CORRESPONDENCE BETWEEN THE SOLUTIONS OF AN EQUATION AND THE DIVISORS OF NATURAL NUMBERS

Edoardo GUEGLIO

egueglio@gmail.com

There is a correspondence between the positive solutions of a diophantine equation and the divisors of natural numbers

Premise

All this research has been done using Mathematica©, a symbolic computation environment that uses a programming language called Wolfram Language.

I investigated the positive solutions of Diophantine equation $x+y+x*y+x^2=n$ where n is a natural number for convenience starting from 2. In terms of Mathematica all this can be expressed as:

Reduce $[x+y+x*y+y^2=n\&x>0\&y>0, \{x,y\}, Integers]$

Reduce is the function used to solve diophantine equations and has three arguments:

- the set of conditions that must be satisfied by the variables joined together by the symbol && which stands for 'and'
- the set of variable names (in this case x and y)
- the domain of the values (in this case the domain of integers)

To complete the informations needed to understand the following we have another functions:

Divisors[n]

This function given a natural n returns the list expressed as a comma separated sequence of values between braces that starts from 1 and goes to n. Example:

Divisors[30]

In[=]:=

 $Out[\circ] = \{1, 2, 3, 5, 6, 10, 15, 30 \}$

Now lets try to calculate the solutions of the above equation replacing n with 30:

What we get is a list of solutions, each enclosed in round brackets and separated by symbol \parallel which stands for 'or' followed by the list of divisors of 30. The interesting thing is that if you calculate in each solution x+y you get the same values in the second half of divisors list except the last number.

Following this concept what is happen when we use for n a prime number? A prime number p has the divisors list like {1,p} and hence the second half except last corresponds to empty solutions list:

```
Reduce[x+y+x*y+y^2==31&&x>0&&y>0, {x,y},Integers]
Divisors[31]
```

```
Out[*]= False
Out[*]= {1, 31}
```

Output False means that there are no solutions.

We have used above number 30 which has an even number of divisors. But what happens with a number with odd number of divisors:

```
Reduce[x+y+x*y+y^2=36&&x>0&&y>0,{x,y},Integers]
Divisors[36]
```

We don't start from the second half but from the number in the middle of the sequence.

