Simple prime number determination method for natural numbers including Carmichael numbers

Takamasa Noguchi

2019/12/06

Explanation of effective prime number judgment method even for Carmichael number.[1]

1 introduction

First, this sentence is created by machine translation.[2] There may be some strange sentences.

This judgment method is based on case where $\left(a^{\frac{n-1}{2}} \equiv x \bmod p\right)$ becomes $p-1$. This method of judgment does not give a 100% correct answer. Care must be taken especially for ($n=p^{k} \quad p=$ Prime) with primitive roots.[1]

2 Judgment criteria

$P=$ Prime

2.1 $P \equiv 1(\bmod 4)$

$$
\begin{aligned}
& a_{1}+a_{2}=p \quad(a>1) \\
& a_{1}^{\frac{p-1}{2}} \equiv \alpha(\bmod p) \quad a_{2}^{\frac{p-1}{2}} \equiv \beta(\bmod p) \\
& \alpha=\beta \\
& b_{n}=2 \\
& \frac{p-1}{2} \equiv 2(\bmod 4) \quad \rightarrow \quad\left(p-b_{n}\right)^{\frac{p-1}{2}} \equiv p-1(\bmod p) \\
& \frac{p-1}{2} \equiv 0(\bmod 4) \quad \rightarrow \quad\left(p-b_{n}\right)^{\frac{p-1}{2}} \equiv 1 \quad(\bmod p) \\
& 2<b_{n} \leqq \frac{p-1}{2} \quad\left(b_{n}=\text { Odd prime }\right) \\
& p-b_{n} \equiv c\left(\bmod b_{n}\right) \quad \rightarrow \quad\left(p-b_{n}\right)^{\frac{p-1}{2}} \equiv p-1 \quad(\bmod p)
\end{aligned}
$$

$\mathrm{c}=\left(b_{n}\right)$ Quadratic non-residue[3]
$\underset{\mathrm{c}=}{p-b_{n} \equiv c\left(\bmod b_{n}\right) \text { Quadratic residue[3] }} \rightarrow \quad\left(p-b_{n}\right)^{\frac{p-1}{2}} \equiv 1 \quad(\bmod p)$

$a^{n} \equiv x$												$(\bmod 13)$
n/a	1	2	3	4	5	6	7	8	9	10	11	12
2	1	4	9	3	12	10	10	12	3	9	4	1
-												
$\frac{p-1}{2}$	1	12	1	1	12	12	12	12	1	1	12	1
-												
p-2	1	7	9	10	8	11	2	5	3	4	6	12
p-1	1	1	1	1	1	1	1	1	1	1	1	1

2.2 $P \equiv 3(\bmod 4)$

$$
a_{1}+a_{2}=p \quad(a>1)
$$

$$
a_{1}^{\frac{p-1}{2}} \equiv \alpha(\bmod p) \quad a_{2}^{\frac{p-1}{2}} \equiv \beta(\bmod p)
$$

$$
\alpha+\beta=p
$$

$$
a^{n} \equiv x(\bmod 11) \quad(p=11)
$$

n / a	1	2	3	4	5	6	7	8	9	10
2	1	4	9	5	3	3	5	9	4	1

$\frac{p-1}{2}$	1	10	1	1	1	10	10	10	1	10

p-2	1	6	4	3	9	2	8	7	5	10
p-1	1	1	1	1	1	1	1	1	1	1

3 Judgment method

$3.1 n \equiv 3(\bmod 4) \quad(n>17)$
(1) $a^{n-1} \equiv x(\bmod n) \quad a=\{2,3,5,7,11,13\}$

$$
\begin{aligned}
& \vdash---\rightarrow \quad x \neq 1 \quad \rightarrow \quad \text { non-Prime } \\
& \downarrow \\
& x=1 \quad \rightarrow \quad \text { OK }
\end{aligned}
$$

(2) $(n-k)^{\frac{n-1}{2}} \equiv x_{1}(\bmod n) \quad k=\{2,3,4,5,7\}$

$$
\begin{array}{ccccc}
\vdash-- & --\rightarrow & x \neq 1, n-1 & \rightarrow & \text { non }- \text { Prime } \\
\downarrow & \downarrow & & & \\
x_{1}=n-1 & x_{1}=1 & & & \\
(n-k)^{n-2} \equiv x_{2} & (\bmod n) & &
\end{array}
$$

$3.2 n \equiv 1(\bmod 4) \quad(n>17)$
(1) $a^{n-1} \equiv x(\bmod n) \quad a=\{2,3,5,7,11,13\}$

$$
\begin{aligned}
& \vdash---\rightarrow \quad x \neq 1 \quad \rightarrow \quad \text { non-Prime } \\
& \downarrow \\
& x=1 \quad \rightarrow \quad \text { OK }
\end{aligned}
$$

