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Speed of Light = 0, 

―So “Proven” by Special Relativity, Indisputably! 
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Abstract   Mathematical verification according to the guidelines emphasized in the original paper of the 

theory of special relativity (the TSR) published in 1905 shows that the TSR forces the appearance of c=0 

for speed of light.  Such an outcome can only suggest that the TSR rejects its own second postulate, the 

absolute lifeline of the TSR.  Rejecting this lifeline, the TSR must end up as being self-refuted. The TSR 

fundamentally relies on the following equation set for its calculation development: 

(1) An equation set describing the relative movement between two inertial frames, which are moving 

with respect to each other at speed v 
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(2) An equation set of two spheres 
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Advocating its second postulate, the TSR conceives these two equations indifferently representing the 

same single  and only light sphere in space for its entire derivation if the sphere is created at where the 

origin of the two frames meets, i.e. x=x’=0 at time t=t’=0.  As such, these two equations must further require 

that the observer on each of the frame necessarily sees the center of the light sphere permanently coincide 

with the origin of his own frame.  Now, a question inevitably surfaces up:  What enables the coinciding 

seen by each observer to continue for all time t >0 and t’ >0 if the two origins must move away from each 

other at a nonzero speed v? 

Although the first equation set as an exact form is not found in the original paper of the TSR published 

in 1905, the idea of the TSR fully warrants the mathematical legitimacy of the establishment of this set.  It 

is merely a simplified mathematical language in place of the corresponding lengthy ambiguous verbal 

description in the original paper.  This set does help relativity gain more popularity in understanding its 

derivation.   
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In studying the propagation of light with respect to some inertial frame at movement, the 

theory of special relativity (TSR) establishes the following equation set:   
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               (Eq.     1 a-d)  

 

The TSR considers that the correspondence between all the coordinates in (Eq. 1a-d) of 

any two inertial moving frames must obey the second postulate: Light invariably propagates at a 

constant speed c with respect to each of the two systems in space.   This second postulate thus 

demands that all a’s in (Eq. 1a-d) cannot be constants, but must be variables like the coordinates 

(x, y, z, t) and (x’, y’, z’, t’), where x, y, z, x’, y’ and z’ are spatial coordinates, t and t’ are temporal 

coordinates.  The TSR thus sets its objective, which is to pursue the solution of all the a’s.  

 

The TSR assumes a nonzero speed v between the two frames but also virtually confines 

this speed to be measured against the X and X’ axes in its derivation.  With many supplemental 

conditions (omitted here),), (Eq. 1a-d) finally boils down to the following set: 

                                                   𝑥′ = 𝑎11(𝑥 − 𝑣𝑡)            (𝐸𝑞. 2𝑎) 

         𝑡′ = 𝑎41𝑥 + 𝑎44𝑡            (𝐸𝑞.  2𝑏) 

 

If all a’s remain unknown but (x, x’, t, t’) are treated as if they are constants, (Eq. 2a, b) is 

a set with three unknowns but only two relevant equations, and therefore unsolvable.  However, 

the TSR reckons that the second postulate contains information concerning the relationship 

between the coordinates (x, x’, t, t’) and the speed of light, c, and would therefore render at least 

one relevant equation to help make (Eq. 2a, b) solvable.   For this, it brings (Eq. 2a, b) into the 

realm describing by the following two spherical equations:  
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                         (Eq.    3 a, b) 

The realm described by (Eq. 3a, b) is the space occupied by the propagation of light.   Each 

equation in (Eq. 3a, b) is supposed representing one sphere that is independent of the other.  

However, the TSR believes, if these equations are used for describing the moving behavior of 

light, which forms a sphere that is created at x=x’=0 and t=t’=0 when the two origins meet, the 

second postulate must merge both spheres to act as one.   Indeed, a visual picture that these two 

equations represent the same sphere of light is found to be affirmed in the original paper of 

relativity published in 1905 [1] .   As such, inevitably, destined by relativity’s imagination, the 

observer on each inertial frame must see the origin of his own frame permanently coinciding with 

the center of this sphere.  This view of coinciding is so destined because of the way that the two 

equations is written: neither observer has been allowed to detect a relative movement between 
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himself and the center of the sphere, but both observer must see the creation of this sphere at 

(x=y=z=0, t=0) and (x’=y’=z’=0, t’=0).   

 

Since only the movement of the X axis and the X’ axis matters to the derivation, the useful 

information in (Eq. 3a, b) actually only contains 
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                                 (Eq.    4 a, b) 

In its pursuance of the solution set for (Eq. 1 a-d), but actually for (Eq. 2 a, b), the TSR 

would first form a sub equation set containing (Eq. 2a, b) and (Eq. 4b) [2].  After x’ and t’ are 

eliminated in this sub equation set, whatever terms thus remained would be used for term 

comparison with (Eq. 4a). Then, relativity obtains its solution set, which includes 𝑎11 = 𝑎44 =
1

√1 − (𝑣
𝑐⁄ )2⁄ , the so called Lorentz factor. In such a calculation procedure, what the TSR has 

done is actually forcing the formation of an over-conditioned equation set that reads  
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                            (Eq.    5a-d) 

No solution derived via an over-conditioned equation set should be allowed to escape back-

checking verification before it is accepted as valid.   Such back-checking work does not appear 

having ever been done since the debut of the TSR.  If the second postulate is the principle that 

guides the derivation for TSR to arrive at its solution, the second postulate should also serve as the 

most authoritative guiding principle in such back-checking verification.  Moving state variation 

for inertial frames is the topmost concern in the study displayed by the TSR; the indispensable 

element in expressing moving state is speed, which must have length and time involved.    Now, 

let us examine how the second postulate leads the TSR to formulate the relationship between 

length, time and speeds.  For this, we found that, in a paragraph in §2 of the relativity original 

paper published in 1905, the following guideline is detailed [3] 

 

Let a ray of light depart from A at the time tA, let it be reflected at B at the time tB, and reach 

A again at the time t’A.  Taking into consideration the principle of the constancy of the velocity 

of light we find that  

             
AB

B A
r

t t
c v

− =
−

           (Eq. Re-A, for the ray and rod moving in the same direction) 

 and     ' AB
A B

r
t t

c v
− =

+
           (Eq.  Re-B, for the ray and rod moving in opposite direction) 

where rAB denotes the length of the moving rod—measured in the stationary system. 

