
1 
 

Quantized speeds hidden within the relativistic Dirac energy levels of the H atom 

 

John Suss 

 

 

There is a hidden construction scheme within the relativistic Dirac energy levels of the H atom. 
Internal quantized speeds appear in the expression for the levels so that they have the form of 

mass times quantized speeds. It is possible to represent the levels in terms of normals to a 

hyperboloid of one-sheet or normals to a hyperboloid of two-sheet in Minkowski space-time. 

The energy levels reside in the tangent space of either hyperboloids, depending on the choice of 

representation. The normals do not have defined directions, they really represent entire cone-like 

regions making quantized hyperbolic angles with the axis of either hyperboloid. The projections 

of the normals quantize the time-like direction in integral or optionally, half integral units of 1/α  

if the hyperboloid of two-sheet is chosen. It quantizes any space-like direction in integral or 

optionally, half integral units of 1/α if the hyperboloid of one-sheet is chosen. 

 

I. INTRODUCTION 

 

The relativistic Dirac energy levels of the hydrogen and hydrogen-like atoms have been 

extensively studied. 
(1, 3)  

It seems to have been unnoticed in the literature that, with the proper 

parametrization, the energy levels can be represented in terms of quantized speeds. In this work, 

it is shown that the energy levels  En , j + 1/2     can be expressed as  Mc²(vn , j + 1/2)/c .  So there is a 

mechanical-like representation of the energy levels. The difference of two energy levels is 

observable. With the new quantized speeds, whose differences are also quantized speeds, it is 

seen that whereas light emitted or absorbed by the H atom is ordinary light moving at speed c, 

but inside of the H atom light has quantized speeds which depend on which energy levels are 

involved in the emission or absorption. The wavelength of light inside the atom is fixed. It is 

proportional to the classical radius of the electron proton reduced mass system. The details are 

explained in the next section.  

II.  SIMPLE GEOMETRIC CONSTRUCTION BEHIND THE DIRAC ENERGY         

LEVELS OF THE H ATOM 

                                                                                                                                                                 

   The quantized energy levels can be written as 
(1, 3)

 :  

Enm/c  =  Mc {1+[nm]
-2 

}
-1/2 

,                   (1)      

Where the expression   [nm] is given by :     

[nm] = {n/α – m/α + [m
2
/α

2 
– 1]

1/2
 }.                (2)   

   In this last expression, α  is  the fine structure constant, m is  j + 1/2, where  j  is the total 

angular momentum number, including spin. The principal quantum number n  takes the values 

1,2,3,…infinity and m = 1,2,3,…,n, is nested  within n.                                     The expression for 
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[nm] contains three terms. The first one involves n, the other two involve m. This suggests that 

we define hyperbolic angles Θm by :  

      coshΘm  = m/α,                      (3)  

sinhΘm = [m
2
/α

2
 – 1]

1/2
 .                             (4)    

This is possible if  coshΘm is greater or equal to one for all m.  Since the inverse of the fine 

structure constant is equal to 137.037, this condition is automatically satisfied. The first term in 

[nm] suggests that we define hyperbolic angles Θn  by : 

coshΘn = n/α,                                             (5) 

sinhΘn = [ n
2
/α

2
 –1 ]

1/2
.                    (6)  

Equation (2) now becomes :            

[nm] = coshΘn – coshΘm  + sinhΘm .                     (7)    

Now define the angles Θnm  by :    

sinhΘnm  = coshΘn  – coshΘm  + sinhΘm ,                (8)           

    sinhΘnn  = sinhΘn .                  (9)     

One has :                 

[nm] = sinhΘnm ,                (10)    

Therefore :              

Enm/c =  Mc [ 1+( sinhΘnm )
-2

 ]
-1/2 

 =  Mc tanhΘnm .           (11)  

   The above expression gives the energy levels in terms of quantized hyperbolic tangents. It is 

always possible to equate a hyperbolic tangent to an effective speed. In this sense, we can define 

effective (virtual) internal speeds:             

vnm/c = tanhΘnm .                (12) 

The energy levels become:      

Enm/c  = Mc vnm/c  = Mc tanhΘnm  .            (13) 

   The binding energy is – Mc [ 1 – vnm/c ]. The free state Mc occurs at  vnm = c. The principal 

quantum energy levels are obtained of course by setting n = m.                                        

   With the quantized speeds vnm, the Dirac energy levels begin to take on the appearance of a 

kind of mechanical system. We can pursue this idea further by defining:     

Mc[nm] = Mc sinhΘnm  = Mc vnm/c {1– vnm
2
 / c

2
}

-1/2  
= Pnm ,        (14)    

and         
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Mc coshΘnm  =  Mc {1– vnm
2
 / c

2
}

-1/2    
=   εnm/c .           (15)    

We see that the Mc coshΘnm has the form of an internal fourth component of relativistic 

momentum and that Mc sinhΘnm has the form of an internal relativistic 3-momentum. The ratio 

of the two gives: 

Pnm c / εnm  =  vnm /c .            (16)    

The energy levels are:               

Enm /c  =  Mc
2
 Pnm / εnm  .                (17) 

We also have:              

ε²nm/c
2
    =  P

2
nm  +  M

2  
c

2   
.
 
            (18)                    

 When    n = m ,     we get:    

εn  /c  =  Mc n/α ,                              (19)                  

Pn  =  Mc  [n²/α² – 1 ]
1/2  

.
     

                                        (20)    

We see that it is the “fourth component” of the internal relativistic energy “4 - vector” which is 

quantized in integral numbers.   

   It is instructive to write the energy levels in a variety of mechanical-like forms in order to be 

able to compare them more clearly with ordinary relativistic mechanics.                                                                                                                          

 

We have: 

Pnm  =  [ (εn  – εm )/c + Pm ] ,                       (21) 

εnm /c  =  {[(εn – εm )/c + Pm ]² + M² c²}
1/2 

.        (22)                           

When  n  =  m  we have:    

εn /c = {P²n  +  M² c²}
1/2 

 .
 
                               (23)   

Compare with Eq. (18). The energy levels Enm /c are the ratio of Eqs. (21, 22) times Mc².  

