Study of the $3 n+1$ problem for a number which never « land» and others properties

BOUARFAOUI Saïd ${ }^{1}$
${ }^{1}$ IT Engineer
e-mail: bouarfaoui.s@hotmail.fr

Abstract

In the present paper, we study the $3 \mathrm{n}+1$ problem to know if there is a theoretical number such as the number never land on the cycle $\{4 ; 2 ; 1\}$ and grows continually.

We will specify the general formula such as the number of uneven steps $(3 n+1)$ and even steps $\left(\frac{n}{2}\right)$ are equals.

We want to know also the uneven number form $2^{n}+2^{0}$ and its composition during n uneven $(3 n+1)$ and even steps $\left(\frac{n}{2}\right)$.

The composition number $2^{n}+2^{0}$ will be viewed in two ways : 1. When the powers which compose the numbers are expanded. We will recognize the Pascal's triangle. 2. When the powers which compose the numbers are agglutinate. We will recognize $\left(3^{m}\right)_{2}$.

Keywords: Collatz problem, $3 \mathrm{n}+1$ problem, syracuse conjecture, pascal's triangle, binary forms.

1 Introduction

The $3 n+1$ problem (known as: Syracuse conjecture, Collatz conjecture) has been studied and presented on a number of occasions (Collatz, 1986, [1], Wirsching, 1998, [2], Lagarias, 1985, [3]).

Here the function :

Definition 1 :

$\forall n \in \mathbb{N}$, if n is uneven we applied $3 n+1$ otherwise $\frac{n}{2}$.

$$
C(n)=\left\{\begin{array}{l}
\frac{n}{2} \text { if } n \bmod 2=0 \tag{1}\\
3 n+1 \text { otherwise }
\end{array}\right.
$$

$C(n)$ compressed :

$$
C(n)=\left\{\begin{array}{l}
\frac{n}{2} \text { if } n \bmod 2=0 \tag{2}\\
\frac{3 n+1}{2} \text { otherwise }
\end{array}\right.
$$

The $3 n+1$ problem states that for each $n \in \mathbb{N}^{*}, C^{(m)}(n)=1$ (the function C is repeated m times to n result to 1 .
Jean-Paul Delahaye, french specialist on the $3 n+1$ problem published many papers about this conjecture, notably that published in Pour la Science in May 1998, [4].

It shows the meanings of flight duration, flight altitude, maximum altitude, its variants and its indecidability.

In 2017, the article : Luc-Olivier Pochon, Alain Favre. La suite de Syracuse, un monde de conjectures. 2017. Hal-01593181, [5] is published, it gathers our current state of information and knowledge about the $3 n+1$ problem.

In the Collatz conjecture a number which never land is a number which never reach the number 1 which implies the endless cycle $\{4 ; 2 ; 1\}$.

In what follows, in the section II, we will look at the theorical number which never land and grows continually at each step.

The general formula such as uneven steps $(3 n+1)$ and even steps $\left(\frac{n}{2}\right)$ are alternated each time will be showed at the section III.

In the paragraph IV, we will presented the properties on expanded powers (we not use $2^{n+1}=2^{n}+2^{n}$) and in the paragraph V , it will be the properties on agglutinated powers (we use $2^{n+1}=2^{n}+2^{n}$).
Finally, the conclusion will be in the part VI.

2 Theoretical number which never land and grows at each step

We are interessed by the particular form of n such as :

$$
n=\sum_{k=0}^{k} 2^{k}
$$

Let see this particular n number with the examples :

$$
\begin{aligned}
& \boldsymbol{n}_{\mathbf{1}}=\sum_{k=0}^{3} 2^{k} \\
& \boldsymbol{n}_{\mathbf{2}}=\sum_{k=0}^{4} 2^{k} \\
& \boldsymbol{n}_{\mathbf{3}}=\sum_{k=0}^{5} 2^{k}
\end{aligned}
$$

