FERMAT'S LAST THEOREM

THEOREM NAME: FERMAT'S LAST THEOREM OBSERVATOR: DOMINI PIERRE DE FERMAT

YEAR: 1637

BOOK: ARITHMETICA

FERMAT'S LAST THEOREM

"It is impossible to separate a cube into two cubes, or a biquadrate into two biquadrates, or in general any power higher than the second into two powers of like degree; I have discovered a truly remarkable proof which this margin is too small to contain."
-Pierre de Fermat, (1637)

For whole numbers n greater than 2 , there are no numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ for which $a^{n}+b^{n}=c^{n}$

PROOF

$\left[\mathrm{a}^{\mathrm{n} / 2}\right]^{2}+\left[\mathrm{b}^{\mathrm{n} / 2}\right]^{2}=\left[\mathrm{c}^{\mathrm{n} / 2}\right]^{2}$
$\left\{[a / c]^{n / 2}\right\}^{2}+\left\{[b / c]^{n / 2}\right\}^{2}=1$
Let $[\mathrm{a} / \mathrm{c}]^{\mathrm{n} / 2}=\sin \theta$
Therefore, $[\mathrm{b} / \mathrm{c}]^{\mathrm{n} / 2}=\cos \theta$
Thus, $[a / c]^{n}=\sin ^{2} \theta$
And $[b / c]^{n}=\cos ^{2} \theta$
If $n=1,[a / c]=\sin ^{2} \theta$
If $n=2,[a / c]^{2}=\sin ^{2} \theta$
If $n=3,[a / c]^{3}=\sin ^{2} \theta$

If $\mathrm{n}=\mathrm{n},[\mathrm{a} / \mathrm{c}]^{\mathrm{n}}=\sin ^{2} \theta-\{$ Equation 1$\}$
Let $[\mathrm{a} / \mathrm{c}]=\mathrm{x},[\mathrm{b} / \mathrm{c}]=\mathrm{y} \& \sin \theta=\mathrm{p}, \cos \theta=\mathrm{q}$
Therefore, Equation 1 implies that $\mathrm{x}^{\mathrm{n}}=\mathrm{p}^{2}$ and $\mathrm{y}^{\mathrm{n}}=\mathrm{q}^{2}$ for $0<\mathrm{x}<1 \& 0<\mathrm{y}<1$.
Thus, $\mathrm{x}^{\mathrm{n}}+\mathrm{y}^{\mathrm{n}}=\mathrm{p}^{2}+\mathrm{q}^{2}=1$ which is not possible.
Hence, n cannot take value greater than 2.

Hence, the proof.

