the number of the solutions
of (6.13) (see theorem 27.3 in [2]):

- If N≡2(mod 4), then Q(N) = 0.

- If N≡1 or N≡3(mod 4), then Q(N) = [τ(N)/2].

- If N≡0(mod 4), then Q(N) = [τ(N/4)/2].

As Am = 2a′,m ⩾ 3 =⇒ Am≡0(mod4). Concerning Bn, for Bn≡0(mod4) or Bn≡2(mod4),
we find that 2 | Bn =⇒ 2 | α =⇒ 2 | b, then the contradiction with a, b coprime.

For the last case Bn≡3(mod4) =⇒ C l≡3(mod4) =⇒ N = BnC l≡1(mod4) =⇒ Q(N) =
[τ(N)/2].

As (3α, a′) is a couple of solutions of the Diophantine equation (6.13) and 3α > a′, then ∃ d, d′

positive integers with d > d′ and N = d.d′ so that :

d+ d′ = 6α (6.14)

d− d′ = 2a′ (6.15)

We will use the same method used in the above paragraph A-2-1-2-

** I-2-2-1-1-6-1- As C l > Bn, we take d = C l and d′ = Bn. It follows:

C l +Bn = 6α = 2a′ + 2Bn = Am + 2Bn (6.16)

C l −Bn = 2a′ = Am (6.17)

Then the case d = C l and d′ = Bn gives a priory no contradictions.

** I-2-2-1-1-6-2- Now, we consider the case d = BnC l and d′ = 1. We rewrite the equations
(6.14-6.15):

BnC l + 1 = 6α (6.18)

BnC l − 1 = 2a′ (6.19)

We obtain 1 = Bn, it follows C l − Am = 1, we know [?] that the only positive solution of the
last equation is C = 3, A = 2,m = 3 and l = 2 < 3, then the contradiction.

** I-2-2-1-1-6-3- Now, we consider the case d = clr−1
1 C l

1 where c1 is a prime integer with c1 ∤ C1

and C = cr1C1, r ⩾ 1. It follows that d′ = c1.B
n. We rewrite the equations (6.14-6.15):

clr−1
1 C l

1 + c1.B
n = 6α (6.20)

clr−1
1 C l

1 − c1.B
n = 2a′ (6.21)

As l ⩾ 3, from the last two equations above, it follows that c1 | (6α) and c1 | (2a′). Then c1 = 2,
or c1 = 3 and 3 | a′ or c1 ̸= 3 | α and c1 | a′.

** I-2-2-1-1-6-3-1- We suppose c1 = 2. As 2 | (Am = 2a′) ⇒ 2 | (a = a′2 and 2 | C l because l ⩾ 3,
it follows 2 | Bn, then 2 | (p = 3b). Then the contradiction with a, b coprime.
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** I-2-2-1-1-6-3-2- We suppose c1 = 3 ⇒ c1 | 2a′ =⇒ c1 | a′ =⇒ c1 | (a = a′2). It follows that
(c1 = 3) | (b = a′2 + 3α2), then the contradiction with a, b coprime.

** I-2-2-1-1-6-3-3- We suppose c1 ̸= 3 and c1 | 3α and c1 | a′. It follows that c1 | a and
c1 | (b = a′2 + 3α2, then the contradiction with a, b coprime.

The other cases of the expressions of d and d′ not coprime so that N = BnC l = d.d′ give also
contradictions.

** I-2-2-1-1-6-4- Now, let C = cr1C1 with c1 a prime, r ⩾ 1 and c1 ∤ C1, we consider the case
d = C l

1 and d′ = crl1 B
n so that d > d′. We rewrite the equations (6.14-6.15):

C l
1 + crl1 B

n = 6α (6.22)

C l
1 − crl1 B

n = 2a′ (6.23)

We obtain crl1 B
n = Bn =⇒ crl1 = 1, then the contradiction.

** I-2-2-1-1-6-5- Now, let C = cr1C1 with c1 a prime, r ⩾ 1 and c1 ∤ C1, we consider the case
d = C l

1B
n and d′ = crl1 so that d > d′. We rewrite the equations (6.14-6.15):

C l
1B

l + crl1 = 6α (6.24)

C l
1B

l − crl1 = 2a′ (6.25)

We obtain crl1 = Bn =⇒ c1 | Bn, as c1 | C then c1 | Am = 2a′. If c1 = 2, the contradiction with
BnC l≡1(mod 4). Then c1 | a′ =⇒ c1 | (a = a′2) =⇒ c1 | (p = b), it follows a, b are not coprime,
then the contradiction.

Cases like d′ < C l a divisor of C l or d′ < Bl a divisor of Bn with d′ < d and d.d′ = N = BnC l

give contradictions.

** I-2-2-1-1-6-6- Now, we consider the case d = b1.C
l where b1 is a prime integer with b1 ∤ B1

and B = br1B1, r ⩾ 1. It follows that d′ = bnr−1
1 Bn

1 . We rewrite the equations (6.14-6.15):

b1C
l + bnr−1

1 Bn
1 = 6α (6.26)

b1C
l − bnr−1

1 Bn
1 = 2a′ (6.27)

As n ⩾ 3, from the last two equations above, it follows that b1 | 6α and b1 | (2a′). Then b1 = 2,
or b1 | α and b1 | a′ or b1 = 3 and 3 | a′.

** I-2-2-1-1-6-6-1- We suppose b1 = 2 =⇒ 2 | Bn. As 2 | (Am = 2a′ =⇒ 2 | a′ =⇒ 2 | a, but
2 | Bn and 2 | Am then 2 | (p = 3b). It follows the contradiction with a, b coprime.

** I-2-2-1-1-6-6-2- We suppose b1 ̸= 2, 3, then b1 | α and b1 | a′ =⇒ b1 | (a = a′2), then
b1 | (b = 3α2 + a′2), it follows the contradiction with a, b coprime.

** I-2-2-1-1-6-6-3- We suppose b1 = 3 =⇒ 3 | 6α, and 3 | (Am = 2a′) =⇒ 3 | (a = a′2), then
3 | (b = 3α2 + a′2), it follows the contradiction with a, b coprime.
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The other cases of the expressions of d and d′ with d, d′ not coprime and d > d′ so that
N = C lBm = d.d′ give also contradictions.