Vocabulary :

$$
\boldsymbol{n}_{\mathbf{1}}=2^{3}+2^{2}+2^{1}+2^{0}=15
$$

$\mathbf{2}^{\mathbf{0}}$: represent the term which define the uneven number.
$\mathbf{2}^{\mathbf{1}}+\mathbf{2}^{\mathbf{2}}+\mathbf{2}^{\mathbf{3}}+\cdots$: these terms (from 2^{1} to 2^{n} in consecutives powers only) represent the queue.
The head represent the others terms.
Calculate the serie with first element equal n_{1} (At each step we apply $\frac{3 n_{m}+1}{2}$)(2)

$$
\begin{aligned}
& \boldsymbol{n}_{\mathbf{1}}=2^{3}+2^{2}+2^{1}+2^{0}=15 \\
& \boldsymbol{n}_{\mathbf{1}}=2^{4}+2^{2}+2^{1}+2^{0}=23 \\
& \boldsymbol{n}_{\mathbf{1}}=2^{5}+2^{1}+2^{0}=35 \\
& \boldsymbol{n}_{\mathbf{1}}=2^{5}+2^{4}+2^{2}+2^{0}=53
\end{aligned}
$$

The queue disappears after 3 steps of $\frac{3 n_{m}+1}{2}$.(2)
Calculate the serie with first element equal n_{2} (At each step we apply $\left.\frac{3 n_{m}+1}{2}\right)(2)$

$$
\begin{aligned}
& \boldsymbol{n}_{2}=2^{4}+2^{3}+2^{2}+2^{1}+2^{0}=31 \\
& \boldsymbol{n}_{2}=2^{5}+2^{3}+2^{2}+2^{1}+2^{0}=47 \\
& \boldsymbol{n}_{2}=2^{6}+2^{2}+2^{1}+2^{0}=71 \\
& \boldsymbol{n}_{2}=2^{6}+2^{5}+2^{3}+2^{1}+2^{0}=107 \\
& \boldsymbol{n}_{2}=2^{7}+2^{5}+2^{0}=161
\end{aligned}
$$

The queue disappears after $\mathbf{4}$ steps of $\frac{3 n_{m}+1}{2}$.(2)
Calculate the serie with first element equal n_{3} (At each step we apply $\frac{3 n_{m}+1}{2}$)(2)

$$
\begin{aligned}
& \boldsymbol{n}_{3}=2^{5}+2^{4}+2^{3}+2^{2}+2^{1}+2^{0}=63 \\
& \boldsymbol{n}_{\mathbf{3}}=2^{6}+2^{4}+2^{3}+2^{2}+2^{1}+2^{0}=95 \\
& \boldsymbol{n}_{\mathbf{3}}=2^{7}+2^{3}+2^{2}+2^{1}+2^{0}=143 \\
& \boldsymbol{n}_{\mathbf{3}}=2^{7}+2^{6}+2^{4}+2^{2}+2^{1}+2^{0}=215 \\
& \boldsymbol{n}_{\mathbf{3}}=2^{8}+2^{6}+2^{1}+2^{0}=323 \\
& \boldsymbol{n}_{\mathbf{3}}=2^{8}+2^{7}+2^{6}+2^{5}+2^{2}+2^{0}=485
\end{aligned}
$$

The queue disappears after 5 steps of $\frac{3 n_{m}+1}{2}$.(2)
The agglutination with powers and the construction of the theoretical number.
When the terms are composed by consecutives powers as permitted by the formula $\sum_{k=0}^{k} 2^{k}$, there is agglutination (since $2^{n}+2^{n}=2^{n+1}$)
Example :
$n=2^{3}+2^{2}+2^{1}+2^{0}$
According to the series when a number is even :

$$
\begin{aligned}
3 n+1 & =(2+1) n+2^{0} \\
& =(2+1)\left(2^{3}+2^{2}+2^{1}+2^{0}\right)+2^{0} \\
& =2^{4}+2^{3}+2^{3}+2^{2}+2^{2}+2^{1}+2^{1}+2^{0}+2^{0} \\
& =2^{4}+2^{4}+2^{3}+2^{2}+2^{1} \text { (Agglutination) } \\
& =2^{5}+2^{3}+2^{2}+2^{1} \text { (Agglutination) }
\end{aligned}
$$

