Proof that there are no odd perfect numbers

Kouji Takaki

February 04th, 2020
Abstract

If \(y \) is an odd perfect number, let \(p \) be one of the prime factors of \(y \), the exponent of \(p \)
be an integer \(n \ (n \geq 1) \), the prime factors other than \(p \) and different from each other
be \(p_1, p_2, \ldots, p_r \) and the even exponent of \(p_k \) be \(q_k \).

\[
y/p^n = (1 + p + p^2 + \cdots + p^n) \prod_{k=1}^{r} (1 + p_k + p_k^2 + \cdots + p_k^{q_k})/(2p^n) = \prod_{k=1}^{r} p_k^{q_k}
\]

must be satisfied. Let \(m \) be a non negative integer and \(q \) be a positive integer,
\[
n = 4m + 1
p = 4q + 1
\]

Let \(a \) and \(b \) be odd integers, satisfying following expressions,
\[
a = \prod_{k=1}^{r} (1 + p_k + p_k^2 + \cdots + p_k^{q_k})
\]
\[
b = \prod_{k=1}^{r} p_k^{q_k}
\]
\[
a(p^n + \cdots + 1) - 2bp^n = 0
\]
is established. This is a known content that has been proven by Euler. Let \(v \) be a rational number,
\[
v = a/b
\]
holds. By the consideration of this research paper, because we proved that when \(v \) is
integer or not, there are no solutions that satisfies the equation \(a(p^n + \cdots + 1) - 2bp^n = 0 \), we have obtained a conclusion that there are no odd perfect numbers.

Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>2</td>
</tr>
<tr>
<td>Proof</td>
<td>2</td>
</tr>
<tr>
<td>Complement</td>
<td>10</td>
</tr>
<tr>
<td>Acknowledgement</td>
<td>12</td>
</tr>
<tr>
<td>References</td>
<td>12</td>
</tr>
</tbody>
</table>
1. Introduction

The perfect number is one in which the sum of the divisors other than itself is the same value as itself and the smallest perfect number is

\[1 + 2 + 3 = 6 \]

It is 6. Whether odd perfect numbers exist or not is currently an unsolved problem in mathematics.

2. Proof

Let \(y \) be an odd perfect number, one of the prime factors of \(y \) be an odd prime \(p \) and an exponent of \(p \) be an integer \(n \) \((n \geq 1) \). Let the prime factors other than \(p \) and different from each other be \(p_1, p_2, \ldots, p_r \), \(q_k \) be the index of \(p_k \) and an integer \(a \) be the product of series of prime numbers other than prime \(p \).

\[
a = \prod_{k=1}^{r} (1 + p_k + p_k^2 + \cdots + p_k^{q_k}) \quad \cdots ①
\]

The number of terms \(N \) of variable \(a \) is

\[
N = \prod_{k=1}^{r} (q_k + 1) \quad \cdots ②
\]

When \(y \) is a perfect number,

\[
y = a(1 + p + p^2 + \cdots + p^n) - y \quad (n > 0)
\]

is established.

\[
a \sum_{k=0}^{n} p^k / 2 = y
\]

\[
a \sum_{k=0}^{n} p^k / (2p^n) = y/p^n \quad \cdots ③
\]

2.1. When \(q_k \) has at least one odd integer

Let the number of terms where \(q_k \) is odd be a positive integer \(u \). Because \(y/p^n = \prod_{k=1}^{r} p_k^{q_k} \) is odd and the denominator on the left side of the expression ③ has a prime factor 2, from the expression ② variable \(a \) has prime factor 2 more than \(u \) and variable \(a \) is even. Therefore, \(n \) is even and \(u \) is 1 since \(\sum_{k=0}^{n} p^k \) must be an odd integer.
2.2. When all q_k are even integers

y/p^n is odd and the denominator on the left side of the expression ② is even. Since N is odd when q_k are all even integers, variable a is odd. Therefore, $\sum_{k=0}^{n} p^k \equiv 0 \pmod{2}$ is established and n must be an odd integer since $\sum_{k=0}^{n} p^k$ is necessary to include one prime factor 2.

From 2.1, 2.2, in order for odd perfect numbers to exist, only one exponent of the prime factor of y must be an odd integer. We consider the case of 2.2 below.

In order for y to be an odd perfect number, the following expression must be established.

$$y/p^n = (1 + p + p^2 + \cdots + p^n) \prod_{k=1}^{r} (1 + p_k + p_k^2 + \cdots + p_k^{q_k}) / (2p^n) = \prod_{k=1}^{r} p_k^{q_k}$$

However, q_1, q_2, \ldots, q_r are all even integers.