(2) $b_{n}=2$

$$
\frac{n-1}{2} \equiv x_{1}(\bmod 4)
$$

$$
\downarrow
$$

$$
\begin{gathered}
x_{1}=2 \\
\left(n-b_{n}\right)^{\frac{n-1}{2}} \equiv x_{2}(\bmod n)
\end{gathered}
$$

$$
\vdash---\rightarrow \quad x_{2} \neq n-1 \quad \rightarrow \quad \text { non - Prime }
$$

$$
\downarrow
$$

$$
\begin{aligned}
& x_{2}=n-1 \\
& \left(n-b_{n}\right)^{n-2} \equiv x_{3}(\bmod n) \\
& \quad \downarrow \\
& \left\{\begin{array}{lll}
x_{3}^{\frac{n-1}{2}} \not \equiv n-1 & (\bmod n) & \rightarrow \\
\\
x_{3}^{\frac{n-1}{2}} \equiv n-1 & (\bmod n) & \rightarrow \\
\text { non }
\end{array}\right. \\
&
\end{aligned}
$$

(3) $2<b_{n} \leqq \frac{n-1}{2} \quad b_{n}=$ Odd prime $=\{3,5,7, \ldots\}$

$$
\begin{aligned}
& \left\{\begin{array}{lll}
\frac{\downarrow}{\frac{n-1}{2}} \neq n-1 & (\bmod n) & \rightarrow \\
\text { non-Prime } \\
x_{2}^{\frac{n-1}{2}} \equiv n-1(\bmod n) & \rightarrow & \text { OK }
\end{array}\right. \\
& x_{1}=1 \\
& k^{\frac{n-1}{2}} \equiv x_{3}(\bmod n) \\
& \vdash---\rightarrow \quad x_{3} \neq n-1 \quad \rightarrow \quad \text { non }- \text { Prime } \\
& \downarrow \\
& x_{3}=n-1 \\
& k^{n-2} \equiv x_{4}(\bmod n) \\
& \left\{\begin{array}{lll}
x_{4}^{\frac{n-1}{2}} \not \equiv n-1(\bmod n) & \rightarrow & \text { non-Prime } \\
x_{4}^{\frac{n-1}{2}} \equiv n-1(\bmod n) & \rightarrow & \text { OK }
\end{array}\right. \\
& \text { ALL OK } \quad \rightarrow \quad \text { Prime }
\end{aligned}
$$

```
\(n-b_{n} \equiv c\left(\bmod b_{n}\right) \leftarrow--------------b_{n+1}>b_{n}\)
\(c=\left(b_{n}\right)\) Quadratic non - residue \(\quad c=\left(b_{n}\right)\) Quadratic residue
\(\left(n-b_{n}\right)^{\frac{n-1}{2}} \equiv x_{1}(\bmod n)\)
    \(\vdash \rightarrow x_{1} \neq n-1 \rightarrow\) non-Prime
    \(\downarrow\)
    \(x_{1}=n-1\)
\(\left(n-b_{n}\right)^{n-2} \equiv x_{2}(\bmod n)\)
    \(\left\{\begin{array}{lll}x_{2}^{\frac{n-1}{2}} \not \equiv n-1(\bmod n) & \rightarrow & \text { non-Prime } \\ x_{2}^{\frac{n-1}{2}} \equiv n-1(\bmod n) & \rightarrow & \text { OK }\end{array}\right.\)
```

（1）\rightarrow ALL OK，（2）+ （3）\rightarrow OK $\geqq 2 \rightarrow \quad \rightarrow \quad$ Prime If $\left(n-b_{n} \equiv c \bmod b_{n}\right)$ is all Quadratic residue，it is not a prime number．

If n is very large and the judgment times is limited，set b_{n} to $\left(b_{n} \leqq 101\right)$ ．
I think there are very few prime where $\left(n-b_{n} \equiv c \bmod b_{n}\right)\left(b_{n} \leqq 101\right)$ is all Quadratic residue．

4 Memo

$$
p \equiv 1(\bmod 4)
$$

$$
\begin{aligned}
& \frac{p-1}{2} \equiv 2(\bmod 4) \rightarrow(p-2)^{\frac{p-1}{2}} \equiv 2^{\frac{p-1}{2}} \equiv p-1(\bmod p) \\
& p \equiv 1(\bmod 4) \quad\left\{\begin{array}{l}
p \equiv 1(\bmod 8) \\
p \equiv 5(\bmod 8)
\end{array} \rightarrow \frac{p-1}{2} \equiv 2(\bmod 4)\right. \\
& p \equiv 3(\bmod 4) \quad \rightarrow \quad p \equiv 3,7(\bmod 8)
\end{aligned}
$$

I think $(p \equiv 1 \bmod 8)$ is infinite．
However，$\left(2^{\frac{p-1}{2}} \equiv p-1 \bmod p\right)$ is not necessarily primitive roots．

References

［1］https：／／translate．google．com google translation
［2］S．Serizawa 『Prime Number Primer～Understand while calculating～』 Kodansha company 2002 （230－258）
［3］Y．Yasufuku『Accumulating discioveries and anticipation
－That is number theory』 Ohmsha company 2016 （64－102）
ehime－JAPAN