We divide by 2 :

$$
=2^{4}+2^{2}+2^{1}+2^{0}
$$

If $n=\sum_{k=0}^{k} 2^{k}$
When we apply between 0 et k steps $\frac{3 n+1}{2}$, we have :
$n=\underbrace{\sum_{m=k+p}^{m} 2^{m}}+\underbrace{\sum_{k=0}^{k} 2^{k}}$ (With p set)

Head
 Queue

The term of the highest power of the queue always agglutinate (2^{k} of $\sum_{k=0}^{k} 2^{k}$)
Because we have :

$$
\begin{aligned}
& (2+1) \sum_{n=0}^{n} 2^{n}+2^{0} \\
= & (2+1)\left(2^{n}+2^{n-1}+2^{n-2}+\cdots+2^{2}+2^{1}+2^{0}\right)+2^{0}
\end{aligned}
$$

$$
\begin{aligned}
& =2^{n+1}+2^{n}+2^{n}+2^{n-1}+2^{n-1}+2^{n-2}+\cdots+2^{3}+2^{2}+2^{2}+2^{1}+2^{1}+2^{0}+2^{0} \\
& =2^{n+1}+2^{n+1}+2^{n}+2^{n-1}+\cdots+2^{4}+2^{3}+2^{2}+2^{1} \text { (Agglutination) } \\
& =2^{n+2}+2^{n}+2^{n-1}+\cdots+2^{4}+2^{3}+2^{2}+2^{1} \text { (Agglutination) } \\
& =2^{n+2}+\sum_{n=1}^{n} 2^{n} \text { (Even) }
\end{aligned}
$$

So we divide by 2 .
Then :

$$
\begin{aligned}
& \frac{2^{n+2}+\sum_{n=1}^{n} 2^{n}}{2} \\
&= \frac{2^{n+2}+2^{n}+2^{n-1}+\cdots+2^{4}+2^{3}+2^{2}+2^{1}}{2} \\
&=2^{n+1}+2^{n-1}+2^{n-2}+\cdots+2^{3}+2^{2}+2^{1}+2^{0}
\end{aligned}
$$

We notice that the highest power of the queue (2^{n}) have disappeared.
We delete the highest consecutive power of the queue without disrupt the rest of the queue.
At each compressed operation $\frac{3 n+1}{2}(2)$, we delete the highest power of the queue, by providing the head.
So the series $\sum_{n=0}^{n} 2^{n}$ oscillate n times $\left(\operatorname{step} \frac{3 n+1}{2}\right)(2)$ before to have a behaviour not calculated because the series will not to have queue anymore.
A queue composed by consecutive terms endless will oscillate endless.
Moreover, the step $\frac{3 n+1}{2}(2)$ is strictly increasing.
Hence the number :
$\sum_{n=0}^{\infty} 2^{n}$ oscillate between the uneven terms and even terms in a perfect way (symmetrical) and never land. It is also strictly increasing.

3 General formula such as uneven steps and even steps are alternated

We want to write the general formula such as:

$$
\frac{\text { Uneven steps }}{\text { Even steps }}=1
$$

If $n \in \mathbb{N}^{*}=N_{0}\left(1^{s t}\right.$ term of hypothetical series)

$$
\begin{gathered}
N_{1}=\frac{3 N_{0}+1}{2} \\
N_{2}=\frac{3^{2} N_{0}+(3+2)}{2^{2}} \\
N_{3}=\frac{3^{3} N_{0}+\left(3^{2}+3 \times 2+2^{2}\right)}{2^{3}} \\
N_{4}=\frac{3^{4} N_{0}+\left(3^{3}+3^{2} \times 2+3 \times 2^{2}+2^{3}\right)}{2^{4}} \\
N_{5}=\frac{3^{5} N_{0}+\left(3^{4}+3^{3} \times 2+3^{2} \times 2^{2}+3 \times 2^{3}+2^{4}\right)}{2^{5}}
\end{gathered}
$$