Here, let b be an odd integer.

$$b = \prod_{k=1}^{r} p_k^{q_k} \ldots ④$$

A following expression is established.

$$y/p^n = a(1 + p + p^2 + \cdots + p^n)/(2p^n) = b$$

$$a(p^{n+1} - 1)/(2(p - 1)p^n) = b$$

$$(a - 2b)p^{n+1} + 2bp^n - a = 0 \ldots ⑤$$

$$(ap - 2bp + 2b)p^n = a$$

Since $ap - 2bp + 2b$ is odd, a/p^n is odd. Let a/p^n be an odd integer c.

$$ap - 2bp + 2b = c (c > 0) \ldots ⑥$$

$$2b - a)p = 2b - c$$

Since variable a is odd, $2b - a$ is odd and $2b - a \neq 0$.

$$p = (2b - c)/(2b - a)$$
Since $n \geq 1$,
\[a - c = cp^n - c \geq cp - c > 0 \]
a > c
is.

From the equation ⑥,
\[2b(p - 1) - (ap - c) = 0 \]
\[2b - c(p^{n+1} - 1)/(p - 1) = 0 \]
Since $(p^n + \cdots + 1)/2$ is odd, $n = 4m + 1$ must be hold with m as an integer.
\[2b(p - 1) = c(p^{n+1} - 1) \]
\[2b = c(p^n + \cdots + 1) \]
\[2b = c(p + 1)(p^{n-1} + p^{n-3} + \cdots + 1) \ldots ⑦ \]
Since b is odd when $p + 1$ is not a multiple of 4, $p - 1$ must be a multiple of 4. A positive integer is taken as q.
\[p = 4q + 1 \]
is established. The above conditions have been proved by Euler.

When $p > 1$,
\[p^n - 1 < p^n \]
\[(p^n - 1)/(p - 1) < p^n/(p - 1) \]
\[p^{n-1} + \cdots + 1 < p^n/(p - 1) \]

Since p is an odd prime number satisfying $p = 4q + 1$ and $p \geq 5$,
\[p^{n-1} + \cdots + 1 < p^n/4 \]
\[2b - a = c(p^n + \cdots + 1) - cp^n = c(p^{n-1} + \cdots + 1) \]
\[2b - a < cp^n/4 = a/4 \]
\[2b < 5a/4 \]
\[a > 8b/5 \ldots ⑧ \]
Let a_k and b_k be odd integers and if
\[a_k = 1 + p_k + p_k^2 + \cdots + p_k^{q_k}, \quad b_k = p_k^{q_k} \]
\[a_k - b_k < b_k/(p_k - 1) \]
\[a_k < b_k p_k/(p_k - 1) \]

\[a = \prod_{k=1}^{r} a_k < \prod_{k=1}^{r} b_k p_k/(p_k - 1) = b \prod_{k=1}^{r} p_k/(p_k - 1) \]
\[a/b < \prod_{k=1}^{r} p_k/(p_k - 1) \]

When $r = 1$, since $a/b < 3/2$ is established, it becomes inappropriate contrary to inequality ⑧.

From the expression ⑦,
\[b = c(p + 1)/2 \times (p^{n-1} + p^{n-3} + \cdots + 1) \]
holds. Since $(p + 1)/2$ is the product of only prime numbers of b, let d_k be the index.
\[(p + 1)/2 = \prod_{k=1}^{r} p_k^{d_k} \]
\[p = 2 \prod_{k=1}^{r} p_k^{d_k} - 1 \quad \ldots ⑨ \]

From $a = cp^n$ and the expression ⑦,
\[2bp^n = a(p^n + \cdots + 1) \]
\[a(p^n + \cdots + 1)/(2bp^n) = 1 \quad \ldots (A) \]

When $r = 1$,
\[a = (p_1^{q_1+1} - 1)/(p_1 - 1) \]
\[b = p_1^{q_1} \]

The equation (A) does not hold since there are no odd perfect numbers when $r = 1$.
Let A_k and B_k to be odd integers.

\[
A_k = \frac{(p_k^{q_k+1} - 1)/(p_k - 1)}{}
\]

\[
B_k = p_k^{q_k}
\]

\[
a = \prod_{k=1}^{r} A_k \quad \text{and} \quad b = \prod_{k=1}^{r} B_k
\]

hold. When the equation (A) holds,

\[
A_1 A_2 ... A_r/(B_1 B_2 ... B_r) = 2p^n/(p^n + ... + 1) \quad \text{(B)}
\]

is established.