Finally, from the cases studied in the above paragraph I-2-2-1-1-6-, we have found one suit-
able factorization of N that gives a priory no contradictions, it is the case N = Bn.C l = d.d′

with d = C l, d′ = Bn but 1 ≪ τ(N), it follows the contradiction with Q(N) = [τ(N)/2] ⩽ 1.
The last case Am≡4(mod 6) and Bn≡1(mod 6) gives contradictions.

It follows that the condition 3 | (b− a) is a contradiction.

The study of the case 6.8 is achieved.

6.9 Case 3 | p and b | 4p
The following cases have been soon studied:

* 3 | p, b = 2 =⇒ b | 4p: case 6.1,

* 3 | p, b = 4 =⇒ b | 4p: case 6.2,

* 3 | p =⇒ p = 3p′, b | p′ =⇒ p′ = bp”, p” ̸= 1: case 6.3,

* 3 | p, b = 3 =⇒ b | 4p: case 6.4,

* 3 | p =⇒ p = 3p′, b = p′ =⇒ b | 4p: case 6.8.

** J-1- Particular case: b = 12. In fact 3 | p =⇒ p = 3p′ and 4p = 12p′. Taking b = 12, we have
b | 4p. But b < 4a < 3b, that gives 12 < 4a < 36 =⇒ 3 < a < 9. As 2 | b and 3 | b, the possible
values of a are 5 and 7.

** J-1-1- a = 5 and b = 12 =⇒ 4p = 12p′ = bp′. But A2m =
4p

3
.
a

b
=

5bp′

3b
=

5p′

3
=⇒ 3 | p′ =⇒

p′ = 3p” with p” ∈ N∗, then p = 9p”, we obtain the expressions:

A2m = 5p” (6.28)

BnC l =
p

3

(
3− 4cos2

θ

3

)
= 4p” (6.29)

As n, l ⩾ 3, we deduce from the equation (6.29) that 2 | p” =⇒ p” = 2αp1 with α ⩾ 1 and 2 ∤ p1.
Then (6.28) becomes: A2m = 5p” = 5× 2αp1 =⇒ 2 | A =⇒ A = 2iA1, i ⩾ 1 and 2 ∤ A1. We have
also BnC l = 2α+2p1 =⇒ 2 | Bn or 2 | C l.

** J-1-1-1- We suppose that 2 | Bn =⇒ B = 2jB1, j ⩾ 1 and 2 ∤ B1. We obtain Bn
1C

l =
2α+2−jnp1:

- If α+ 2− jn > 0 =⇒ 2 | C l, there is no contradiction with C l = 2imAm1 + 2jnBn
1 =⇒ 2 | C l

and the conjecture (1.2) is verified.

- If α + 2 − jn = 0 =⇒ Bn
1C

l = p1. From C=2imAm1 + 2jnBn
1 =⇒ 2 | C l that implies that

2 | p1, then the contradiction with 2 ∤ p1.
- If α + 2 − jn < 0 =⇒ 2jn−α−2Bn

1C
l = p1, it implies that 2 | p1, then the contradiction as

above.

** J-1-1-2- We suppose that 2 | C l, using the same method above, we obtain the identical results.
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** J-1-2- We suppose that a = 7 and b = 12 =⇒ 4p = 12p′ = bp′. But A2m =
4p

3
.
a

b
=

12p′

3
.
7

12
=

7p′

3
=⇒ 3 | p′ =⇒ p = 9p”, we obtain:

A2m = 7p”

BnC l =
p

3

(
3− 4cos2

θ

3

)
= 2p”

The last equation implies that 2 | BnC l. Using the same method as for the case J-1-1- above, we
obtain the identical results.

We study now the general case. As 3 | p ⇒ p = 3p′ and b | 4p ⇒ ∃k1 ∈ N∗ and 4p = 12p′ = k1b.

** J-2- k1 = 1 : If k1 = 1 then b = 12p′, (p′ ̸= 1, if not p = 3 ≪ A2m + B2n + AmBn). But

A2m =
4p

3
.cos2

θ

3
=

12p′

3

a

b
=

4p′.a

12p′
=

a

3
⇒ 3 | a because A2m is a natural number, then the

contradiction with a, b coprime.

** J-3- k1 = 3 : If k1 = 3, then b = 4p′ and A2m =
4p

3
.cos2

θ

3
=

k1.a

3
= a = (Am)2 = a′2 =⇒

Am = a′. The term AmBn gives AmBn =
p
√
3

3
sin

2θ

3
− a

2
, then:

A2m + 2AmBn =
2p

√
3

3
sin

2θ

3
= 2p′

√
3sin

2θ

3
(6.30)

The left member of (6.30) is an integer number and also p′, then 2
√
3sin

2θ

3
can be written under

the form:

2
√
3sin

2θ

3
=

k2
k3

where k2, k3 are two integer numbers and are coprime and k3 | p′ =⇒ p′ = k3.k4.

** J-3-1- k4 ̸= 1 : We suppose that k4 ̸= 1, then:

A2m + 2AmBn = k2.k4 (6.31)

Let µ be a prime number so that µ | k4, then µ | Am(Am + 2Bn) =⇒ µ | Am or µ | (Am + 2Bn).

** J-3-1-1- µ | Am : If µ | Am =⇒ µ | A2m =⇒ µ | a. As µ | k4 =⇒ µ | p′ ⇒ µ | (4p′ = b). But a, b
are coprime, then the contradiction.

** J-3-1-2- µ | (Am + 2Bn) : If µ | (Am + 2Bn) =⇒ µ ∤ Am and µ ∤ 2Bn, then µ ̸= 2 and µ ∤ Bn.
µ | (Am + 2Bn), we can write Am + 2Bn = µ.t′. It follows:

Am +Bn = µt′ −Bn =⇒ A2m +B2n + 2AmBn = µ2t′2 − 2t′µBn +B2n

Using the expression of p, we obtain p = t′2µ2 − 2t′Bnµ + Bn(Bn − Am). As p = 3p′ and
µ | p′ ⇒ µ | (3p′) ⇒ µ | p, we can write : ∃µ′ and p = µµ′, then we arrive to:

µ′.µ = µ(µt′2 − 2t′Bn) +Bn(Bn −Am)
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and µ | Bn(Bn −Am) =⇒ µ | Bn or µ | (Bn −Am).