The terms was reduced under the expression of the first term.
It comes from the recurring series : $N_{m}=\frac{3 N_{m-1}+1}{2}$

Example

Calculated for N_{2} :
$N_{1}=\frac{3 N_{0}+1}{2}$ and $N_{2}=\frac{3 N_{1}+1}{2}$
We replace N_{1} by $\frac{3 N_{0}+1}{2}$ in the expression $N_{2}=\frac{3 N_{1}+1}{2}$
Hence :

$$
N_{2}=\frac{3\left(\frac{3 N_{0}+1}{2}\right)+1}{2}
$$

We develop :

$$
N_{2}=\frac{\frac{3^{2} N_{0}+3+2}{2}}{2}=\frac{3^{2} N_{0}+3+2}{2^{2}}
$$

Due to the differents terms calculated previously :

$$
N_{m}=\frac{3^{m} N_{0}+\sum_{k=0}^{m-1} 3^{m-1-k} \cdot 2^{k}}{2^{m}}
$$

Where in our example,
$\boldsymbol{N}_{\boldsymbol{m}}$ corresponds to $\boldsymbol{N}_{\mathbf{2}}$

$$
\mathbf{3}^{m} \boldsymbol{N}_{0} \text { corresponds to } \mathbf{3}^{2} \boldsymbol{N}_{0}
$$

$\sum_{k=0}^{m-1} 3^{m-1-k} .2^{k}$ corresponds to $3+2$
$\mathbf{2}^{\boldsymbol{m}}$ corresponds to $\mathbf{2}^{\mathbf{2}}$

4 General formula on the expanded powers of $\mathbf{2}^{\boldsymbol{m}}+\mathbf{2}^{\mathbf{0}}$

Considerate the uneven number such as: $2^{m}+2^{0}$
We will apply the operation $\frac{3 n+1}{2}$ between each step.
We will not agglutinate the powers such as $2^{m}+2^{m}=2^{m+1}$ to obtain the expanded powers.
Step 0: $2^{m}+2^{0}$
Step 1: $2^{m-1}+2^{m-2}+2^{0}$
Step 2: $2^{m-2}+2^{m-3}+2^{m-3}+2^{m-4}+2^{0}$
Step 3: $2^{m-3}+2^{m-4}+2^{m-4}+2^{m-4}+2^{m-5}+2^{m-5}+2^{m-5}+2^{m-6}+2^{0}$
Step $4: 2^{m-4}+2^{m-5}+2^{m-5}+2^{m-5}+2^{m-5}+2^{m-6}+2^{m-6}+2^{m-6}+2^{m-6}+$ $2^{m-6}+2^{m-6}+2^{m-7}+2^{m-7}+2^{m-7}+2^{m-7}+2^{m-8}+2^{0}$
Step $5: 2^{m-5}+2^{m-6}+2^{m-6}+2^{m-6}+2^{m-6}+2^{m-6}+2^{m-7}+2^{m-7}+2^{m-7}+$ $2^{m-7}+2^{m-7}+2^{m-7}+2^{m-7}+2^{m-7}+2^{m-7}+2^{m-7}+2^{m-8}+2^{m-8}+2^{m-8}+$ $2^{m-8}+2^{m-8}+2^{m-8}+2^{m-8}+2^{m-8}+2^{m-8}+2^{m-8}+2^{m-9}+2^{m-9}+2^{m-9}+$ $2^{m-9}+2^{m-9}+2^{m-10}+2^{0}$
We notice :
According to the step N , if we gather the number of identical powers such as :
Step N: $\sum_{p=N}^{p} \sum_{q=0}^{q} 2^{n-p}+2^{0}$
Example:
At the step 4, we count the occurrences of the differents powers :
Occurrence of $m-4: 1$
Occurrence of $m-5: 4$
Occurrence of $m-6: 6$
Occurrence of $m-7: 4$

Occurrence of $m-8: 1$
We notice the number of occurrences for the powers without agglutinate at the step N corresponds to $N+1$ line of Pascal triangle (Figure 1).

