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Abstract. The standard method of determining the extreme points of a function 𝑓(𝑥) is to set its 

first derivative equal to zero and solve for x. However, this method requires that the function be 

continuous (at least piecewise) and differentiable; it won’t work for a function defined on the 

integers. Described herein is a method of determining the extreme points of a function defined on 

the integers. This method is illustrated by using it to solve two example problems. 
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The standard method of determining the extreme points of a function 𝑓(𝑥) is to set its first 

derivative equal to zero and solve for x. However, this method requires that the function be 

continuous (at least piecewise) and differentiable; it won’t work for a function defined on the 

integers. 

For example, consider the binomial function 

𝐵(𝑛, 𝑘, 𝑝) =
𝑛!

𝑘! (𝑛 − 𝑘)!
𝑝𝑘(1 − 𝑝)𝑛−𝑘, 

where 𝐵(𝑛, 𝑘, 𝑝) is the probability that for 𝑛 independent trials, each having a probability 𝑝 of 

success, there will be exactly 𝑘 successful trials. 

Suppose we wish to determine the most likely number of successes, say, 𝑘𝑚 for fixed 𝑛 and 𝑝. 

The standard method described above won’t work because the factorial function in which k occurs 

is defined only for integers. Described below is a method that will make it possible to determine 

 𝑘𝑚. 

We will make use of the forward difference operator Δ[𝑓(𝑥)], where 

Δ[𝑓(𝑥)] = 𝑓(𝑥 + 1) − 𝑓(𝑥) 

for any function 𝑓(𝑥). 



Theorem. Let 𝐼(𝑛) be a function defined for integers and let 𝑓(𝑥) be an extension of 𝐼(𝑛) to the 

real numbers. Suppose that 

                                                   (1)  Δ[𝑓(𝑥0)] = 0, 

                                                   (2)  Δ[𝑓(𝑥)] > 0 for 𝑥 < 𝑥0, and 

                                                   (3)  Δ[𝑓(𝑥)] < 0 for 𝑥 > 𝑥0. 

Then if 𝑥0 is an integer, both 𝐼(𝑥0) and 𝐼(𝑥0 + 1) are the maxima of 𝐼(𝑛). Otherwise, the 

maximum of 𝐼(𝑛) occurs at the integer between 𝑥0 and 𝑥0 + 1. 

Proof. 

Case 1: 𝑥0 is an integer. 

It follows from the definition of the forward difference operator that for 𝑛 < 𝑥0, 

𝐼(𝑥0) = 𝐼(𝑛) + ∑ Δ[𝑓(𝑖)]
𝑥0−1
𝑖=𝑛 . 

From Condition (2), it follows that all of the terms in the sum are positive, so 𝐼(𝑥0) > 𝐼(𝑛) for 

𝑛 < 𝑥0 

For 𝑛 > 𝑥0 + 1, 

𝐼(𝑛) = 𝐼(𝑥0 + 1) + ∑ Δ[𝑓(𝑖)]𝑛−1
𝑖=𝑥0+1 . 

From Condition (3), it follows that all of the terms in the sum are negative, so 𝐼(𝑥0 + 1) > 𝐼(𝑛) 

for 𝑛 > 𝑥0 + 1. Since from Condition (1), 𝐼(𝑥0) = 𝐼(𝑥0 + 1), it follows that both 𝐼(𝑥0) and 

𝐼(𝑥0 + 1) are the maxima of 𝐼(𝑛). 

Case 2: 𝑥0 is not an integer. 

Let 𝑛𝑚 be the integer between 𝑥0 and 𝑥0 + 1. For 𝑛 < 𝑛𝑚, 

𝐼(𝑛𝑚) = 𝐼(𝑛) + ∑ Δ[𝑓(𝑖)]
𝑛𝑚−1
𝑖=𝑛 . 

Since 𝑛𝑚 − 1 < 𝑥0, it follows from Condition (2) that all of the terms in the sum are positive, so 

𝐼(𝑛𝑚) > 𝐼(𝑛) for 𝑛 < 𝑛𝑚. 

For 𝑛 > 𝑛𝑚, 

𝐼(𝑛) = 𝐼(𝑛𝑚) + ∑ Δ[𝑓(𝑖)]𝑛−1
𝑖=𝑛𝑚

. 