** J-3-1-2-1- µ | Bn : If µ | Bn =⇒ µ | B, it is in contradiction with J-3-1-2-.

** J-3-1-2-2- µ | (Bn −Am) : If µ | (Bn −Am) and using µ | (Am + 2Bn), we obtain :

µ | 3Bn =⇒


µ | Bn

or
µ = 3

** J-3-1-2-2-1- µ | Bn : If µ | Bn =⇒ µ | B, it is in contradiction with J-3-1-2-.

** J-3-1-2-2-2- µ = 3 : If µ = 3 =⇒ 3 | k4 =⇒ k4 = 3k′4, and we have p′ = k3k4 = 3k3k
′
4, it

follows that p = 3p′ = 9k3k
′
4, then 9 | p, but p = (Am −Bn)2 + 3AmBn, then we obtain:

9k3k
′
4 − 3AmBn = (Am −Bn)2

that we write : 3(3k3k
′
4 − AmBn) = (Am −Bn)2, then : 3 | (3k3k′4 − AmBn) =⇒ 3 | AmBn =⇒

3 | Am or 3 | Bn.

** J-3-1-2-2-2-1- 3 | Am : If 3 | Am =⇒ 3 | A2m ⇒ 3 | a, but 3 | p′ ⇒ 3 | (4p′) ⇒ 3 | b, then the
contradiction with a, b coprime and 3 ∤ A.

** J-3-1-2-2-2-2- 3 | Bn : If 3 | Bn but Am = µt′ − 2Bn = 3t′ − 2Bn =⇒ 3 | Am, it is in
contradiction with 3 ∤ A.

Then the hypothesis k4 ̸= 1 is impossible.

** J-3-2- k4 = 1: We suppose now that k4 = 1 =⇒ p′ = k3k4 = k3. Then we have:

2
√
3sin

2θ

3
=

k2
p′

(6.32)

with k2, p
′ coprime, we write (6.32) as :

4
√
3sin

θ

3
cos

θ

3
=

k2
p′

Taking the square of the two members and replacing cos2
θ

3
by

a

b
and b = 4p′, we obtain:

3.a(b− a) = k22

As A2m = a = a′2, it implies that :

3 | (b− a), and b− a = b− a′2 = 3α2

As k2 = Am(Am+2Bn) following the equation (6.31) and that 3 | k2 =⇒ 3 | Am(Am+2Bn) =⇒
3 | Am or 3 | (Am + 2Bn).

** J-3-2-1- 3 | Am: If 3 | Am =⇒ 3 | A2m =⇒ 3 | a, but 3 | (b−a) =⇒ 3 | b, then the contradiction
with a, b coprime.
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** J-3-2-2- 3 | (Am + 2Bn) =⇒ 3 ∤ Am and 3 ∤ Bn. As k22 = 9aα2 = 9a′2α2 =⇒ k2 = 3a′α =
Am(Am + 2Bn), then :

3α = Am + 2Bn (6.33)

As b can be written under the form b = a′2 + 3α2, then the pair (a′, α) is a solution of the
Diophantine equation:

x2 + 3y2 = b (6.34)

As b = 4p′, then :

** J-3-2-2-1- If x, y are even, then 2 | a′ =⇒ 2 | a, it is a contradiction with a, b coprime.

** J-3-2-2-2- If x, y are odd, then a′, α are odd, it implies Am = a′≡1(mod 4) or Am≡3(mod 4).
If u, v verify (6.34), then b = u2 + 3v2, with u ̸= a′ and v ̸= α, then u, v do not verify (6.33):
3v ̸= u + 2Bn, if not, u = 3v − 2Bn =⇒ b = (3v − 2Bn)2 + 3v2 = a′2 + 3α2, the reso-
lution of the obtained equation of second degree in v gives the positive root v1 = α, then
u = 3v − 2Bn = 3α − 2Bn = a′, then the uniqueness of the representation of b by the equation
(6.34).

** J-3-2-2-2-1- We suppose that Am≡1(mod 4) and Bn≡0(mod 4), then Bn is even and Bn =
2B′. The expression of p becomes:

p = a′2 + 2a′B′ + 4B′2 = (a′ +B′)2 + 3B′2 = 3p′ =⇒ 3 | (a′ +B′) =⇒ a′ +B′ = 3B”

p′ = B′2 + 3B”2 =⇒ b = 4p′ = (2B′)2 + 3(2B”)2 = a′2 + 3α2

as b has an unique representation, it follows 2B′ = Bn = a′ = Am, then the contradiction with
Am > Bn.

** J-3-2-2-2-2- We suppose that Am≡1(mod4) and Bn≡1(mod4), then C l is even and C l =
2C ′. The expression of p becomes:

p = C2l − C lBn +B2n = 4C ′2 − 2C ′Bn +B2n = (C ′ −Bn)2 + 3C ′2 = 3p′

=⇒ 3 | (C ′ −Bn) =⇒ C ′ −Bn = 3C”

p′ = C ′2 + 3C”2 =⇒ b = 4p′ = (2C ′)2 + 3(2C”)2 = a′2 + 3α2

as b has an unique representation, it follows 2C ′ = C l = a′ = Am, then the contradiction.

** J-3-2-2-2-3- We suppose that Am≡1(mod 4) and Bn≡2(mod 4), then Bn is even, see J-3-2-2-
2-1-.

** J-3-2-2-2-4- We suppose that Am≡1(mod 4) and Bn≡3(mod 4), then C l is even, see J-3-2-2-
2-2-.

** J-3-2-2-2-5- We suppose that Am≡3(mod 4) and Bn≡0(mod 4), then Bn is even, see J-3-2-2-
2-1-.

** J-3-2-2-2-6- We suppose that Am≡3(mod 4) and Bn≡1(mod 4), then C l is even, see J-3-2-2-
2-2-.
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** J-3-2-2-2-7- We suppose that Am≡3(mod 4) and Bn≡2(mod 4), then Bn is even, see J-3-2-2-
2-1-.