Figure 1. Pascal's triangle
We have also for the p step :
First power : $n-p$
Last power : $n-2 . p$
Number of power : 2^{p}

5 General formula on the agglutinated powers of $\mathbf{2}^{\boldsymbol{m}}+\mathbf{2}^{\mathbf{0}}$

Considerate the uneven number such as: $2^{m}+2^{0}$
We will apply the operation $\frac{3 n+1}{2}$ between each step.
We will not agglutinate the powers such as $2^{m}+2^{m}=2^{m+1}$ to obtain the agglutinated powers.
Step 0: $2^{m}+2^{0}$
Step 1: $2^{m-1}+2^{m-2}+2^{0}$
Step 2: $2^{m-2}+2^{m-3}+2^{m-3}+2^{m-4}+2^{0}$

$$
\begin{aligned}
& =2^{m-2}+2^{m-2}+2^{m-4}+2^{0} \\
& =2^{m-1}+2^{m-4}+2^{0}
\end{aligned}
$$

Step 3: $2^{m-3}+2^{m-4}+2^{m-4}+2^{m-4}+2^{m-5}+2^{m-5}+2^{m-5}+2^{m-6}+2^{0}$
$=2^{m-3}+2^{m-3}+2^{m-4}+2^{m-4}+2^{m-5}+2^{m-6}+2^{0}$

$$
=2^{m-2}+2^{m-3}+2^{m-5}+2^{m-6}+2^{0}
$$

Step 4: $2^{m-4}+2^{m-5}+2^{m-5}+2^{m-5}+2^{m-5}+2^{m-6}+2^{m-6}+2^{m-6}+2^{m-6}+2^{m-6}+$ $2^{m-6}+2^{m-7}+2^{m-7}+2^{m-7}+2^{m-7}+2^{m-8}+2^{0}$
$=2^{m-4}+2^{m-4}+2^{m-4}+2^{m-5}+2^{m-5}+2^{m-5}+2^{m-6}+2^{m-6}+2^{m-8}+2^{0}$
$=2^{m-3}+2^{m-4}+2^{m-4}+2^{m-5}+2^{m-5}+2^{m-8}+2^{0}$
$=2^{m-3}+2^{m-3}+2^{m-4}+2^{m-8}+2^{0}$
$=2^{m-2}+2^{m-4}+2^{m-8}+2^{0}$
Step 5: $2^{m-5}+2^{m-6}+2^{m-6}+2^{m-6}+2^{m-6}+2^{m-6}+2^{m-7}+2^{m-7}+2^{m-7}+2^{m-7}+$
$2^{m-7}+2^{m-7}+2^{m-7}+2^{m-7}+2^{m-7}+2^{m-7}+2^{m-8}+2^{m-8}+2^{m-8}+2^{m-8}+2^{m-8}+$ $2^{m-8}+2^{m-8}+2^{m-8}+2^{m-8}+2^{m-8}+2^{m-9}+2^{m-9}+2^{m-9}+2^{m-9}+2^{m-9}+2^{m-10}+$ 2^{0}