Now we start with n=4 to check what we have verified. Obviously this is true for n<4 because we have four terms in the expression $(x+y+x*y+y^2)$ and x>0 and y>0 so each term will be at last 1.

```
Reduce[x+y+x*y+y^2==4&&x>0&&y>0,{x,y},Integers]
Divisors[4]
```

```
Out[*]= x = 1 && y = 1
Out[*]= {1, 2, 4}

In[*]:= Reduce[x+y+x*y+y^2==5&&x>0&&y>0,{x,y},Integers]
Divisors[5]
```

```
Out[*]= False
Out[*]= {1, 5}
```

```
Reduce [x+y+x*y+y^2=6\&x>0\&y>0, \{x,y\}, Integers]
In[ • ]:=
       Divisors [6]
Out[\bullet]= x == 2 && y == 1
Out[\circ]= {1, 2, 3, 6}
       Reduce [x+y+x*y+y^2=7&&x>0&&y>0, \{x,y\}, Integers]
In[ • ]:=
       Divisors[7]
Out[•]= False
Out[\circ]= {1, 7}
       Reduce [x+y+x*y+y^2=8\&x>0\&y>0, \{x,y\}, Integers]
       Divisors[8]
Out[\ \ \ \ ]=\ x == 3 \&\&\ y == 1
Out[\circ]= {1, 2, 4, 8}
       Reduce [x+y+x*y+y^2=9&&x>0&&y>0, \{x,y\}, Integers]
In[ • ]:=
       Divisors [9]
Out[\ \ \ \ \ ]= \ x == 1 \&\& y == 2
Out[\circ]= {1, 3, 9}
       Reduce [x+y+x*y+y^2=10\&x>0\&y>0, \{x,y\}, Integers]
In[ • ]:=
       Divisors [10]
Out[\circ]= x == 4 && y == 1
Out[\circ]= {1, 2, 5, 10}
       Reduce [x+y+x*y+y^2=11&x>0&y>0, \{x,y\}, Integers]
In[ • ]:=
       Divisors[11]
Out[•]= False
Out[\circ]= \{1, 11\}
       Reduce [x+y+x*y+y^2=12&x>0&y>0, {x,y}, Integers]
In[ = ]:=
       Divisors[12]
Out[\circ]= (x == 2 && y == 2) | | (x == 5 && y == 1)
Out[*]= {1, 2, 3, 4, 6, 12}
       Reduce [x+y+x*y+y^2=13\&&x>0\&&y>0, \{x,y\}, Integers]
       Divisors [13]
Out[*]= False
Out[\circ]= {1, 13}
       Reduce [x+y+x*y+y^2=14\&x>0\&y>0, \{x,y\}, Integers]
In[ • ]:=
       Divisors [14]
Out[\bullet]= x == 6 && y == 1
Out[ \circ ] = \{1, 2, 7, 14\}
```

```
Reduce [x+y+x+y+y^2=15&x>0&y>0, \{x,y\}, Integers]
       Divisors [15]
Out[\ \ \ \ ]=\ x == 3 \&\&\ y == 2
Out[\circ]= {1, 3, 5, 15}
       Reduce [x+y+x*y+y^2=16\&x>0\&y>0, \{x,y\}, Integers]
In[ • ]:=
       Divisors [16]
Out[\circ]= (x == 1 && y == 3) | | (x == 7 && y == 1)
Out[ \circ ] = \{1, 2, 4, 8, 16\}
       Reduce [x+y+x*y+y^2=17&&x>0&&y>0, \{x,y\}, Integers]
In[ • ]:=
       Divisors [17]
Out[•]= False
Out[ • ]= { 1, 17 }
       Reduce [x+y+x*y+y^2=18\&x>0\&y>0, {x,y}, Integers]
In[ • ]:=
       Divisors [18]
\textit{Out[*]} = (x == 4 \&\& y == 2) \mid \mid (x == 8 \&\& y == 1)
Out[ \circ ] = \{1, 2, 3, 6, 9, 18\}
       Reduce [x+y+x*y+y^2=19&&x>0&&y>0, \{x,y\}, Integers]
In[ • ]:=
       Divisors[19]
Out[*]= False
Out[\circ]= {1, 19}
       Reduce [x+y+x*y+y^2=20\&x>0\&y>0, {x,y}, Integers]
In[ • ]:=
       Divisors [20]
Out[\ \ \ \ \ \ \ ]= (x == 2 \&\& y == 3) \ \ | \ \ (x == 9 \&\& y == 1)
Out[\bullet] = \{1, 2, 4, 5, 10, 20\}
       Reduce [x+y+x*y+y^2=21&x>0&y>0, {x,y}, Integers]
In[ = ]:=
       Divisors [21]
Out[ • ]= x == 5 \&\& y == 2
Out[\bullet]= {1, 3, 7, 21}
       Reduce [x+y+x*y+y^2=22\&x>0\&y>0, \{x,y\}, Integers]
       Divisors [22]
Out[ • ]= x == 10 && y == 1
Out[ \circ ] = \{1, 2, 11, 22\}
       Reduce [x+y+x*y+y^2=23\&x>0\&y>0, \{x,y\}, Integers]
In[ • ]:=
       Divisors [23]
Out[ ]= False
Out[•]= {1, 23}
```

```
Reduce [x+y+x+y+y^2=24&x>0&y>0, \{x,y\}, Integers]
In[ • ]:=
       Divisors [24]
\textit{Out[*]} = \ (x == 3 \&\& \ y == 3) \ | \ | \ (x == 6 \&\& \ y == 2) \ | \ | \ (x == 11 \&\& \ y == 1)
Out[\bullet] = \{1, 2, 3, 4, 6, 8, 12, 24\}
       Reduce [x+y+x*y+y^2=25\&x>0\&y>0, \{x,y\}, Integers]
In[ • ]:=
       Divisors [25]
Out[\ \ \ \ ]=\ x == 1 \&\&\ y == 4
Out[\bullet]= {1, 5, 25}
       Reduce [x+y+x*y+y^2=26\&x>0\&y>0, {x,y}, Integers]
       Divisors [26]
Out[ *] = x == 12 & y == 1
Out[ \circ ] = \{1, 2, 13, 26\}
       Reduce [x+y+x+y+y^2=27&&x>0&&y>0, \{x,y\}, Integers]
In[ • ]:=
       Divisors [27]
Out[ \circ ]=  x == 7 \&\& y == 2 
Out[\circ]= {1, 3, 9, 27}
       Reduce [x+y+x*y+y^2=28\&x>0\&y>0, \{x,y\}, Integers]
       Divisors [28]
Out[*]= (x == 4 \&\& y == 3) \mid | (x == 13 \&\& y == 1)
Out[*]= {1, 2, 4, 7, 14, 28}
       Reduce [x+y+x*y+y^2=29\&x>0\&y>0, {x,y}, Integers]
In[ • ]:=
       Divisors [29]
Out[•]= False
Out[\bullet]= {1, 29}
```

Main Results

We have found a way to identify prime numbers by an equation. A number p is prime iff there are no positive solutions to diophantine equation $x+y+x*y+x^2=p$

For the non prime numbers all the proper divisors are identified; let (x,y) a solution of diophantine equation $x+y+x*y+x^2=n$ then x+y is a divisor of n.