** J-3-2-2-2-8- We suppose that Am≡3(mod 4) and Bn≡3(mod 4), then C l is even, see J-3-2-2-
2-2-.

We have achieved the study of the case J-3-2-2- . It gives contradictions.

** J-4- We suppose that k1 ̸= 3 and 3 | k1 =⇒ k1 = 3k′1 with k′1 ̸= 1, then 4p = 12p′ =

k1b = 3k′1b ⇒ 4p′ = k′1b. A2m can be written as A2m =
4p

3
cos2

θ

3
=

3k′1b

3

a

b
= k′1a and

BnC l =
p

3

(
3− 4cos2

θ

3

)
=

k′1
4
(3b−4a). As BnC l is an integer number, we must have 4 | (3b−4a)

or 4 | k′1 or [2 | k′1 and 2 | (3b− 4a)].

** J-4-1- We suppose that 4 | (3b− 4a).

** J-4-1-1- We suppose that 3b− 4a = 4 =⇒ 4 | b =⇒ 2 | b. Then, we have:

A2m = k′1a

BnC l = k′1

** J-4-1-1-1- If k′1 is prime, from BnC l = k′1, it is impossible.

** J-4-1-1-2- We suppose that k′1 > 1 is not prime. Let ω be a prime number so that ω | k′1.

** J-4-1-1-2-1- We suppose that k′1 = ωs, with s ⩾ 6. Then we have :

A2m = ωs.a (6.35)

BnC l = ωs (6.36)

** J-4-1-1-2-1-1- We suppose that ω = 2. If a, k′1 are not coprime , then 2 | a, as 2 | b, it is the
contradiction with a, b coprime.

** J-4-1-1-2-1-2- We suppose ω = 2 and a, k′1 are coprime, then 2 ∤ a. From (6.36), we deduce
that B = C = 2 and n + l = s, and A2m = 2s.a, but Am = 2l − 2n =⇒ A2m = (2l − 2n)2 =
22l + 22n − 2(2l+n) = 22l + 22n − 2 × 2s = 2s.a =⇒ 22l + 22n = 2s(a + 2). If l = n, we obtain
a = 0 then the contradiction. If l ̸= n, as Am = 2l − 2n > 0 =⇒ n < l =⇒ 2n < s, then
22n(1 + 22l−2n − 2s+1−2n) = 2n2l.a. We call l = n+ n1 =⇒ 1+ 22l−2n − 2s+1−2n = 2n1 .a, but the
left member is odd and the right member is even, then the contradiction. Then the case ω = 2
is impossible.

** J-4-1-1-2-1-3- We suppose that k′1 = ωs with ω ̸= 2:

** J-4-1-1-2-1-3-1- Suppose that a, k′1 are not coprime, then ω | a =⇒ a = ωt.a1 and t ∤ a1. Then,
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we have:

A2m = ωs+t.a1 (6.37)

BnC l = ωs (6.38)

From (6.38), we deduce that Bn = ωn, Cn = ωl, s = n + l and Am = ωl − ωn > 0 =⇒ l > n.
We have also A2m = ωs+t.a1 = (ωl − ωn)2 = ω2l + ω2n − 2 × ωs. As ω ̸= 2 =⇒ ω is odd, then
A2m = ωs+t.a1 = (ωl−ωn)2 is even, then 2 | a1 =⇒ 2 | a, it is in contradiction with a, b coprime,
then this case is impossible.

** J-4-1-1-2-1-3-2- Suppose that a, k′1 are coprime, with :

A2m = ωs.a (6.39)

BnC l = ωs (6.40)

From (6.40), we deduce that Bn = ωn, C l = ωl and s = n + l. As ω ̸= 2 =⇒ ω is odd and
A2m = ωs.a = (ωl − ωn)2 is even, then 2 | a. It follows the contradiction with a, b coprime and
this case is impossible.

** J-4-1-1-2-2- We suppose that k′1 = ωs.k2, with s ⩾ 6, ω ∤ k2. We have :

A2m = ωs.k2.a

BnC l = ωs.k2

** J-4-1-1-2-2-1- If k2 is prime, from the last equation above, ω = k2, it is in contradiction with
ω ∤ k2. Then this case is impossible.

** J-4-1-1-2-2-2- We suppose that k′1 = ωs.k2, with s ⩾ 6, ω ∤ k2 and k2 not a prime. Then, we
have:

A2m = ωs.k2.a

BnC l = ωs.k2 (6.41)

** J-4-1-1-2-2-2-1- We suppose that ω, a are coprime, then ω ∤ a. As A2m = ωs.k2.a =⇒ ω | A =⇒
A = ωi.A1 with i ⩾ 1 and ω ∤ A1, then s = 2i.m. From (6.41), we have ω | (BnC l) =⇒ ω | Bn or
ω | C l.

** J-4-1-1-2-2-2-1-1- We suppose that ω | Bn =⇒ ω | B =⇒ B = ωj .B1 with j ⩾ 1 and ω ∤ B1.
then :

Bn
1C

l = ω2im−jnk2

- If 2im − jn > 0, ω | C l =⇒ ω | C, no contradiction with C l = ωimAm1 + ωjnBn
1 and the

conjecture (1.2) is verified.

- If 2im − jn = 0 =⇒ Bn
1C

l = k2, as ω ∤ k2 =⇒ ω ∤ C l, then the contradiction with
ω | (C l = Am +Bn).

- If 2im− jn < 0 =⇒ ωjn−2imBn
1C

l = k2 =⇒ ω | k2, then the contradiction with ω ∤ k2.

** J-4-1-1-2-2-2-1-2- We suppose that ω | C l. Using the same method used above, we obtain
identical results.
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** J-4-1-1-2-2-2-2- We suppose that a, ω are not coprime, then ω | a =⇒ a = ωt.a1 and ω ∤ a1.
So we have :

A2m = ωs+t.k2.a1 (6.42)

BnC l = ωs.k2 (6.43)

As A2m = ωs+t.k2.a1 =⇒ ω | A =⇒ A = ωiA1 with i ⩾ 1 and ω ∤ A1, then s + t = 2im. From
(6.43), we have ω | (BnC l) =⇒ ω | Bn or ω | C l.