   Equations (17, 21, 22) show that the energy levels are constructed entirely out of εn and εm 

which are quantized in integral numbers. If we think of εn and εm as masses, because of the 

equivalence between mass and energy, we see that εn and εm are quantized multiples of 137.037 

times the mass of the electron.  The energy levels themselves, viewed as masses, are much tinier 

masses. We have an example of very small masses (the energy levels of the hydrogen atom) 

constructed out of much larger masses (integral multiples of 137.037 times the mass of the 

electron).                       
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If  n  = m  we get:         

En  /c  =  Mc Pn  /{P²n  + M² c²}
1/2 

.
     

        (24)    

   It is possible to rewrite the expressions for Pnm, εnm /c, Enm  /c  in yet another way.          Since: 

coshΘm – sinhΘm = ℮
-Θm

 ,                        (25) 

one has :   

sinhΘnn – sinhΘnm  =   [℮
-Θm

  –  ℮
-Θn

 ] ,            (26)       

so that :              

Mc [ sinhΘnn – sinhΘnm ] = Mc [ ℮
-Θm

 –  ℮
-Θn

 ] .            (27)  

We can therefore rewrite Eqs. (21, 22) in terms of Mc ℮- 
Θm

 and Mc ℮
- Θn   

. The energy levels 

given by Eq. (17) can therefore also be expressed in terms of these “exponential masses”.  

   Up to now, only the energy levels which are unobservable have been discussed. The difference 

between two energy levels are observable. We can rewrite the difference between any two 

energy levels in a variety of interesting ways.  

 

We have: 

En’m’ /c – Enm  /c  =  Mc (vn’m’ /c – vnm  /c)   

= Mc (tanhΘn’m’ – tanhΘnm)    

= Mc sinh (Θn’m’  –  Θnm ) / coshΘn’m’ coshΘnm .                 (28)            

   The difference  between two energy levels  involves the difference of the angles                 

(Θn’m’  –  Θnm )  as well as the angles Θn’m’ , Θnm .  

   Is it possible to find an effective quantized speed for the difference between two energy levels?  

Define: 

 tanhΘn’m’ ; nm   = [  tanhΘn’m’  –   tanhΘnm   ] .            (29) 

We first must make sure that tanhΘn’m’ ; nm always lies between 0 and 1.  The difference of energy 

levels can be equal to 0. It would mean that there is no emission or absorption of light.  The 

greatest difference of energy levels is the difference between the free state Mc and the ground 

state E1 /c. The absolute value of               Mc tanhΘn’m’ ; nm   varies from 0 to Mc  – E1 /c. We can 

therefore write:  

En’m’ /c – Enm  /c  =  Mc tanhΘn’m’ ; nm = Mcvn’m’ ; nm/c .     (30) 
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This defines a new effective quantized speed which can be used for the difference between 

energy levels. This speed is measurable.  

   We can also represent the difference between any two energy levels in terms of effective 

quantized virtual accelerations. Putting Mc= e
2
/cLo , where Lo is the classical radius of the 

electron,  one obtains: 

En
,
m

,
/c – Enm /c = e

2
/c [vn

,
m

, 
 –vnm ]/cLo ,                       (31) 

with cTo  =  Lo  and e
2
/c = ћα ,  one has the acceleration-like term :  

    En
,
m

,
/c – Enm /c =  ћα [vn

,
m

, 
 –vnm ]/c

2
To .                     (32)  

In the case of the principal energy levels, we can make connections between the εn /c and 

harmonic oscillators. Using Eq. (19), we have: 

    εn /c = nћα/Lo .          (33) 

In this form, the “fourth component of the quantized four-vector” εn /c takes the form of a 

harmonic oscillator. The same is of course true of εm /c.  

 

 III   The energy levels and undetermined  “4 - vectors “. Representations with  hyperboloids of  

one-sheet  or  two-sheet.  

We observe that the combination  [Pnm , εnm/c  ]  and  [Mc, Enm /c ]   can be considered as time-like “4-

vectors” except for the fact that there are no defined time-like or space-like directions. We can 

nevertheless define an undetermined unit time-like  “4-vector”  Û  and an undetermined unit “4-vector”   

Â   such that    Â. Û  = 0    ;    Â. Â  =  1    ;   Û. Û  = – 1    ;  We can think of the “vector”    Â   as 

representing the totality of all unit “4-vectors” perpendicular to a given Û and then repeating the process 

for all possible Û directions.  

We can then define :   Pnm = Pnm Â + εnm/c Û   (1.a)       Pnm*  =  εnm /c Â   + Pnm Û    (1.b)       

We also have    Enm/c  =  Enm /c Â + Mc Û      (2.a)        Enm*/c  =  Mc Â  + Enm /c Û    (2.b)      

Therefore,       

Pnm  =  Mc [sinhΘnm Â + coshΘnm Û]     (3.a)      Pnm * = Mc [coshΘnm  Â  + sinhΘnm  Û]    (3.b)  

Enm/c = Mc [tanhΘnm   Â + Û ]     (4.a)          Enm*/c = Mc [Â + tanhΘnm Û]     (4.b)    

Equations  (3.a, b) suggest that one should define two perpendicular unit “4-vectors”   Ânm  and Ûnm  .                                                                                                                                    

Ânm  = [coshΘnm  Â  + sinhΘnm  Û]       (5.a)     Ûnm  =  [sinhΘnm Â + coshΘnm Û]     (5.b)     

We see that the undetermined perpendicular unit “4-vectors”   Ânm ,   Ûnm   are connected to      Â , Û 

through what looks formally like  Lorentz transformations through the angles  Θnm . Equations (3 a, b) and 

(4.a, b) can now be written as :  
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Pnm  =  Mc Ûnm     (6a)       Pnm * =  Mc Ânm  (6b)                                                                              

Enm /c = (Mc / coshΘnm ) Ûnm    (6c)       Enm* /c = (Mc/coshΘnm ) Ânm     (6d)     

Note that      Mc / coshΘnm  =  Mc sechΘnm       resembles a quantized 4-vector potential.  

Every mass discussed so far:  Mc,  Mc sinhΘnm ,  Mc coshΘnm ,  Mc tanhΘnm ,  Mc sechΘnm ,  

Mc e 
–Θnm 

 , can be multiplied by  Â, Û, Ânm , Ûnm   to make time-like or space-like “4-vectors”.  

We can also multiply by      (Û + Â)  or  (Ûnm  + Ânm )  to make null  “4-vectors”.   

