Simple prime number determination method for natural numbers including Carmichael numbers

Takamasa Noguchi

2019/12/06

Explanation of effective prime number judgment method even for Carmichael number.[1]

1 introduction

First, this sentence is created by machine translation.[2] There may be some strange sentences.

This judgment method is based on case where $(a^{\frac{n-1}{2}} \equiv x \mod p)$ becomes p - 1. This method of judgment does not give a 100% correct answer. Care must be taken especially for $(n = p^k \ p = Prime)$ with primitive roots.[1]

2 Judgment criteria

P = Prime

2.1
$$P \equiv 1 \pmod{4}$$

 $a_1 + a_2 = p \quad (a > 1)$
 $a_1^{\frac{p-1}{2}} \equiv \alpha \pmod{p}$ $a_2^{\frac{p-1}{2}} \equiv \beta \pmod{p}$

$$b_n \equiv 2$$

$$\frac{p-1}{2} \equiv 2 \pmod{4} \quad \rightarrow \quad (p-b_n)^{\frac{p-1}{2}} \equiv p-1 \pmod{p}$$

$$\frac{p-1}{2} \equiv 0 \pmod{4} \quad \rightarrow \quad (p-b_n)^{\frac{p-1}{2}} \equiv 1 \pmod{p}$$

$$2 < b_n \leq \frac{p-1}{2} \quad (b_n = Odd \ prime)$$

$$p - b_n \equiv c \pmod{b_n} \rightarrow (p - b_n)^{\frac{p-1}{2}} \equiv p - 1 \pmod{p}$$

$$c = (b_n) \text{Quadratic non-residue[3]}$$

$$p - b_n \equiv c \pmod{b_n} \rightarrow (p - b_n)^{\frac{p-1}{2}} \equiv 1 \pmod{p}$$

c = (b_n) Quadratic residue[3]

 $a^n \equiv x \pmod{13}$ (p = 13)

n/a	1	2	3	4	5	6	7	8	9	10	11	12
2	1	4	9	3	12	10	10	12	3	9	4	1
-												
$\frac{p-1}{2}$	1	12	1	1	12	12	12	12	1	1	12	1
-												
p-2	1	7	9	10	8	11	2	5	3	4	6	12
p-1	1	1	1	1	1	1	1	1	1	1	1	1

2.2 $P \equiv 3 \pmod{4}$

 $a_1 + a_2 = p \quad (a > 1)$ $a_1^{\frac{p-1}{2}} \equiv \alpha \pmod{p} \quad a_2^{\frac{p-1}{2}} \equiv \beta \pmod{p}$ $\alpha + \beta = p$

 $a^n \equiv x \pmod{11}$ (p = 11)

n/a	1	2	3	4	5	6	7	8	9	10
2	1	4	9	5	3	3	5	9	4	1
$\frac{p-1}{2}$	1	10	1	1	1	10	10	10	1	10
р-2 р-1	1 1	6 1	4 1	3 1	9 1	2 1	8 1	7 1	5 1	10 1

3 Judgment method

3.1
$$n \equiv 3 \pmod{4}$$
 $(n > 17)$
(1) $a^{n-1} \equiv x \pmod{n}$ $a = \{2, 3, 5, 7, 11, 13\}$
 $\vdash --- \rightarrow \qquad x \neq 1 \qquad \rightarrow \qquad non - Prime$
 \downarrow
 $x = 1 \qquad \rightarrow \qquad OK$

$$\begin{cases} x_2^{\frac{n-1}{2}} \not\equiv n-1 \pmod{n} & \to \quad non-Prime \\ x_2^{\frac{n-1}{2}} \equiv n-1 \pmod{n} & \to \quad OK \end{cases}$$

$$\begin{array}{l} x_{1} = 1 \\ k^{\frac{n-1}{2}} \equiv x_{3} \pmod{n} \\ & \vdash --- \rightarrow \qquad x_{3} \neq n-1 \qquad \rightarrow \qquad non-Prime \\ & \downarrow \\ x_{3} = n-1 \\ k^{n-2} \equiv x_{4} \pmod{n} \\ & \downarrow \\ \begin{cases} x_{4}^{\frac{n-1}{2}} \neq n-1 \pmod{n} \rightarrow \qquad non-Prime \\ x_{4}^{\frac{n-1}{2}} \equiv n-1 \pmod{n} \rightarrow \qquad OK \end{cases}$$