** J-4-1-1-2-2-2-2-1- We suppose that ω | Bn =⇒ ω | B =⇒ B = ωjB1 with j ⩾ 1 and ω ∤ B1.
then:

Bn
1C

l = ω2im−t−jnk2

- If 2im − t − jn > 0, ω | C l =⇒ ω | C, no contradiction with C l = ωimAm1 + ωjnBn
1 and the

conjecture (1.2) is verified.

- If 2im − t − jn = 0 =⇒ Bn
1C

l = k2, As ω ∤ k2 =⇒ ω ∤ C l, then the contradiction with
ω | (C l = Am +Bn).

- If 2im− t− jn < 0 =⇒ ωjn+t−2imBn
1C

l = k2 =⇒ ω | k2, then the contradiction with ω ∤ k2.

** J-4-1-1-2-2-2-2-2- We suppose that ω | C l. Using the same method used above, we obtain
identical results.

** J-4-1-2- 3b− 4a ̸= 4 and 4 | (3b− 4a) =⇒ 3b− 4a = 4sΩ with s ⩾ 1 and 4 ∤ Ω. We obtain:

A2m = k′1a (6.44)

BnC l = 4s−1k′1Ω (6.45)

** J-4-1-2-1- We suppose that k′1 = 2. From (6.44), we deduce that 2 | a. As 4 | (3b−4a) =⇒ 2 | b,
then the contradiction with a, b coprime and this case is impossible.

** J-4-1-2-2- We suppose that k′1 = 3. From (6.44) we deduce that 33 | A2m. From (6.45), it fol-
lows that 33 | Bn or 33 | C l. In the last two cases, we obtain 33 | p. But 4p = 3k′1b = 9b =⇒ 3 | b,
then the contradiction with a, b coprime. Then this case is impossible.

** J-4-1-2-3- We suppose that k′1 is prime ⩾ 5:

** J-4-1-2-3-1- Suppose that k′1 and a are coprime. The equation (6.44) gives (Am)2 = k′1.a, that
is impossible with k′1 ∤ a. Then this case is impossible.

** J-4-1-2-3-2- Suppose that k′1 and a are not coprime. Let k′1 | a =⇒ a = k′α1 a1 with α ⩾ 1 and
k′1 ∤ a1. The equation (6.44) is written as :

A2m = k′1a = k′α+1
1 a1

The last equation gives k′1 | A2m =⇒ k′1 | A =⇒ A = k′i1 .A1, with k′1 ∤ A1. If 2i.m ̸= (α+ 1), it is
impossible. We suppose that 2i.m = α+1, then k′1 | Am. We return to the equation (6.45). If k′1
and Ω are coprime, it is impossible. We suppose that k′1 and Ω are not coprime, then k′1 | Ω and
the exponent of k′1 in Ω is so the equation (6.45) is satisfying. We deduce easily that k′1 | Bn. Then
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k′21 | (p = A2m+B2n+AmBn), but 4p = 3k′1b =⇒ k′1 | b, then the contradiction with a, b coprime.

** J-4-1-2-4- We suppose that k′1 ⩾ 4 is not a prime.

** J-4-1-2-4-1- We suppose that k′1 = 4, we obtain then A2m = 4a and BnC l = 3b−4a = 3p′−4a.
This case was studied in the paragraph 6.8, case ** I-2-.

** J-4-1-2-4-2- We suppose that k′1 > 4 is not a prime.

** J-4-1-2-4-2-1- We suppose that a, k′1 are coprime. From the expression A2m = k′1.a, we deduce
that a = a21 and k′1 = k”21. It gives :

Am = a1.k”1

BnC l = 4s−1k”21.Ω

Let ω be a prime so that ω | k”1 and k”1 = ωt.k”2 with ω ∤ k”2. The last two equations become :

Am = a1.ω
t.k”2 (6.46)

BnC l = 4s−1ω2t.k”22.Ω (6.47)

From (6.46), ω | Am =⇒ ω | A =⇒ A = ωi.A1 with ω ∤ A1 and im = t. From (6.47), we obtain
ω | BnC l =⇒ ω | Bn or ω | C l.

** J-4-1-2-4-2-1-1- If ω | Bn =⇒ ω | B =⇒ B = ωj .B1 with ω ∤ B1. From (6.46), we have
Bn

1C
l = ω2t−j.n4s−1.k”22.Ω.

** J-4-1-2-4-2-1-1-1- If ω = 2 and 2 ∤ Ω, we have Bn
1C

l = 22t+2s−j.n−2k”22.Ω:

- If 2t+ 2s− jn− 2 ⩽ 0 then 2 ∤ C l, then the contradiction with C l = ωimAm1 + ωjnBn
1 .

- If 2t+ 2s− jn− 2 ⩾ 1 =⇒ 2 | C l =⇒ 2 | C and the conjecture (1.2) is verified.

** J-4-1-2-4-2-1-1-2- If ω = 2 and if 2 | Ω =⇒ Ω = 2.Ω1 because 4 ∤ Ω, we have Bn
1C

l =
22t+2s+1−j.n−2k”22Ω1:

- If 2t+ 2s− jn− 3 ⩽ 0 then 2 ∤ C l, then the contradiction with C l = ωimAm1 + ωjnBn
1 .

- If 2t+ 2s− jn− 3 ⩾ 1 =⇒ 2 | C l =⇒ 2 | C and the conjecture (1.2) is verified.

** J-4-1-2-4-2-1-1-3- If ω ̸= 2, we have Bn
1C

l = ω2t−j.n4s−1.k”22.Ω:

-If 2t− jn ⩽ 0 =⇒ ω ∤ C l it is in contradiction with C l = ωimAm1 + ωjnBn
1 .

-If 2t− jn ⩾ 1 =⇒ ω | C l =⇒ ω | C and the conjecture (1.2) is verified.

** J-4-1-2-4-2-1-2- If ω | C l =⇒ ω | C =⇒ C = ωh.C1, with ω ∤ C1. Using the same method as in
the case J-4-1-2-4-2-1-1 above, we obtain identical results.