Thus we can have as null “4-vectors” :                                                                                                     

εnm/c  (Û + Â) , Pnm (Û + Â) , Mc (Û + Â) , Enm/c (Û + Â) , etc. and the same with (Ûnm  + Ânm ).   

Note that   Enm/c (Û + Â)  gives us the energy levels as a null “4-vector”. This enables us to  write the 

difference of any two energy levels as null “4-vectors”.  We can understand the meaning of the above 

equations by using a hyperboloid of two-sheet or a hyperboloid of one-sheet imbedded in Minkowski 

space-time each with axis in the Û direction.                                                                                                                                                            

a) Representation with a hyperboloid of two-sheet.                                                                          

If we use the hyperboloid of two-sheet, its axis is in the future Û direction.  The Ûnm  will be unit normals 

to the hyperboloid making angles  Θnm  with the Û direction, all drawn from a center O.                                                                                                                                      

The projection of   Ûnm  onto the Û axis will be coshΘnm  , i.e.  (Ûnm  . Û ) Û = coshΘnm Û     (7)    If  Ûnm  

and  Û   were fully specified 4-vectors, then    sinhΘnm  Â     would be the component of Ûnm  perpendicular 

to Û , but the direction  Â  is not fully defined, only the angle Θnm     is. Therefore, take all possible 

directions  Â   making an angle   Θnm  around   Û.  This describes cones centered at O cut by spheres of 

radii  sinhΘnm   which lies on the hyperboloid of two-sheet.  The quantized momentum    Pnm Â  =  Mc 

sinhΘnm  Â  is generated  by the intersection of the cones and the hyperboloid. The axis of the hyperboloid 

can be any axis  Û  from center O . Even without specified directions, the angles Θnm  and the cones’ 

intersections with the hyperboloid remain. In the tangent space of the hyperboloid, the cones’ 

intersections are spheres of radii  tanhΘnm   in all possible directions  Â  .  When multiplied by  Mc  this 

gives us the energy levels.   (Enm  /c ) Â   =  Mc tanhΘnm  Â       (8)   . The free state, in the tangent space of 

the hyperboloid centered at O, is :   Mc (Û + Â)  . The mass   Mc is therefore represented as a light cone 

which intersect the tangent space in a sphere of radius  Mc.                                                                                                                     

If     n = m       then  coshΘnm   =  coshΘn   =  n/ α  .        n = 1, 2, 3…                            

The virtual time along the axis    Û   is therefore measured in integral multiple of    1/α  .  So, 

superficially, one could say that time has been quantized.  This phrase is potentially misleading, however, 

and should be used with care.     εnm/c  therefore becomes    εn/c  =  Mc (n/α)  .     If we think of  εn/c   as 

an auxiliary  mass from which the energy levels are obtained, we can see that  ε1   is 137 Mc²  so it is 

much larger than   Mc².  The other  εn   are even larger.    We see that, even in the case of the energy levels 

of the H atom, smaller masses are obtained from larger masses. In the case of the  H atom, it is simply 
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because   sinhΘnm    is projected onto the tangent space of the hyperboloid of two-sheet through a central 

projection and becomes   tanhΘnm  . 

b) Representation with a hyperboloid of one-sheet. 

We can use a hyperboloid of one-sheet to represent the energy levels.  The hyperboloid is centered  at O.  

Its axis is in the direction  Û  and its unit normals are given by  Â  and the  Ânm  .  The angles  Θnm  are 

now the angles between the horizontal axis  Â  and the normals  Ânm .  εnm/c   can now be assigned a 

direction  Â  to become the “4-vector”     εnm/c  Â .     Pnm   then has direction  Û   and becomes the “4-

vector”  Pnm  Û .  Since  Â  represents all possible directions perpendicular to  Û  , the normals   Ânm   form 

cones with axis  Û  which make angles   Θnm   with  Â  .   The cones  cut the hyperboloid of one-sheet in 

spheres of radii   coshΘnm   .                                                                                                                                   

The energy levels are harder to visualize.  They lie in the tangent space of the hyperboloid of one-sheet. 

The tangent space is a cylinder whose axis is in the  Û  direction.  Its basis is a sphere of radius 1 if unit 

vectors are used or  Mc  if the masses are used.  The energy levels are given by :        (Enm  /c ) Û   =  Mc 

tanhΘnm  Û          (9)  .    If  n  = m , coshΘnm  =  coshΘn  =  n/α .   The quantization  n/α  is no longer in the 

time-like direction Û  but in the direction  Â    i.e  all space-like directions perpendicular to  Û  .  This 

means that what is quantized, using the hyperboloid of one-sheet representation of the energy levels, are 

all the possible space-like directions.  

IV   The energy levels in integer representation.  Energy levels differences   

It is possible to write the difference of two energy levels in a variety of suggestive forms.  Since :                                                                                                                                             

( En’m’  –  Enm  ) / c  =  Mc [ tanhΘn’m’  –  tanhΘnm  ]  =  Mc sinh ( Θn’m’  – Θnm  )/ coshΘn’m’  coshΘnm     

We can express functions of the differences of hyperbolic angles in terms of the energy levels.                                                                                                                                         

sinh ( Θn’m’  – Θnm  )   =  [  tanhΘn’m’  –  tanhΘnm   ] coshΘn’m’  coshΘnm     (6a)    

cosh (Θn’m’  – Θnm  )   =  { 1 + [  tanhΘn’m’  –  tanhΘnm   ]² cosh²Θn’m’  cosh²Θnm  } 
1/2  

    (6b)     

tanh (Θn’m’  – Θnm  )  is the ratio of the two previous expressions. 

Since the physical quantities are the differences between energy levels, it would be convenient to have 

them geometrized with the help of a hyperboloid of one-sheet or  two-sheet. For this we need to find an 

angle relative to the axis of the hyperboloids.            