Assume that a/b on the left of the equation (B) is not an integer.

\[
2B_1 B_2 ... B_r = c(p^n + ... + 1)
\]

holds. $p^n + ... + 1$ is a multiple of the prime factors p_1 to p_r. If $p^n + ... + 1 = B_1 B_2 ... B_r$ holds, a contradiction arises since $c = 2$ and c is even. If $p^n + ... + 1 = 2B_1 B_2 ... B_r$, $c = 1$ holds. From the above, when a/b is not an integer and $c > 1$ holds, at least one of the prime factors p_1 to p_r of the denominator on the left side remains in the denominator on the left side after transposition.

The product of the prime factors remaining in the denominator on the left side among the prime factors p_1 to p_r of the denominator on the left side of the equation (B) is defined as an odd integer P. If the numerator of the left side is a multiple of P, it becomes inconsistent since the left side is an integer and the right side is not an integer. Thereby, when the left side is reduced, at least one of the prime factors p_s of P remains in the denominator. At this time, it becomes a contradiction since p_s does not exist in the denominator of the right side. From the above, the equation (A) does not hold when $c > 1$.

When $c = 1$, a_k is a power of p since $a = p^n$. Let s_k be an integer,

\[
a_k = p^{s_k}
\]

is established. From this expression,

\[
p_1^{q_1+1} = p^{s_1}(p_1 - 1) + 1
\]

\[
p_2^{q_2+1} = p^{s_2}(p_2 - 1) + 1
\]

\[
...
\]

\[
p_r^{q_r+1} = p^{s_r}(p_r - 1) + 1
\]
When the both sides are multiplied,
\[b \prod_{k=1}^{r} p_k = \prod_{k=1}^{r} (p^{s_k}(p_k - 1) + 1) \]
\[(p^n + \cdots + 1) \prod_{k=1}^{r} p_k = 2 \prod_{k=1}^{r} (p^{s_k}(p_k - 1) + 1) \]
\[\prod_{k=1}^{r} p_k \equiv 2 \pmod{p} \]

Let \(t \) be a positive odd integer,
\[\prod_{k=1}^{r} p_k = tp + 2 \]

Let \(w \) be a positive odd integer,
\[w = \prod_{k=1, d_k > 0}^{r} p_k \]
\[\prod_{k=1, d_k > 0}^{r} p_k = (tp + 2)/w \]

From the expression (C),
\[(p + 1)/2 = (tp + 2)/w \times \prod_{k=1}^{r} p_k^{d_k-1} \ldots (C) \]
\[w(p + 1) = 2(tp + 2) \prod_{k=1}^{r} p_k^{d_k-1} \]
\[4 \prod_{k=1}^{r} p_k^{d_k-1} \equiv w \pmod{p} \]

Let \(x \) be an odd integer,
\[4 \prod_{k=1}^{r} p_k^{d_k-1} = xp + w \ldots (D) \]

From the expression (C),
\[(p + 1)/2 = (tp + 2)/w \times (xp + w)/4 \]
\[txp = -(2x + (t - 2)w) \]
\[
\prod_{k=1}^{r} p_k = t \left(2 \prod_{k=1}^{r} p_k^{d_k - 1} - 1 \right) + 2
\]
\[-t + 2 \equiv 0 \pmod{p_k, d_k > 0}
\]
\[t > 3\] holds since \(t\) is a positive odd integer.

If \(2x + (t - 2)w < 0\) holds, \(x > 0\) must hold. However, it becomes a contradiction since \(2x + (t - 2)w > 0\) holds when \(x > 0\). Therefore, \(x < 0\) and \(2x + (t - 2)w > 0\)
\[2 > -(t - 2)w/x\]
must be satisfied.

From the expression (D),
\[4 \prod_{k=1}^{r} p_k^{d_k - 1} = xp + \prod_{k=1}^{r} p_k\]
\[4 \prod_{k=1}^{r} p_k^{d_k} = xp \prod_{k=1, d_k > 0}^{r} p_k + \prod_{k=1}^{r} p_k\]
\[2(p + 1) = xp \prod_{k=1, d_k > 0}^{r} p_k + tp + 2\]
\[xp \prod_{k=1, d_k > 0}^{r} p_k = -(t - 2)p\]
\[\prod_{k=1, d_k > 0}^{r} p_k = -(t - 2)/x\]