Since 𝑛𝑚 > 𝑥0, it follows from Condition (3) that all of the terms in the sum are negative, so 

𝐼(𝑛𝑚) > 𝐼(𝑛) for 𝑛 > 𝑛𝑚. Therefore, 𝐼(𝑛𝑚) is the maximum of 𝐼(𝑛).                                                        □ 

A similar theorem can be proved for use in finding the location of the minimum value(s) of a 

function defined for integer values. This is left as an exercise for the interested reader. 



Now let’s apply the above theorem to finding the location of the maximum value(s) of 𝐵(𝑛, 𝑘, 𝑝) 

for fixed 𝑛 and 𝑝. In order to satisfy the hypothesis of the theorem, we need to extend 𝐵(𝑛, 𝑘, 𝑝) 

to be defined for real values of 𝑘; let 𝐵(𝑛, 𝑥, 𝑝) be such an extension. Since 𝑘 appears in the 

factorial function, we need to likewise extend that function to the real numbers; call that extension 

𝑥!. As we shall see, the solution does not depend on the extension we choose; it is sufficient that 

𝑥!  >  0 for all 𝑥 ≥  0. Since 𝑛!  >  0 for all 𝑛 ≥  0, the piecewise linear function constructed by 

connecting the points of 𝑛! defined at the integers will do the trick. 

Applying the forward difference operator to the binomial function results in 

     Δ𝑥[𝐵(𝑛, 𝑥, 𝑝)] = 𝐵(𝑛, 𝑥 + 1, 𝑝) − 𝐵(𝑛, 𝑥, 𝑝)          

                                 =  
𝑛!

(𝑥 + 1)! [𝑛 − (𝑥 + 1)]!
𝑝𝑥+1(1 − 𝑝)𝑛−(𝑥+1) − 

𝑛!

𝑥! (𝑛 − 𝑥)!
𝑝𝑥(1 − 𝑝)𝑛−𝑥  

                                 =  
𝑛! 𝑝𝑥(1 − 𝑝)𝑛−𝑥−1

(𝑥 + 1)! (𝑛 − 𝑥)!
[(𝑛 − 𝑥)𝑝 − (𝑥 + 1)(1 − 𝑝)]  

                                 =  
𝑛! 𝑝𝑥(1 − 𝑝)𝑛−𝑥−1

(𝑥 + 1)! (𝑛 − 𝑥)!
[𝑛𝑝 + 𝑝 − 1 − 𝑥]. 

For 𝑝 = 0, the most likely and in fact the only possible number of successes is zero. For 𝑝 = 1, 

the most likely and in fact the only possible number of successes is n. Otherwise, 0 < 𝑝 < 1, in 

which case all of the factors in the above fraction are positive, in which case setting 

Δ𝑥[𝐵(𝑛, 𝑥0, 𝑝)] = 0 requires the quantity in brackets to be zero. Solving for 𝑥0 results in 

𝑥0 = 𝑛𝑝 + 𝑝 − 1. 

Since the quantity in brackets is a decreasing function of x, it follows that Δ𝑥[𝐵(𝑛, 𝑥, 𝑝)] > 0 for 

𝑥 < 𝑥0 and Δ𝑥[𝐵(𝑛, 𝑥, 𝑝)] < 0 for 𝑥 > 𝑥0. Thus, according to the theorem above, if 𝑥0 is an 

integer, then the maxima of 𝐵(𝑛, 𝑥, 𝑝) occur at 𝑥 = 𝑛𝑝 + 𝑝 – 1 and 𝑥 = 𝑛𝑝 + 𝑝; otherwise, the 

maximum occurs at the integer between those two values. In the special case of 𝑝 = ½, the maxima 

occur at ½(𝑛 ± 1) for 𝑛 odd and at ½𝑛 for 𝑛 even, as expected. 

Now let’s apply this method to solving a practical problem. Suppose that a restaurant is having a 

weekly drawing for free lunches. Those who wish to enter the drawing place their business cards 

in a glass jar. Ten winning entries are to be drawn from the jar. You estimate that there are 200 

entries already in the jar and it’s near closing time on Friday, the last day to enter for the week, so 

there isn’t likely to be more than a very few if any additional entries. How many business cards 

should you submit in order to maximize your chance of winning, given that if more than one of 

your cards are drawn, you will be disqualified? 