** J-4-1-2-4-2-2- We suppose that a, k′1 are not coprime. Let ω be a prime so that ω | a and
ω | k′1. We write:

a = ωα.a1

k′1 = ωµ.k”1
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with a1, k”1 coprime. The expression of A2m becomes A2m = ωα+µ.a1.k”1. The term BnC l

becomes:

BnC l = 4s−1.ωµ.k”1.Ω (6.48)

** J-4-1-2-4-2-2-1- If ω = 2 =⇒ 2 | a, but 2 | b, then the contradiction with a, b coprime, this
case is impossible.

** J-4-1-2-4-2-2-2- If ω ⩾ 3, we have ω | a. If ω | b then the contradiction with a, b coprime. We
suppose that ω ∤ b. From the expression of A2m, we obtain ω | A2m =⇒ ω | A =⇒ A = ωi.A1

with ω ∤ A1, i ⩾ 1 and 2i.m = α+ µ. From (6.48), we deduce that ω | Bn or ω | C l.

** J-4-1-2-4-2-2-2-1- We suppose that ω | Bn =⇒ ω | B =⇒ B = ωjB1 with ω ∤ B1 and j ⩾ 1.
Then, Bn

1C
l = 4s−1ωµ−jn.k”1.Ω :

* ω ∤ Ω :

- If µ−jn ⩾ 1, we have ω | C l =⇒ ω | C, there is no contradiction with C l = ωimAm1 +ωjnBn
1

and the conjecture (1.2) is verified.

- If µ − jn ⩽ 0, then ω ∤ C l and it is a contradiction with C l = ωimAm1 + ωjnBn
1 . Then this

case is impossible.

* ω | Ω : we write Ω = ωβ.Ω1 with β ⩾ 1 and ω ∤ Ω1. As 3b− 4a = 4s.Ω = 4s.ωβ.Ω1 =⇒ 3b =
4a + 4s.ωβ.Ω1 = 4ωα.a1 + 4s.ωβ.Ω1 =⇒ 3b = 4ω(ωα−1.a1 + 4s−1.ωβ−1.Ω1). If ω = 3 and β = 1,
we obtain b = 4(3α−1a1 + 4s−1Ω1) and Bn

1C
l = 4s−13µ+1−jn.k”1Ω1.

- If µ− jn+ 1 ⩾ 1, then 3 | C l and the conjecture (1.2) is verified.

- If µ− jn+ 1 ⩽ 0, then 3 ∤ C l and it is the contradiction with C l = 3imAm1 + 3jnBn
1 .

Now, if β ⩾ 2 and α = im ⩾ 3, we obtain 3b = 4ω2(ωα−2a1+4s−1ωβ−2Ω1). If ω = 3 or not, then
ω | b, but ω | a, then the contradiction with a, b coprime.

** J-4-1-2-4-2-2-2-2- We suppose that ω | C l =⇒ ω | C =⇒ C = ωhC1 with ω ∤ C1 and h ⩾ 1.
Then, BnC l

1 = 4s−1ωµ−hl.k”1.Ω. Using the same method as above, we obtain identical results.

** J-4-2- We suppose that 4 | k′1.

** J-4-2-1- k′1 = 4 =⇒ 4p = 3k′1b = 12b =⇒ p = 3b = 3p′, this case has been studied (see case
I-2- paragraph 6.8).

** J-4-2-2- k′1 > 4 with 4 | k′1 =⇒ k′1 = 4sk”1 and s ⩾ 1, 4 ∤ k”1. Then, we obtain:

A2m = 4sk”1a = 22sk”1a

BnC l = 4s−1k”1(3b− 4a) = 22s−2k”1(3b− 4a)

** J-4-2-2-1- We suppose that s = 1 and k′1 = 4k”1 with k”1 > 1, so p = 3p′ and p′ = k”1b, this
is the case 6.3 already studied.
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** J-4-2-2-2- We suppose that s > 1, then k′1 = 4sk”1 =⇒ 4p = 3× 4sk”1b and we obtain:

A2m = 4sk”1a (6.49)

BnC l = 4s−1k”1(3b− 4a) (6.50)

** J-4-2-2-2-1- We suppose that 2 ∤ (k”1.a) =⇒ 2 ∤ k”1 and 2 ∤ a. As (Am)2 = (2s)2.(k”1.a), we
call d2 = k”1.a, then Am = 2s.d =⇒ 2 | Am =⇒ 2 | A =⇒ A = 2iA1 with 2 ∤ A1 and i ⩾ 1, then:
2imAm1 = 2s.d =⇒ s = im. From the equation (6.50), we have 2 | (BnC l) =⇒ 2 | Bn or 2 | C l.

** J-4-2-2-2-1-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2j .B1, with j ⩾ 1 and 2 ∤ B1. The
equation (6.50) becomes:

Bn
1C

l = 22s−jn−2k”1(3b− 4a) = 22im−jn−2k”1(3b− 4a)

* We suppose that 2 ∤ (3b− 4a):

- If 2im − jn − 2 ⩾ 1, then 2 | C l, there is no contradiction with C l = 2imAm1 + 2jnBn
1 and

the conjecture (1.2) is verified.

- If 2im− jn− 2 ⩽ 0, then 2 ∤ C l, then the contradiction with C l = 2imAm1 + 2jnBn
1 .

* We suppose that 2µ | (3b− 4a), µ ⩾ 1:

- If 2im + µ − jn − 2 ⩾ 1, then 2 | C l, no contradiction with C l = 2imAm1 + 2jnBn
1 and the

conjecture (1.2) is verified.

- If 2im+ µ− jn− 2 ⩽ 0, then 2 ∤ C l, then the contradiction with C l = 2imAm1 + 2jnBn
1 .

** J-4-2-2-2-1-2- We suppose that 2 | C l =⇒ 2 | C =⇒ C = 2h.C1, with h ⩾ 1 and 2 ∤ C1. With
the same method used above, we obtain identical results.

