Abstract

With the vector form of ζ, RH's validity is direct.

1 Introduction

2 Proof

Let:

$$
\begin{aligned}
& V(c)=\left(v_{1}(c), v_{2}(c), v_{3}(c), \ldots\right) \text { where } v_{n}(c)=n^{-c} \text { for } c \in \mathbb{C} \\
& \sigma=a+i t \\
& \text { o be Hadamard product and } \bullet \text { be dot product } \\
& C O S=(\cos (t \ln (1)), \cos (t \ln (2)), \cos (t \ln (3)), \ldots) \\
& \delta \text { be any real value }
\end{aligned}
$$

and take note of the identity:

$$
n^{\sigma}=n^{a} \cos (t \ln (n))+i \sin (t \ln (n))
$$

If $\sigma+\delta^{\dagger}$ and σ are both ζ roots, then $\zeta(\sigma)=\Sigma_{n=1}^{\infty} n^{a}(\cos (t \ln (n))+i \sin (t \ln (n)))=$ $(V(a) \circ C O S) \bullet V(0)+i((V(a) \circ \ldots) \bullet V(0))=0$. But for a complex number to be zero, both the real and imaginary components will have to be simultaneously zero. Therefore:

$$
\begin{array}{ll}
\Sigma_{n=1}^{\infty} n^{a}(\cos (t \ln (n))=0 & \left(\text { and } \Sigma_{n=1}^{\infty} n^{a} \sin (t \ln (n))=0\right) \\
\Sigma_{n=1}^{\infty} n^{a} n^{\delta}(\cos (t \ln (n))=0 & \left.\left(\text { and } \Sigma_{n=1}^{\infty} n^{a} n^{\delta} \sin (t \ln (n))\right)=0\right)
\end{array}
$$

It can be observed that the following vectors

$$
\begin{align*}
& V(a) \circ C O S \tag{1}\\
& V(a) \circ V(\delta) \circ C O S \tag{2}\\
& V(\beta)^{\ddagger} \tag{3}
\end{align*}
$$

are linearly independent, so not coplanar ${ }^{\dagger \dagger}$ (unless $\delta=0$). (Q. E. D.)

[^0]
[^0]: ${ }^{\dagger}$ We ignore the symmetry and prove, equivalently, that there can not be more than one root among complex numbers with the same non-zero imaginary part it.
 ${ }^{\ddagger} V(\beta) \bullet V(0)=(V(\alpha+\delta)-V(\alpha)) \bullet V(0)$ for some β, observing that $V(x-y) \neq V(x)-V(y)$.
 ${ }^{\dagger} \dagger$ If the assumption (of two distinct symmetric roots) holds, the dot products of (1), (2) and (3) with $V(0)$ will have to all result in 0 , so (1), (2) and (3) will have to be all orthogonal to $V(0)$, implying they need be coplanar.