[Both Eq. Re-A and Eq.  Re-B and the comments inside the parenthesis are notes from this 

author]   
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Following the above quoted paragraph, let’s imagine we have two parallel axes moving at 

speed v with respect to each other.   When the two origins of the axes meet, a light sphere is emitted 

at t=t’=0 (Fig. 1).   If the observer staying at the origin of the X’ axis inspects the moving state of 

his own frame, he would of course gets speed v=0 for the relative movement between him and his 

axis.  With v=0, when he looks at both the positive and negative directions, he would find that, 

ever since the light sphere is created at the origin and at the instant t’=0, the length covered by the 

rays of light on this axis match what (Eq. Re-A) and (Eq. Re-B) predict at any instant t’>0, i.e. 

𝑟+ = 𝑟− = 𝑐𝑡′         (𝐸𝑞.    6) 

where time t’ is quoted from a clock resting on the X’ axis, while 𝑟+ is the length of the part of the 

axis covered by the ray of light in the “+” direction, and 𝑟− , in the “―” direction.  Both 𝑟+ and 𝑟− 

are to him the so called rest length, a concept brought up by the TSR.  (Eq. 6) thus leads to  

 

𝑟+

𝑟− 
= 1             (𝐸𝑞.   7)               

 

To the observer staying on the X axis, after a light sphere is created at t=0 at the origin of 

his axis, besides seeing light rays covering in both the positive and negative direction on the X’ 

axis, he would also see the movement of the X’ axis with a nonzero speed v with respect to his X 

axis.  Looking at the positive direction, he must say that both the X’ axis and the tip of the light 

ray are moving in the same direction.  While looking at the negative direction, he must say that the 

X’ axis and the tip of the light ray are moving in opposite direction between each other.  Both tips 

starts at x=0 at the instant t=0 that is registered by a clock resting on the X axis.     
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For the light and the axis that an observer sees moving in the same direction, the previously 

quoted paragraph tells him that the relationship between distance, time, and speed should be 

established according to (Eq. Re-A), and therefore he gets   

 
𝑟′+

𝑐 − 𝑣
= 𝑡         (𝐸𝑞.     8) 

 

where time t  ≥ 0 is quoted from the same clock resting on the X axis, while 𝑟′+ is the length of 

the part of the X’ axis covered by the ray of light starting from x=0 and t=0 and moving in the “+” 

direction.  No need to explain, 𝑟′+ is a moving length to him.  

 

For the light and the axis that the observer sees moving in opposite direction, (Eq. Re-B) 

enables this X observer to get   

 

𝑟′−

𝑐 + 𝑣
= 𝑡         (𝐸𝑞.     9) 

 

where 𝑟′−, also seen as a moving length by the X axis observer, is the part of the X’ axis covered 

by the ray of light traveling in the “―” direction in the inspection made by the same observer.   

 

Time t must bridge (Eq. 8) and (Eq. 9) together and leads to, after term rearrangement: 

  

𝑟′+
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=
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              ( 𝐸𝑞.      10)   

  

Because of (Eq. 7) and (Eq. 10), the following relationship inevitably appears 
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In (Eq 11), rest lengths and moving lengths are seamlessly bridged and converted by the 

Lorentz factor advocated by the TSR.  That the moving length must be observed as shorter than 

the rest length is one critically important concept stressed by the TSR.  However, (Eq. 11) can be 

satisfied only if v=0; any nonzero value of v must fail this equation.  Speed v=0 is a plain statement 

that the introduction of ONE sphere of light, although represented by two different equations, to 

make (Eq. 1a-d) solvable implicitly forces the equation set to be solved with one predetermined 

condition, which is that the two inertial frames under study must be motionless with respect to 

each other.   

 

Since (Eq. 5a) is supposed to enable us to study the movement of the origin of the X axis, 

where x=0, with respect to the X’ axis, we naturally have  
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𝑥′ = 𝑎11(0 − 𝑣𝑡)            (𝐸𝑞.       12) 

 

However, in the same set of equations, (Eq. 5d) gives x’=ct’.  Then, (Eq. 12), with the implicit 

condition v=0, inevitably becomes  

 

𝑐𝑡′ = 𝑎11(0 − 0𝑡) = 0             (𝐸𝑞.      13)           
 

(Eq. 13) forces that c, the speed of light, must be zero for all 𝑡′ ≠ 0.   

 

 The immediate consequence of c=0 is that relativity rejects its own second postulate, 

which stresses that speed of light is a nonzero constant with respect to any inertial frame.  Rejecting 

the second postulate is an indisputable evidence that the theory of special relativity refutes itself.      

 

As a matter of fact, with c=0, relativity forces a zero value in the denominator in the 

Lorentz factor  1
√1 − (𝑣

𝑐⁄ )2⁄    , violating one utmost important principle in mathematics.  So, 

how valid a concept is the Lorenz factor in physical study?  Should the science world continue to 

wonder why so many paradoxes can be imagined dancing around the theory of special relativity 

since its debut?   
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