** J-4-2-2-2-2- We suppose that 2 | (k”1.a):

** J-4-2-2-2-2-1- We suppose that k”1 and a are coprime:

** J-4-2-2-2-2-1-1- We suppose that 2 ∤ a and 2 | k”1 =⇒ k”1 = 22µ.k”22 and a = a21, then the
equations (6.49-6.50) become:

A2m = 4s.22µk”22a
2
1 =⇒ Am = 2s+µ.k”2.a1 (6.51)

BnC l = 4s−122µk”22(3b− 4a) = 22s+2µ−2k”22(3b− 4a) (6.52)

The equation (6.51) gives 2 | Am =⇒ 2 | A =⇒ A = 2i.A1 with 2 ∤ A1, i ⩾ 1 and im = s + µ.
From the equation (6.52), we have 2 | (BnC l) =⇒ 2 | Bn or 2 | C l.

** J-4-2-2-2-2-1-1-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2j .B1, 2 ∤ B1 and j ⩾ 1, then
Bn

1C
l = 22s+2µ−jn−2k”22(3b− 4a):

* We suppose that 2 ∤ (3b− 4a):

- If 2im+2µ− jn− 2 ⩾ 1 ⇒ 2 | C l, then there is no contradiction with C l = 2imAm1 +2jnBn
1

and the conjecture (1.2) is verified.

- If 2im+ 2µ− jn− 2 ⩽ 0 ⇒ 2 ∤ C l, then the contradiction with C l = 2imAm1 + 2jnBn
1 .
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* We suppose that 2α | (3b− 4a), α ⩾ 1 so that a, b remain coprime:

- If 2im + 2µ + α − jn − 2 ⩾ 1 ⇒ 2 | C l, then no contradiction with C l = 2imAm1 + 2jnBn
1

and the conjecture (1.2) is verified.

- If 2im+ 2µ+ α− jn− 2 ⩽ 0 ⇒ 2 ∤ C l, then the contradiction with C l = 2imAm1 + 2jnBn
1 .

** J-4-2-2-2-2-1-1-2- We suppose that 2 | C l =⇒ 2 | C =⇒ C = 2h.C1, with h ⩾ 1 and 2 ∤ C1.
With the same method used above, we obtain identical results.

** J-4-2-2-2-2-1-2- We suppose that 2 ∤ k”1 and 2 | a =⇒ a = 22µ.a21 and k”1 = k”22, then the
equations (6.49-6.50) become:

A2m = 4s.22µa21k”
2
2 =⇒ Am = 2s+µ.a1.k”2. (6.53)

BnC l = 4s−1k”22(3b− 4a) = 22s−2k”22(3b− 4a) (6.54)

The equation (6.53) gives 2 | Am =⇒ 2 | A =⇒ A = 2i.A1 with 2 ∤ A1, i ⩾ 1 and im = s + µ.
From the equation (6.54), we have 2 | (BnC l) =⇒ 2 | Bn or 2 | C l.

** J-4-2-2-2-2-1-2-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2j .B1, 2 ∤ B1 and j ⩾ 1. Then
we obtain Bn

1C
l = 22s−jn−2k”22(3b− 4a):

* We suppose that 2 ∤ (3b− 4a) =⇒ 2 ∤ b:
- If 2im − jn − 2 ⩾ 1 ⇒ 2 | C l, then no contradiction with C l = 2imAm1 + 2jnBn

1 and the
conjecture (1.2) is verified.

- If 2im− jn− 2 ⩽ 0 ⇒ 2 ∤ C l, then the contradiction with C l = 2imAm1 + 2jnBn
1 .

* We suppose that 2α | (3b − 4a), α ⩾ 1, in this case a, b are not coprime, then the contra-
diction.

** J-4-2-2-2-2-1-2-2- We suppose that 2 | C l =⇒ 2 | C =⇒ C = 2h.C1, with h ⩾ 1 and 2 ∤ C1.
With the same method used above, we obtain identical results.

** J-4-2-2-2-2-2- We suppose that k”1 and a are not coprime 2 | a and 2 | k”1. Let a = 2t.a1
and k”1 = 2µk”2 and 2 ∤ a1 and 2 ∤ k”2. From (6.49), we have µ+ t = 2λ and a1.k”2 = ω2. The
equations (6.49-6.50) become:

A2m = 4sk”1a = 22s.2µk”2.2
t.a1 = 22s+2λ.ω2 =⇒ Am = 2s+λ.ω (6.55)

BnC l = 4s−12µk”2(3b− 4a) = 22s+µ−2k”2(3b− 4a) (6.56)

From (6.55) we have 2 | Am =⇒ 2 | A =⇒ A = 2iA1,i ⩾ 1 and 2 ∤ A1. From(6.56), 2s+µ−2 ⩾ 1,
we deduce that 2 | (BnC l) =⇒ 2 | Bn or 2 | C l.

** J-4-2-2-2-2-2-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2j .B1, 2 ∤ B1 and j ⩾ 1. Then we
obtain Bn

1C
l = 22s+µ−jn−2k”2(3b− 4a):

* We suppose that 2 ∤ (3b− 4a):
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- If 2s+ µ− jn− 2 ⩾ 1 ⇒ 2 | C l, then no contradiction with C l = 2imAm1 + 2jnBn
1 and the

conjecture (1.2) is verified.

- If 2s+ µ− jn− 2 ⩽ 0 ⇒ 2 ∤ C l, then the contradiction with C l = 2imAm1 + 2jnBn
1 .

* We suppose that 2α | (3b − 4a), for one value α ⩾ 1. As 2 | a, then 2α | (3b − 4a) =⇒ 2 |
(3b− 4a) =⇒ 2 | (3b) =⇒ 2 | b, then the contradiction with a, b coprime.

** J-4-2-2-2-2-2-2- We suppose that 2 | C l =⇒ 2 | C =⇒ C = 2h.C1, with h ⩾ 1 and 2 ∤ C1.
With the same method used above, we obtain identical results.

** J-4-3- 2 | k′1 and 2 | (3b − 4a): then we obtain 2 | k′1 =⇒ k′1 = 2t.k”1 with t ⩾ 1 and 2 ∤ k”1,
2 | (3b − 4a) =⇒ 3b − 4a = 2µ.d with µ ⩾ 1 and 2 ∤ d. We have also 2 | b. If 2 | a, it is a
contradition with a, b coprime.