Let   tanhΘn’m’ ; nm   = [  tanhΘn’m’  –   tanhΘnm   ]     (7a).                                                                       

We first must make sure that       tanhΘn’m’ ; nm   always lies between 0 and 1.   This is possible because it is 

equivalent to placing the differences between the two levels at the origin in the tangent space of the 

hyperboloid of two-sheet centered at   O  or the hyperboloid of one-sheet centered at  O  . The difference 

of energy levels can be equal to  0  .  It would mean that there is no emission or absorption of light.  Since 

the difference between any two energy levels can vary between a minimum of  0  to a maximum of    Mc 

– E1  /c   ,  tanhΘn’m’ ; nm    can vary from  0  to  a maximum of   1 – tanhΘ1    which is less than  1  , so that   

tanhΘn’m’ ; nm      is properly defined in the tangent space centered at  O .   

tanhΘn’m’ ; nm   =  [  tanhΘn’m’  – tanhΘnm   ]    =    sinh ( Θn’m’  –Θnm  )/ coshΘn’m’  coshΘnm      (7b) 
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This equation gives us the   Θn’m’ ; nm    in terms of   ( Θn’m’  –Θnm  ) .   

We now can calculate the other trigonometric functions. 

coshΘn’m’ ; nm    =   1/ { 1 – [ tanhΘn’m’  –  tanhΘnm  ] ² } 
1/2 

      (7c)         

sinhΘn’m’ ; nm    =   [  tanhΘn’m’  – tanhΘnm   ] / { 1 – [ tanhΘn’m’  –  tanhΘnm  ] ² } 
1/2 

    (7d). 

V   Enery levels. Half integer representation. Angular momentum-like states inside the levels. 

We can rewrite all the relations of the previous sections using a half integer quantization of the time-like 

direction using the hyperboloid of two-sheet, or the space-like directions using the hyperboloid of one-

sheet by the following device :  

Let   coshΘn   =  n/α  =  jn  +  ½    ;   n  =  1, 2, 3…    ;    jn   =   1/2 , 3/2 , 5/2…    ;                                     

Let  coshΘm   =  m/α = jm +  ½    ;   m =  1, 2, …, n    ;    jm   =   1/2 , 3/2 , …, jn     ;                                    

Let  coshΘjn  =  jn  /α    ;    coshΘjm   =  jm /α   ;   coshΘ1/2  =  1/ 2α  ,    sinh²Θ1/2  =  (1/4α² – 1)      ;            

Mc  =  ћα/Lo    ;    n²/α²  =  [jn  (jn + 1 )/α² + 1/ 4 α²]  =  [jn  (jn  + 1) – 1/ 2 (1 /2 – 1)]/α²       (1a)                               

n²/α²   = [jn  (jn  + 1) – 1/ 2 (1 /2 + 1) + 1] /α²         (1b)                                                                              

with the same equations  for  m²/α²  with   n  replaced by  m  .                                                            

Therefore :  εn  / c  =  ћ {  [ jn  (jn  + 1) – 1/ 2 (1 /2 – 1) ]  } 
1/2  

 /Lo     (1c)                                                       

with a similar equation for   εm  / c  .                                                                                                            

We notice that  εn  / c  and  εm  / c   have a form similar to that of angular momentum eigenvalues of 

operator   J–  operating on angular momentum states  │ jn, j1/2 )                    and  │ jm, j1/2 )   ,  divided by   

Lo . 
(2)

                                                                                                                                                  

However, a subtle point needs to be mentioned because the relations (1a,b) are valid in general even when  

n =  1, 2, 3,… infinity and  m  =  1, 2, 3, … infinity , separately.                                                                  

In that case, we are dealing with two different principal quantum numbers, not sublevels of                      

n,  and  εn  / c ,  εm  / c refer to two different principal quantum numbers. If  m is bounded by  n  then  m  

refers to sublevels of n  and they are involved in constructing Pnm  and εnm  / c. We can check whether 

there is further resemblance of form by looking at the squares of the ε’s.      We have:                                                                                                                         

(εn  ²  – εm  ² ) / c²  =  ћ² {[jn  (jn  + 1)]   –  [jm  (jm  + 1)]} /Lo ².      (2a) 

This resembles the eigenvalues of the operators   J- J+   operating on the state  │ jn , jm ) . 
(2)

  The 

resemblance becomes greater if  m  is bounded by  n  .                                                                            

Since   (m – 1)² / α²  = jm (jm  – 1)  / α²  + 1/4  α²  =  [jm (jm  – 1) – 1/2 (1/2 – 1)] /α²       (2b)                       

We have:    (ε ² n – ε  ² m -1 ) /c²  =  ћ
2
[ jn  (jn  + 1)  –jm  (jm  – 1)]/Lo ²      (2c)                                                      

This has a form similar to those of the eigenvalues of the angular momentum of operators   J+  J–   

operating on angular momentum states    │ jn , jm )   divided by    Lo ²  .  
(2)

                                                                                                                                        

We also have :     [ jn ( jn  + 1) – jm  ( jm  –1) ]  =  [ ( jn ² – jm ²) + (jn  + jm  )]        (3a)         

(jn  +  1/2 ) + ( jn  ² – 1/4  )  =  [ jn ( jn  + 1) – 1/2  ( 1/2  – 1) ]       (3b)        
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The  Pn  , Pm  are found using  sinhΘn  , sinhΘm   we need to find expressions for them.                                  

Using   (1a, b)  and  coshΘ1/2  =  1/ 2α  ,    sinh²Θ1/2  =  (1/4α² – 1)      ;      we have : 

Sinh²Θn      =     [n² /α² – 1]  =  [(jn  + ½)² / α² – 1]  =  [jn  (jn  + 1 )/α² + (1/4α² –1) ]      (4a)          Sinh²Θn  =   

jn  (jn  + 1 )/α²  +  sinh²Θ1/2      (4b)        Sinh²Θn  =   jn  (jn  + 1 )/α²   –  1 /2 (1 /2 + 1)/α²  +  (1 /α² – 1)      (4c)                                             

Sinh²Θn  =   jn  (jn  + 1 )/α²  –  1 /2 (1 /2 + 1)/α²   +  sinh²Θ1          (4d)                                                            

Sinh²Θn  =  [ jn  (jn  + 1 )/α² – 1 /2 ( 1 /2 – 1)/α² – 1 ]       (4e)        so we have :                                                 

P²n   =    ћ² [ jn  (jn  + 1 ) – 1 /2 ( 1 /2 – 1) ] /Lo²  – M²c²       (5a)                                                                      

P²n   =   { ћ²[ jn  (jn  + 1 ) – 1 /2 (1 /2 + 1)] /Lo² + ε1 ² /c² }       (5b)                                                               

P²n   =    ћ² [ jn  (jn  + 1 ) – 1 /2 ( 1 /2 – 1) ] /Lo²  – ћ² α²/Lo ²      (5c)    with similar eqs. for  Pm  .                  

