An theorem about square root

Shinichi Kumakura, Rose Redrabbit

19 December 2019

Abstract

Use Properties of exponents and Characteristic equation to derive an formula of square root. Keyword: Square root

1.Introduction

if $\sqrt{a \sqrt{a \sqrt{a}}} \ldots$ (there are n square roots piled up), how to get the value easier.

2.Inference

$\sqrt{a}=a^{\frac{1}{2}}$
\Downarrow
$\sqrt{a \sqrt{a}}=\left(a \times a^{\frac{1}{2}}\right)^{\frac{1}{2}}=a^{\frac{3}{4}}$
\Downarrow
$\sqrt{a \sqrt{a \sqrt{a}}}=\left[a\left(a \times a^{\frac{1}{2}}\right)^{\frac{1}{2}}\right]^{\frac{1}{2}}=a^{\frac{7}{8}}$
Let us pay attention to a's exponents, we can find the rules:
the numerator's value=the denominator's value-1
the denominator's value $=2^{n}$ (\boldsymbol{n} is the number of root)
And invent a theorem according to the rules:
The value of $\sqrt{a \sqrt{a \sqrt{a}}} \ldots$ will be
$a^{\frac{2^{n}-1}{2^{n}}}$

3.Proof

Let pick up the Exponents and make $\frac{2^{n}-1}{2^{n}}=b_{n}$.
if

$$
\begin{gathered}
n=1 \quad b_{1}=\frac{1}{2} \\
n=2 \quad b_{2}=\frac{1}{2}\left(1+\frac{1}{2}\right)=\frac{1}{2}\left(1+b_{1}\right) \\
n=3 \quad b_{3}=\frac{1}{2}\left[1+\frac{1}{2}\left(1+\frac{1}{2}\right)\right]=\frac{1}{2}\left(1+b_{2}\right) \\
\vdots \\
n=k(k \in \mathbb{Z}) \quad b_{k}=\frac{1}{2}\left(1+b_{k-1}\right) \\
\downarrow \\
b_{n}=\frac{1}{2}\left(1+b_{n-1}\right) \ldots(1)
\end{gathered}
$$

Let use $2 \times \frac{3}{4}=1+\frac{1}{2}$ find the answer.
$2 b_{n}=1+b_{n-1}$
$-) 2 \times \frac{3}{4}=1+\frac{1}{2}$
$2\left(b_{n}-\frac{3}{4}\right)=b_{n-1}-\frac{1}{2}$
$b_{n}-\frac{3}{4}=\frac{b_{n-1}}{2}-\frac{1}{4}$
$b_{n}=\frac{1}{2}\left(1+b_{n-1}\right)$
$=(1)$
$=\frac{2^{n}-1}{2^{n}}$
Q.E.D

Remark

Understand that the square root and Squaring are inverse.
if
$n \leqq 0$
ex.

$$
n=-1 \quad a^{\frac{2^{-1}-1}{2^{-1}}}=a^{\frac{\frac{-1}{2}}{\frac{1}{2}}}=a^{-1}
$$

The ex. contradit the property, so we need to add the range limits:

$$
n>0
$$

4.Conclusions

The value of $\sqrt{a \sqrt{a \sqrt{a}}} \ldots$ (there are n square roots piled up) will be

$$
a^{\frac{2^{n}-1}{2^{n}}}(n \in \mathbb{Z}, n>0)
$$