$$
\begin{aligned}
& =2^{m-5}+2^{m-5}+2^{m-5}+2^{m-6}+2^{m-6}+2^{m-6}+2^{m-6}+2^{m-6}+2^{m-6}+2^{m-7}+2^{m-7} \\
& +2^{m-7}+2^{m-7}+2^{m-7}+2^{m-8}+2^{m-8}+2^{m-9}+2^{m-10}+2^{0} \\
& =2^{m-4}+2^{m-5}+2^{m-5}+2^{m-5}+2^{m-5}+2^{m-6}+2^{m-6}+2^{m-7}+2^{m-7}+2^{m-9}+2^{m-10} \\
& \quad+2^{0} \\
& =2^{m-4}+2^{m-4}+2^{m-4}+2^{m-5}+2^{m-6}+2^{m-9}+2^{m-10}+2^{0}
\end{aligned}
$$

$$
=2^{m-3}+2^{m-4}+2^{m-5}+2^{m-6}+2^{m-9}+2^{m-10}+2^{0}
$$

Here the agglutinated powers of the finals steps :
Step 1: $m-1 ; m-2$
Step 2: $m-1 ; m-4$
Step 3:m-2; $m-3 ; m-5 ; m-6$
Step $4: m-2 ; m-4 ; m-8$
Step $5: m-3 ; m-4 ; m-5 ; m-6 ; m-9 ; m-10$
Represent the writing of agglutinated powers under the binary form :
Step 1: 11
Step 2: 1001
Step 3: 11011
Step 4: 1010001
Step 5: 111110011
Let see the representation of binary number under the decimal form :
Step 1:3 $=3^{1}$
Step 2: $9=3^{2}$
Step 3: $27=3^{3}$
Step 4: 81 $=3^{4}$
Step 5: 729 $=3^{5}$
We have :
Agglutinated powers of step $\mathrm{N}=\left(3^{N}\right)_{2}$ with the least significant bit $=(n-2 . N)$
Example :
Step 3 :

$$
\left(3^{3}\right)_{2}=\begin{array}{lllll}
1 & 1 & 0 & 1 & 1
\end{array}
$$

2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
1	1	0	1	1

Table 1. Mapping 3^{3} and agglutinated powers

We take the least significant bit (2^{0})

We apply : $n-2.3=n-6$.
We have :

2^{4}	2^{3}	2^{2}	2^{1}	2^{0}
1	1	0	1	1
$n-2$	$n-3$	$n-4$	$n-5$	$n-6$

Table 2. Mapping 3^{3} and agglutinated powers with powers displayed
For the agglutinated powers of step 3 :

$$
n-2 ; n-3 ; n-5 ; n-6
$$

Which is the case. At the step 3 , the number $2^{m}+2^{0}$ is write :

$$
2^{m-2}+2^{m-3}+2^{m-5}+2^{m-6}+2^{0}
$$

6 Conclusion

Through this paper, we have seen a theoretical number which never land and continually grows under the form $\sum_{n=0}^{\infty} 2^{n}$,

We have made a relation between the number $2^{n}+2^{0}$ and the Pascal's triangle and the binary forms of (3^{m}).
Also the general formula such as uneven and even steps are alternated had been showed.
For another paper we will look at the behaviour for powers greater than n with the number $\sum_{n=0}^{n} 2^{n}$ during the steps $\left(\frac{3 n+1}{2}\right)(2)$.

References

[1] Collatz, Lothar, (1986), On the Motivation and Origin of the (3n+1) problem (Chinese), J. Qufu Normal University, Natural Science Edition [Qufu shi fan da xue xue bao], No. 3, 9-11, page 241.
[2] G. Wirsching, (1998), The Dynamical System Generated by the $3 n+1$ Function. Lecture Notes in Math. 1681. Springer-Verlag, MR1612686 (99g :11027).
[3] J. Lagarias, (1985), The $3 x+1$ problem and its generalizations, Amer. Math. Monthly 92 page 3-23.
[4] Jean-Paul Delahaye, (1998), La conjecture de Syracuse, Pour la Science, No. 247, 100-105
[5] Luc-Olivier Pochon, Alain Favre, (2017) La suite de Syracuse, un monde de conjectures. hal01593181