P²n   have the extra term      M²c²  =   ε1 ² /c²  =  ћ² α²/Lo ²     added to   ε n²/c²  so they are less angular 

momentum-like than the  ε n²/c²  .  The energy levels  Enm  /c  are formed with ε n  ,  ε m  ,  Pm  .                                                     

Pnm  =  [(ε n  – ε m )/c + Pm]       ;       ε ²nm /c²  = {[( ε n – ε m )/c + Pm ]² + M² c²}  ;                                    

Enm  /c  = Mc (Pnm  c / ε nm )   ;                                                                                                                       

We can now write the  Pnm    in half integer form :                                                                                         

Pnm  = (ћ/ Lo ) (jn  – jm)  + (ћ / Lo ) { [ jm  ( jm  + 1 ) – 1/2 (1/2 – 1) ] – α² } 
1/2  

 (6a)                                       

This permits us to obtain  εnm   in half integral form. We can obtain  Enm /c  in half integral form by taking 

the ratio of Pnm to εnm.  It is also possible to obtain simple relations between angular momentum-like 

quantities and the expressions sinh( Θn’ – Θn ) and sinh( Θn’  + Θn )  discussed previously   where  n’  =  

1, 2, 3…infinity  and    n  =  1, 2, 3…infinity.   We have for example :     sinh( Θn’  – Θn )sinh( Θn’  + Θn )   

=  [ jn’  ( jn’  + 1 ) – jn  (jn  + 1 ) ] /α²     (7)                                                                                                   

where  n’  =  jn’  + 1/2     and       n  =  jn  + 1/2    ;      jn’  =  1, 2, 3… infinity   ;    jn  =  1, 2, 3… infinity. 

VI  Dirac energy levels and quantized virtual hyperbolic motions.  Rindler-like coordinates. 

Dirac energy levels and quantized virtual hyperbolic motions. 

A) Quantized speeds. 

The expression for the energy levels:         Enm/c   =     Mc[n,m]/{1+[n,m]
2
}

1/2  
   (1)     

Suggest putting them in the following form: Enm/c   =   Mc[ gtfinal/c]nm/{1+[gtfinal/c]
2

nm}
1/2     

(2)    
 
 

With    [ gtfinal/c]nm   =   [n,m]  =  sinhΘnm           (3)      

In this expression, g and tf   appear. One can choose either tf   freely then g is quantized   or g is chosen freely 

and tf   is quantized or both g and tf   are quantized.   The idea is to pretend that the energy levels are 

obtained from a virtual hyperbolic motion from  t  = tinitial         to  t  =  tfinal   in such a way that we get  sinhΘnm    

at  tfinal  . Hyperbolic motion is expressed by : 

v(t)/c/{1– [v(t)/c]
2
}

1/2 
– v (to)/c/{1– [v(to)/c]

2
}

1/2  
=  g(t–to)/c         (4)       

putting      to   =  0  and       v(to)/c  =  0         we get: 

v(t)/c/{1– [v(t)/c]
2
}

1/2  
=  gt/c  =  sinhΘ(t)       (5)       
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Therefore :      vnm (tf )/c/{1– [vnm (tf ) /c]
2
}

1/2
     = (gtfinal/c)nm   =  sinhΘnm  = [n,m]          (6)       

We also have:    (v( tf )/c)nm =  ( gtf /c)nm/{1+(gtf /c)
2
nm}

1/2 
=  tanhΘnm  =  [n,m]/{1+[n,m]

2
}

1/2    
 (7)      

Eqs. (6, 7) can be interpreted as meaning that    vnm /c     arises from a virtual hyperbolic motion from a time   

t  = 0   to  tfinal  which can be freely chosen as being the same for all  nm  or that  vnm  /c  arises from a 

constant acceleration  g  which is the same for all  nm .   In the first case, we can write the  tfinal  as  Tf  .   Tf  

is completely arbitrary.  In that case, the constant acceleration is quantized and depends on   nm  .  These 

quantized accelerations will be denoted by  gnm  .  Then :    

gnm   = c sinhΘnm  /Tf        (8a)           Tf  =  tfinal    arbitrary.               

Eq. (7) becomes :          [v (Tf)/c]nm =  ( gnm Tf /c) /{1+(gnm Tf /c)
2
}

1/2 
=  tanhΘnm             ( 8b)      

The angle   Θnm   =  gnm  τnm  /c   =   c sinhΘnm  τnm  /c Tf          (8c )   τnm  is the proper time.    

τnm  / Tf  =  Θnm / sinhΘnm          (8d )    

In the second case,  g  is arbitrary and the same for all  nm  .  Therefore:   

gTnm  =  c sinhΘnm      ;        Tnm  =  c sinhΘnm /g       (8e)        g   arbitrary .   Tnm  = ( tfinal )nm        

and      [vnm (Tnm)/c ]  =  ( gTnm /c) /{1+(gTnm /c)
2
 }

1/2      
     (8f )           

Note that in the case where  Tf   is completely arbitrary, it can be chosen to be Planck’s time    LP /c  ,  where  

LP  is the Planck length.  It can be chosen as the age of the universe   Tu  =  13.6 billion years or the classical 

radius  Lo   of the reduced proton-electron mass   M etc.  The last one is particularly useful.    

The angle    Θnm  =   g τnm  /c       (8g)           τnm  =  c Θnm  / g           (8h)    

B) Quantized accelerations.  

The three- acceleration     dv(t)/dt  = a(t)          is given by: 

a(t)  =  g/{1+[gt/c]
2
}

3/2     
(9a)     therefore :     a(t)t/c  =  (gt/c)/{1+[gt/c]

2
}

3/2        
(9b)    a(0)  =  g    (9c)  

we want: 

[a( tf) tf / c]nm  =  [gtf / c]nm/{1+[gtf / c]
2
nm}

3/2 
  =  tanhΘnm/[coshΘnm]

2    
= 

  
sinhΘnm/[coshΘnm]

3      
(9d)     

  
 

We have, as before, the restriction:        [ gtf  /c]nm   =  sinhΘnm        (9e)         

If we choose   tfinal   =  Tf      ,    arbitrary,    then:    

anm (Tf)  =  gnm / { 1+ [ gnm  Tf / c ]
2  

} 
3/2         

   (9f)         gnm   = c sinhΘnm  /Tf       ;     Tf    arbitrary  . 