I find it advantageous to represent the known quantities by variables rather than numbers. Doing 

so reduces the amount of computation required as well as the likelihood of error and enables the 

problem to be solved in greater generality. Once the general problem has been solved, the numbers 

can be substituted for the variables and the answer can then be computed for the problem at hand. 

The only exception is for problems that cannot be solved analytically and must, therefore, be 



solved numerically. However, even in this case, the numerical substitution should be postponed as 

long as possible. 

Let 𝑛 be the number of entries initially in the jar (200 in this case); let 𝑘 be the number of winning 

entries drawn (10 in this case); let 𝑥 be the number of entries that you submit; and let 𝑃(𝑥) be the 

probability of winning if you submit 𝑥 entries. I leave it as an exercise for the interested reader to 

verify that 

𝑃(𝑥) =
𝑘𝑥 ∏ (𝑛 − 𝑖)𝑘−2

𝑖=0

∏ (𝑥 + 𝑛 − 𝑖)𝑘−1
𝑖=0

. 

Unlike in the previous example, 𝑥 does not appear in the argument of any function whose values 

(i.e., the values of the argument) are restricted to integers, so one could treat 𝑥 as a continuous 

variable, set the derivative of 𝑃(𝑥) equal to zero and solve for 𝑥. While the differentiation process 

is fairly straightforward, the end result is a polynomial equation in 𝑥 of degree 𝑘, which cannot, in 

general, be solved analytically for 𝑘 > 4. 

Let’s try solving this problem using the method described above. 

                    Δ[𝑃(𝑥)] =
𝑘(𝑥 + 1) ∏ (𝑛 − 𝑖)𝑘−2

𝑖=0

∏ [(𝑥 + 1) + 𝑛 − 𝑖)]𝑘−1
𝑖=0

−
𝑘𝑥 ∏ (𝑛 − 𝑖)𝑘−2

𝑖=0

∏ (𝑥 + 𝑛 − 𝑖)𝑘−1
𝑖=0

 

                                    =
𝑘 ∏ (𝑛 − 𝑖)𝑘−2

𝑖=0

∏ (𝑥 + 𝑛 − 𝑖 + 1)𝑘
𝑖=0

[(𝑥 + 1)(𝑥 + 𝑛 − 𝑘 + 1) − 𝑥(𝑥 + 𝑛 + 1)] 

                                    =
𝑘 ∏ (𝑛 − 𝑖)𝑘−2

𝑖=0

∏ (𝑥 + 𝑛 − 𝑖 + 1)𝑘
𝑖=0

[(1 − 𝑘)𝑥 + 𝑛 − 𝑘 + 1]. 

Since all of the factors in the above fraction are positive, setting Δ[𝑃(𝑥0)] = 0 requires the quantity 

in brackets to be zero. Solving for 𝑥0 results in 

𝑥0 =
𝑛 − 𝑘 + 1

𝑘 − 1
. 

For 𝑘 = 1, 𝑥0 becomes infinite, which reflects the fact that if a single entry is drawn, you maximize 

your chance of winning by submitting as many entries as possible, since there is no possibility that 

you will be disqualified for submitting multiple entries. 

For 𝑘 > 1, the present case, the quantity in brackets is a decreasing function of 𝑥, in which case it 

follows that Δ[𝑃(𝑥)] > 0 for 𝑥 < 𝑥0 and Δ[𝑃(𝑥)] < 0 for 𝑥 > 𝑥0, so the hypothesis of the above 

theorem is satisfied. 

Substituting the values for 𝑛 and 𝑘 in the above equation results in 

𝑥0 = 21.2, 

so you should submit 22 entries in order to maximize your chance of winning – provided the 

manager doesn’t see you stuffing the jar! 



The associated probability of winning is given by 

𝑃(22) =
(10)(22) ∏ (200 − 𝑖)10−2

𝑖=0

∏ (22 + 200 − 𝑖)10−1
𝑖=0

= 0.39644 . 

As a consistency check, 

𝑃(21) = 0.39627 < 𝑃(22) and 

                                                           𝑃(23) = 0.39587 < 𝑃(22), 

as required. 
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