ALL OK \rightarrow Prime

3.2
$$n \equiv 1 \pmod{4}$$
 $(n > 17)$
(1) $a^{n-1} \equiv x \pmod{n}$ $a = \{2, 3, 5, 7, 11, 13\}$
 $\vdash --- \rightarrow \quad x \neq 1 \quad \rightarrow \quad non - Prime$
 \downarrow
 $x = 1 \quad \rightarrow \quad OK$

(2)
$$b_n = 2$$

 $\frac{n-1}{2} \equiv x_1 \pmod{4}$
 \downarrow
 $x_1 = 2$
 $(n-b_n)^{\frac{n-1}{2}} \equiv x_2 \pmod{n}$
 $\vdash --- \rightarrow \quad x_2 \neq n-1 \quad \rightarrow \quad non-Prime$
 \downarrow
 $x_2 = n-1$
 $(n-b_n)^{n-2} \equiv x_3 \pmod{n}$
 \downarrow
 $\begin{cases} x_3^{\frac{n-1}{2}} \not\equiv n-1 \pmod{n} \quad \rightarrow \quad non-Prime$
 $x_3^{\frac{n-1}{2}} \equiv n-1 \pmod{n} \quad \rightarrow \quad OK$

(3)
$$2 < b_n \leq \frac{n-1}{2}$$
 $b_n = Odd \ prime = \{3, 5, 7, \dots\}$

$$n - b_n \equiv c \pmod{b_n} \quad \leftarrow - - - - - - - - b_{n+1} > b_n$$

$$\vdash - - - - - - - - b_n + 1 > b_n$$

$$c = (b_n) Quadratic non - residue \qquad c = (b_n) Quadratic residue \qquad \uparrow$$

$$(n - b_n)^{\frac{n-1}{2}} \equiv x_1 \pmod{n} \qquad \qquad \downarrow \qquad \downarrow$$

$$x_1 = n - 1$$

$$(n - b_n)^{n-2} \equiv x_2 \pmod{n}$$

$$\downarrow$$

$$\begin{cases} x_2^{\frac{n-1}{2}} \neq n - 1 \pmod{n} \quad \rightarrow \quad non - Prime$$

$$\begin{cases} x_2^{\frac{n-1}{2}} \neq n - 1 \pmod{n} \quad \rightarrow \quad non - Prime$$

$$\begin{cases} x_2^{\frac{n-1}{2}} \equiv n - 1 \pmod{n} \quad \rightarrow \quad non - Prime$$

$$\begin{cases} x_2^{\frac{n-1}{2}} \equiv n - 1 \pmod{n} \quad \rightarrow \quad OK \end{cases}$$

(1) \rightarrow *ALL OK*, (2) + (3) \rightarrow *OK* \geq 2 \rightarrow *Prime* If $(n - b_n \equiv c \mod b_n)$ is all Quadratic residue, it is not a prime number.

If n is very large and the judgment times is limited, set b_n to $(b_n \leq 101)$. I think there are very few prime where $(n - b_n \equiv c \mod b_n)$ $(b_n \leq 101)$ is all Quadratic residue.

4 Memo

$$p \equiv 1 \pmod{4}$$

$$\frac{p-1}{2} \equiv 2 \pmod{4} \rightarrow (p-2)^{\frac{p-1}{2}} \equiv 2^{\frac{p-1}{2}} \equiv p-1 \pmod{p}$$

$$p \equiv 1 \pmod{4} \begin{cases} p \equiv 1 \pmod{8} \rightarrow \frac{p-1}{2} \equiv 2 \pmod{4} \\ p \equiv 5 \pmod{8} \rightarrow \frac{p-1}{2} \equiv 0 \pmod{4} \\ p \equiv 3 \pmod{4} \rightarrow p \equiv 3,7 \pmod{8} \end{cases}$$

I think $(p \equiv 1 \mod 8)$ is infinite. However, $(2^{\frac{p-1}{2}} \equiv p-1 \mod p)$ is not necessarily primitive roots.

References

- [1] https://translate.google.com google translation
- [2] S.Serizawa 『Prime Number Primer~Understand while calculating~』
 Kodansha company 2002 (230-258)
- [3] Y.Yasufuku 『Accumulating discioveries and anticipation -That is number theory』 Ohmsha company 2016 (64-102)

ehime-JAPAN