From which we get:       anm (Tf)  /c²    =   (vnm/c) (1 – v
 
² nm /c²) / cTf        (9g)   

and from eq. (9a) we get: 

anm (Tf) / (1 – v
 
² nm /c²)

3/2 
  =  gnm    (9h)                                                                                          

anm (Tf)  =  gnm  (1 – v
 
² nm /c²)

3/2 
  =  c sinhΘnm  / Tf  cosh

3 
Θnm    (9i) 

If we also choose   Tf   =  Lo/c  ,   we get from   eqs. (9d, e, f) ,  anm   entirely in terms of the parameters of the 

Dirac energy levels.   In the second situation, if we choose  g   arbitrary, then: 
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anm (Tnm)  =  g / { 1+ [ g  Tnm / c ]
2   

} 
3/2    

 (10a)   g  arbitrary   ;  Tnm  =  c sinhΘnm /g  =  (Tf)nm  (10b)  

anm (Tnm)  / (1 – v
 
² nm /c²)

3/2 
  =  g     (10c)     anm (Tnm)  =  g (1 – v

 
² nm /c²)

3/2 
  =  g /cosh

3
Θnm     (10d)    

Since  g   is arbitrary, we can choose it to be :      g  =  c² / Lo        (10.e)      ;  then  

cTnm    =   Lo sinhΘnm    (10f)        anm (Tnm)  =   c² /Lo cosh
3
Θnm   =  c²  (1 – v

 
² nm /c²)

3/2 
 / Lo      (10g)    

Compare  eq. (10g) with eq. (9i). 

An electromagnetic field is a field of  mass  x   acceleration  per unit charge.                         There is a 

suggestion that the expression     M anm  / e   represent quantized electromagnetic fields.  We would have: 

( Mc²/ e )  vnm/c (1 – v
 
² nm /c²) / cTf         =     (ћ αc / e Lo  )  vnm/c (1 – v

 
² nm /c²) / cTf         using      (9i)   

or    ( Mc²/ e )  g / (1 – v
 
² nm /c²)

3/2   
  =     (ћ αc / e Lo  )   g / (1 – v

 
² nm /c²)

3/2   
               using  (10d)     

Such fields do not seem to have been mentioned in the literature.   

C) Quantized positions.  

The virtual positions associated with the virtual hyperbolic trajectories are easily calculated and are closely 

connected to Rindler-like coordinate systems as will be shown. 
(4) 

dx(t)/cdt  =  v(t)/c  =  gt/c/{1+(gt/c)
2
}

1/2           
 (11a)           dx  =  gct/c

2
/{1+(gct/c

2
)

2
}

1/2
cdt       (11b)      

Integrate dx from 0 to X and d(ct) from 0 to T ;  We get: 

X(T)  =  c
2
/g{1+[gcT/c

2
]}

1/2 
– c

2
/g          (11c)        ;   with      X(0)  =  0        ; 

[1+gX(T)/c
2
]  =  {1+(gT/c)

2
}

1/2              
(11d)       ;            [1+gX(T)/c

2
]

2  
=  1+(gT/c)

2                  
(11e)     

[1+gX(T)/c
2
]

2
– [gT/c]

2   
=  1   (12a)    

[1+gX(T)/c
2
]  =  coshΘ(T)    (12b)     gT/c   =   sinhΘ(T)   (12c)       

We need to evaluate eqs. (11c to 12c)  at   Tfinal  =  Tf  . And we want:       

(gTf /c)nm     =   sinhΘnm   =  [n,m]     (13a)   { 1+[gX(Tf)/c
2
]nm}  =  coshΘnm  =  {1+[n,m]

2
}

1/2    
(13b)  

    
 

The quantization conditions are :   

[gX(Tf)/c
2
]nm  =  {1+[n,m]

2
}

1/2 
– 1         (14a)            [gTf/c]nm  =  [n,m]  =  sinhΘnm      (14b)              

with either g or Tf freely chosen. 

a) Choose   Tf    arbitrary, then:  gnm  =  c sinhΘnm  /Tf         (15a).  From eq. (14a)  , we get: 

gnm  Xnm  (Tf ) / c²  =  coshΘnm  – 1   (15b)   Xnm  (Tf )  =  c² [ coshΘnm  – 1] / ( c sinhΘnm  /Tf ) (15c)  

Xnm  (Tf )  =     [ c Tf / tanhΘnm  – c Tf / sinhΘnm  ]          (15d)           

This very important relation involves the inverse of  tanhΘnm  / cTf   and  sinhΘnm  / cTf     which are 

proportional   to  Enm     and  εnm   respectively.  If    Tf    is chosen as   Lo/c  we have an immediate and 

interesting connection with the Dirac energy levels.                                                                                                                                 
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Xnm  (Lo/c  )  =     [ Lo / tanhΘnm  – Lo / sinhΘnm  ]          (16a)                                                                       

Since   Mc sinhΘnm   =  ћ α sinhΘnm  / Lo       and     Mc tanhΘnm  =  ћ α tanhΘnm  / Lo    ,   

Finally :   Xnm  (Lo/c  )  =  [ћ α c / Enm   – ћ α c / εnm  ] =  ћ α c [ 1/ Enm – 1/ εnm ]    (16b)    

Eqs.   (16.a, b)  can easily be represented using a hyperboloid of two-sheet.  They represent a kind of  

Rindler-like coordinate system whose positions from an origin  O  are : 

c² /g*nm  =  Lo  / sinhΘnm    (17a)           c² /g**nm  =  Lo  / tanhΘnm  =  Lo  coshΘnm  / sinhΘnm   (17b)        

Thus, a Rindler-like coordinate system is intimately connected with the inverse of the  energy levels  Enm  /c  

and the inverse of the auxiliary momenta    εnm  /c   .    