We suppose, in the following, that 2 ∤ a. The equations (6.49-6.50) become:

A2m = 2t.k”1.a = (Am)2 (6.57)

BnC l = 2t−1k”1.2
µ−1d = 2t+µ−2k”1.d (6.58)

From (6.57), we deduce that the exponent t is even, let t = 2λ. Then we call ω2 = k”1.a, it gives
Am = 2λ.ω =⇒ 2 | Am =⇒ 2 | A =⇒ A = 2i.A1 with i ⩾ 1 and 2 ∤ A1. From (6.58), we have
2λ+ µ− 2 ⩾ 1, then 2 | (BnC l) =⇒ 2 | Bn or 2 | C l:

** J-4-3-1- We suppose that 2 | Bn =⇒ 2 | B =⇒ B = 2jB1, with j ⩾ 1 and 2 ∤ B1. Then we
obtain Bn

1C
l = 22λ+µ−jn−2.k”1.d.

- If 2λ+µ−jn−2 ⩾ 1 ⇒ 2 | C l =⇒ 2 | C, there is no contradiction with C l = 2imAm1 +2jnBn
1

and the conjecture (1.2) is verified.

- If 2s+ t+ µ− jn− 2 ⩽ 0 ⇒ 2 ∤ C, then the contradiction with C l = 2imAm1 + 2jnBn
1 .

** J-4-3-2- We suppose that 2 | C l =⇒ 2 | C. With the same method used above, we obtain
identical results.

The Main Theorem is proved.

7. Examples and Conclusion

7.1 Numerical Examples

7.1.1 Example 1: We consider the example : 63 + 33 = 35 with Am = 63, Bn = 33 and
C l = 35. With the notations used in the paper, we obtain:

p = 36 × 73, q = 8× 311, ∆̄ = 4× 318(37 × 42 − 733) < 0

ρ =
38 × 73

√
73√

3
, cosθ = −4× 33 ×

√
3

73
√
73

(7.1)
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As A2m =
4p

3
.cos2

θ

3
=⇒ cos2

θ

3
=

3A2m

4p
=

3× 24

73
=

a

b
=⇒ a = 3× 24, b = 73; then we obtain:

cos
θ

3
=

4
√
3√
73

, p = 36.b (7.2)

We verify easily the equation (7.1) to calculate cosθ using (7.2). For this example, we can use
the two conditions from (4.9) as 3 | a ,b | 4p and 3 | p. The cases 5.4 and 6.3 are respectively
used. For the case 5.4, it is the case B-2-2-1- that was used and the conjecture (1.2) is verified.
Concerning the case 6.3, it is the case G-2-2-1- that was used and the conjecture (1.2) is verified.

7.1.2 Example 2: The second example is: 74 + 73 = 143. We take Am = 74 , Bn = 73

and C l = 143. We obtain p = 57 × 76 = 3 × 19 × 76 , q = 8 × 710 , ∆ = 27q2 − 4p3 =

27×4×718(16×49−193) = −27×4×718×6075 < 0 , ρ = 19×79×
√
19 , cosθ = − 4× 7

19
√
19

. As

A2m =
4p

3
.cos2

θ

3
=⇒ cos2

θ

3
=

3A2m

4p
=

72

4× 19
=

a

b
=⇒ a = 72, b = 4× 19, then cos

θ

3
=

7

2
√
19

and we have the two principal conditions 3 | p and b | (4p). The calculation of cosθ from the

expression of cos
θ

3
is confirmed by the value below:

cosθ = cos3(θ/3) = 4cos3
θ

3
− 3cos

θ

3
= 4

(
7

2
√
19

)3

− 3
7

2
√
19

= − 4× 7

19
√
19

Then, we obtain 3 | p ⇒ p = 3p′, b | (4p) with b ̸= 2, 4 then 12p′ = k1b = 3× 76b. It concerns the
paragraph 6.9 of the second hypothesis. As k1 = 3 × 76 = 3k′1 with k′1 = 76 ̸= 1. It is the case
J-4-1-2-4-2-2- with the condition 4 | (3b− 4a). So we verify :

3b− 4a = 3× 4× 19− 4× 72 = 32 =⇒ 4 | (3b− 4a)

with A2m = 78 = 76 × 72 = k′1.a and k′1 not a prime, with a and k′1 not coprime with ω = 7 ∤
Ω(= 2). We find that the conjecture (1.2) is verified with a common factor equal to 7 (prime and
divisor of k′1 = 76).

7.1.3 Example 3: The third example is: 194 + 383 = 573 with Am = 194, Bn = 383 and
C l = 573. We obtain p = 196× 577 , q = 8× 27× 1910 , ∆ = 27q2− 4p3 = 4× 1918(273× 16×

192 − 5773) < 0 , ρ =
199 × 577

√
577

3
√
3

, cosθ = −4× 34 × 19
√
3

577
√
577

. As A2m =
4p

3
.cos2

θ

3
=⇒

cos2
θ

3
=

3A2m

4p
=

3× 192

4× 577
=

a

b
=⇒ a = 3× 192, b = 4× 577, then cos

θ

3
=

19
√
3

2
√
577

and we have

the first hypothesis 3 | a and b | (4p). Here again, the calculation of cosθ from the expression of

cos
θ

3
is confirmed by the value below:

cosθ = cos3(θ/3) = 4cos3
θ

3
− 3cos

θ

3
= 4

(
19
√
3

2
√
577

)3

− 3
19

√
3

2
√
577

= −4× 34 × 19
√
3

577
√
577

Then, we obtain 3 | a ⇒ a = 3a′ = 3 × 192, b | (4p) with b ̸= 2, 4 and b = 4p′ with p = kp′

soit p′ = 577 and k = 196. This concerns the paragraph 5.8 of the first hypothesis. It is the
case E-2-2-2-2-1- with ω = 19, a′, ω not coprime and ω = 19 ∤ (p′ − a′) = (577 − 192) with
s− jn = 6− 1× 3 = 3 ⩾ 1, and the conjecture (1.2) is verified.
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7.2 Conclusion

The method used to give the proof of the conjecture of Beal has discussed many possibles cases,
using elementary number theory and the results of some theorems about Diophantine equations.
We have confirmed the method by three numerical examples. In conclusion, we can announce
the theorem:

Theorem 7.1. Let A,B,C,m, n, and l be positive natural numbers with m,n, l > 2. If :

Am +Bn = C l (7.3)

then A,B, and C have a common factor.
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