There are two other recognizable terms in the series (17a, b)   i.e: 

c² /g***nm =  Lo  cosh²Θnm  / sinhΘnm   =  Lo  coshΘnm  / tanhΘnm     (18a)            

c² /g****nm  =  Lo  cosh
3
 Θnm  / sinhΘnm     =     Lo  cosh² Θnm  / tanhΘnm      (18b)   

We notice that from eq.  (9.i)      anm  (Lo  /c) /c²  =  [ tanhΘnm  / Lo  cosh² Θnm ]        (18c)    

Therefore:      c² /g****nm  =  c² / anm  (Lo  /c)         (18d)     

We now have the Rindler-like coordinate sequence: 

Xnm  (Lo/c  )  =     [ Lo / tanhΘnm  – Lo / sinhΘnm  ]    =  [ c² /g**nm  – c² /g*nm ]        (19a)     

X*nm  (Lo/c  )   = [ Lo coshΘnm / tanhΘnm  – Lo / tanhΘnm  ] =  [ c² /g***nm  – c² /g**nm ]    (19b)   

X**nm  (Lo/c  )  = [ Lo cosh²Θnm / tanhΘnm  – Lo coshΘnm   / tanhΘnm  ]  =  [ c² /g****nm  – c² /g***nm ]   (19c)   

b) If  g  is chosen as arbitrary, then    Tnm    =   c sinhΘnm  / g  .   

g Xnm  ( Tnm  ) / c²  =   coshΘnm  –1       (20a)         Xnm  ( Tnm  )  =  c² coshΘnm  / g – c² / g        (20b)      

Again we have a Rindler-like coordinate system with :  

c²/g  , c²/g
+ 

=  (c²/g)  coshΘnm ,  c²/ g
+ + 

= (c²/g)  cosh²Θnm  , c²/ g
+++  

= (c²/g)  cosh
3
 Θnm  (20c) etc.   

and          Xnm  ( Tnm  )  =  c² coshΘnm  / g – c² / g     =     c²/g
+
  –   c²/g           (21a) 

X
+

nm  ( Tnm  )  =  c² cosh² Θnm  / g – c² coshΘnm  / g      =        c²/g
++

   –    c²/g
+
        (21b)     

X
++

 nm  ( Tnm  )  =  c² cosh
3
 Θnm  / g – c² cosh² Θnm  / g    =      c²/g

+++
   –    c²/g

++
      (21c)     etc.  

The previous   Xnm   sequence are points on the horizontal axis of the Rindler-like coordinate system. The 

points represent the initial points of a virtual motion which ends on an axis making an angle  Θnm  with the 

horizontal axis. This is true for each  nm.  The initial horizontal axis and a final axis open up through an 

angle   Θnm   issued from a center  O. The vertical time axis sequence is :   

Tnm    =   c sinhΘnm  / g     (22a)         T
+
 nm    =   c sinhΘnm  coshΘnm   / g  =   c sinhΘnm   /g

+
      (22b)        

T
++

 nm    =   c sinhΘnm  cosh² Θnm   / g    =      c sinhΘnm   /g
++

        (22c)        etc. 
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T nm ,   T
+
 nm ,   T

++
 nm    represent the time of duration of the virtual motions at each position of the Rindler-

like coordinate system.    

If   g   is chosen as    c² /Lo   then we get     c Tnm   =   Lo  sinhΘnm         (22d)      and   

Xnm  ( Tnm  )  = Lo  coshΘnm  –  Lo               (22e)        

Repeat the previous process to get the Rindler-like coordinates entirely in terms of the Dirac energy levels 

parameters. The same is also true of course of all the expressions in previous section a). 

VII   Geometric representation of the Klein-Gordon energy levels. 

The Klein-Gordon energy levels in a Coulomb potential are given by 
(1)   

: 

 Enl / c  =  Mc { 1 + [n,l ]
-2 

} 
-1/2

        ;      l =  0,1,2,3,…,n–1     ;        n =  1,2,3,…,infinity    ; 

[n,l ]  =  {  n/α –  ( l + 1/2 ) /α + [ ( l + 1/2)
2
/α

2 
– 1 ]

1/2  
}           ; 

If we can write      [ n, l ]  =  sinhΘnl ,      we get:     Enl /c   =   MctanhΘnl        ; 

We want to be able to compare these energy levels with those of the Dirac energy levels in order to see if 

we can find a construction method for the   sinhΘnl . 

Let   n = jn  +  1/2          (1a)       m = jm +  1/2          (1b)            l  =  m – 1          (1c)     

then   l + 1/2  =  m – 1 + 1/2  =  jm  + 1/2 – 1 + 1/2  =  jm        ;  ( l + 1/2 ) =  jm        (1d)                       

where      n  =  1, 2, …, infinity ,       m  =  1, 2, …, n     as before.  

We have:                [ n, l ]  =   { 1/2 α  + ( jn  –  jm ) / α  +  [ jm
2
/ α

2 
– 1 ] 

1/2 
 }             (2a)      

Let                          [ jn, jm ]  =  ( jn  –  jm ) / α  +  [ jm
2
/ α

2 
– 1 ] 

1/2 
           (2b)          

We notice that eq.  (2b) has the same form as   [ n,m ] of eq. (II 1b)                                                            

except that  jn  =  1 /2, 3/2,…and  jm  =  1/2, 3/2,…, jn   replace n  =  1, 2,… and  m  = 1,2,…,n        

We have :                [ n, l ]  =   [ jn  , jm ]  + ( 1/2 ) /α              (3)         

We can therefore set    sinhΘ jn , jm  =   coshΘ jn  –  coshΘ jm  +  sinhΘ jm  =  [ jn  , jm ]       (4a)       

With    coshΘ jn    =   jn /α     (4b)             coshΘ jm   =   jm /α      (4c)      

The quantization of timelike direction is therefore half integer. Same with the equivalent spacelike 

representation. The geometric construction of    sinhΘ jn , jm         is exactly the same as that of    sinhΘn, m      so     

sinhΘ jn , jm    can be constructed. We can obtain the Klein-Gordon energy levels with  the assignment    [ n, l 

]  =  sinhΘnl    .   We get the important relation : 

[ n, l ]   =    sinhΘnl      =    sinhΘjn , jm  +  (1/2)/α       (5a)      

coshΘnl    =   { 1 + [ sinhΘjn , jm  +  (1/2)/α ]²  } 
1/2 

     (5b)         The energy levels are :  

En, l   / c  =  MctanhΘn, l   =  Mc [ sinhΘjn , jm  + (1/2)/α ] / { 1 + [ sinhΘjn , jm  + (1/2)/α ]²  } 
1/2 

  (5c)       

The energy levels can easily be constructed and represented geometrically in terms of a hyperboloid of one-

sheet or a hyperboloid of two-sheet. Note also the presence of the extra term       (1/2)/α  =  coshΘ1/2   in eqs. 

(5a, b, c) .                                                                                                                                                             



14 
 

Setting :                                                                                                                                                             

εjn / c   =   Mc jn  / α    =    ћ jn  / Lo     (6a)    εjm / c   =   Mc jm  / α   =   ћ jm  / Lo     (6b)       

We have     Pjm  =  Mc { ( jm  / α )² - 1 } 
1/2 

 =  { (ћ jm  /Lo  )² - M² c² } 
1/2        

(6c)                                                     

and             Pjn, jm   =   εjn / c   –  εjm / c   +  Pjm         (7a)          

Pn,  l   =    Mc [ n, l ]   =   Mc sinhΘnl      =    Mc [ sinhΘjn , jm  +  (1/2)/α ]           (7b)                                        

Pn,  l   =   Pjn, jm   +  Mc / 2α  =   Pjn, jm    +  ε1/2        (7c)         ε1/2   =  Mc / 2α        (7d)                                      

(ε n, l  / c )²  =  [ ( Pn,  l )²  +  M² c² ]   (8a)   (ε n, l  / c )²  =   { [ Pjn, jm    +  ε1/2  ]²  +  M²c² }  (8b)      

The energy levels      E n, l / c       are then given by :    E n, l / c     =    Mc²  Pn, l  / ε n, l        (9a)                                                                                               

E n, l / c     =   Mc [ Pjn, jm    +  ε1/2  ] / { [ Pjn, jm    +  ε1/2  ]²  +  M²c² } 
1/2 

         (9b)                   

The energy levels are therefore constructed from masses  Mc sinhΘnl     and   Mc coshΘnl    which are 

themselves constructed from masses   Mc sinhΘjn , jm   ,   Mc / 2α  , which are themselves constructed from 

masses   Mc jn /α  ,   Mc jm /α   and Mc.  Note that since   Mc jn /α  and  Mc jm /α   can be written as   ћ jn  / Lo   

and   ћ jm / Lo   and    Mc / 2α =  ћ /2 Lo . The energy levels can be constructed out of these harmonic                                   

oscillator-like masses and Mc. 

VIII   Dirac energy levels of hydrogen-like atoms. 

The energy levels  are 
(1, 3)

    : 

Enm /c =  Mc { 1 + [nm]
-2  

} 
-1/2 

       (1a)       [nm] = { n/ Zα – m/ Zα + [m
2
/ Z²α

2 
– 1 ]

1/2
 }     (1b)   

n  =  1, 2, 3,… infinity    ;   m  =  1, 2, …,n     ;      Z  =  1, 2, 3, …     ;                                                 

We have:     coshΘn  =  n / Zα           (2a)            coshΘm  =  m / Zα         (2b)       

sinhΘn  =  [n
2
/ Z²α

2 
– 1 ]

1/2    
      (2c)            sinhΘm   =  [m

2
/ Z²α

2 
– 1 ]

1/2  
    (2d)      

sinhΘnm  =  [ n/ Zα – m/ Zα + [m
2
/ Z²α

2 
– 1 ]

1/2
 ]   =  [n,m]         (3)      

The time-like quantization using the hyperboloid of two-sheet becomes: 

coshΘn  =  1/Zα , 2/Zα ,  3/Zα …    but Z can also take the values    1, 2, 3, …  

If   Z  =  1     we have the hydrogen atom which has already been discussed.                                        

Since    coshΘn   =  n /Zα   must always be    >    or     =     1  ,    we have to verify under what conditions      

coshΘn     and       coshΘm       are     >   or   =   1  .   If   Z   =  1  ,  coshΘn     is always  >   or   =   1 .  This is 

also true for  Z  =  1, 2, 3,  up to  137 . Since   coshΘn   =   137n/Z  +   0.037n/Z          (4)                                                                        

We can expect that   coshΘn   will become   <     1   when   Z     >     137.037n ,  i.e.                                           

Z    >  or  =   to 138n  and similarly    coshΘm   <   1   when   Z    >   or  =   to 138m.                                                                                                      

The lower states fade away as   Z   increases until eventually all states are extinguished.  This of course 

does not take into account other reasons for extinctions discussed in the literature. 
(1)  

                                                                                                                             

The half integer representation of the H energy levels is modified for hydrogen-like atoms. We have for 

example :                                                                                                                                                       

m² / Z² α²  =  [ jm  ( jm + 1 ) / Z² α²   +  1 / 4Z² α² ]  =   [ jm  ( jm + 1 ) – 1/2 ( 1/2 – 1 ) ] / Z² α²   (5a)                
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Mc  =  ћ α / Lo      ;   M is the electron mass.              ZMc   =   ћ Z α / Lo        (5b)                                                                        

Z² M² c² cosh²Θm   =  ћ
2
 [ jm  ( jm + 1 ) – 1/2 ( 1/2 – 1 ) ] / L²o           (6a)                                                        

Z² M² c² sinh²Θm    =  ћ
2
 { [ jm  ( jm + 1 ) – 1/2 ( 1/2 – 1 ) ]  –  Z² α² } / L²o        (6b)       

So, we get the angular momentum-like entities if we use   Z Mc   instead of    Mc  . 

IX   Conclusion 

The existence of quantized speeds   vn ,m   hidden within the Dirac energy levels of the H or H-like atoms 

opens up a variety of intriguing possibilities.  Since the auxiliary masses (or energies)  εn  =  Mc²n/Zα ,  

are much higher than the mass of an electron, the present work might help uncover new regularities 

among masses of elementary particles.  In addition, if the hydrogen or hydrogen-like atoms have hidden 

relativistic speeds, why not other atoms? The Helium atom might be a possible candidate to generalize the 

present work. It might perhaps also be possible to use the present scheme to include some molecules, or 

even some atomic nuclei. An intriguing possibility would be applications to the theory of fluids or 

condensed matter systems. The energy momentum tensor for a perfect fluid for example might be 

expressible in terms of quantized internal speeds in some cases. 
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