By the inequality described above,
\[w \prod_{k=1, d_k > 0}^{r} p_k < 2\]
is established. However, a contradiction arises since this expression obviously does not hold. From the above, all points \((a, b, p, n)\) where \(a/b\) is not an integer cannot be solutions of the equation (A).
If a/b is an integer, let v be an integer, from the equation (A),
\[v = a/b = 2p^n/(p^n + \cdots + 1) \]
\[2p^n = v(p^n + \cdots + 1) \]

Let z be an integer and if $v = zp^n$ holds,
\[2 = z(p^n + \cdots + 1) \]

When $p \equiv 1 \pmod{4}$, $p \geq 5$ and $n \equiv 1 \pmod{4}$, $n \geq 1$, $p^n + \cdots + 1 \geq 6$
holds. At this time, it is not appropriate since z does not become an integer. Therefore, if v is an integer, there is no solution (a,b,p,n) that satisfies the equation (A) and the above conditions of p and n. From the above, there are no odd perfect numbers.
3. Complement

From the equation (5),
\[2bp^n(p - 1) = a(p^{n+1} - 1) \]
\[2 = a(p^{n+1} - 1)/(bp^n(p - 1)) \]
\[2 = (p_1^{q_1+1} - 1)(p_2^{q_2+1} - 1) \cdots (p_r^{q_r+1} - 1)(p^{n+1} - 1) \]
\[/ (p_1^{p_1}p_2^{p_2} \cdots p_r^{p_r}p^n(p_1 - 1)(p_2 - 1) \cdots (p_r - 1)(p - 1)) \]
\[2(p_1^{q_1+1} - p_1^{q_1})(p_2^{q_2+1} - p_2^{q_2}) \cdots (p_r^{q_r+1} - p_r^{q_r})(p^{n+1} - p^n) \]
\[= (p_1^{q_1+1} - 1)(p_2^{q_2+1} - 1) \cdots (p_r^{q_r+1} - 1)(p^{n+1} - 1) \]

We consider when \(r = 2 \).

\[(p_1^{q_1+1} - 1)(p_2^{q_2+1} - 1)(p^{n+1} - 1) = 2(p_1^{q_1+1} - p_1^{q_1})(p_2^{q_2+1} - p_2^{q_2})(p^{n+1} - p^n) \]

Let \(s, t, u \) be integers,
\[s = p_1^{q_1+1} - 1 \]
\[t = p_2^{q_2+1} - 1 \]
\[u = p^{n+1} - 1 \]

are.
\[stu = 2(p_1^{q_1+1} - 1 - (p_1^{q_1} - 1))(p_2^{q_2+1} - 1 - (p_2^{q_2} - 1))(p^{n+1} - 1 - (p^n - 1)) \]
\[stu = 2(s - (s + 1)p_1 + 1)(t - (t + 1)p_2 + 1)(u - (u + 1)/p + 1) \]
\[pp_1p_2stu = 2((s + 1)p_1 - (s + 1))(t + 1)p_2 + (t + 1))(u + 1)p + (u + 1) \]
\[pp_1p_2stu = 2(s + 1)(p_1 - 1)(t + 1)(p_2 - 1)(u + 1)(p - 1) \]
\[stu/((s + 1)(t + 1)(u + 1)) = 2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1p_2p) \]

Since \(stu/((s + 1)(t + 1)(u + 1)) \) is a monotonically increasing function for variables \(s, t \) and \(u \), if
\[s \geq 3^{2^n+1} - 1 = 26, \ p_1 = 3, \ q_1 = 2 \]
\[t \geq 7^{2^n+1} - 1 = 342, \ p_2 = 7, \ q_2 = 2 \]
\[u \geq 5^{2} - 1 = 24, \ p = 5, \ n = 1 \]
holds,
\[stu/((s + 1)(t + 1)(u + 1)) \geq 26 \times 342 \times 24/(27 \times 343 \times 25) = 7904/8575 \]
\[2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1p_2p) = 2 \times 2 \times 6 \times 4/(3 \times 7 \times 5) = 32/35 \]

Since \(stu/((s + 1)(t + 1)(u + 1)) \) is limited to 1 when \(s, t \) and \(u \) are infinite,
\[stu/((s + 1)(t + 1)(u + 1)) < 1 \]
If \(f(p_1, p_2, p) = 2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1 p_2 p) \) holds, it is sufficient to consider a combination where \(f(p_1, p_2, p) < 1 \).

\[
f(3,7,5) = 2 \times 2 \times 6 \times 4/(3 \times 7 \times 5) = 32/35
\]
\[
f(3,11,5) = 2 \times 2 \times 10 \times 4/(3 \times 11 \times 5) = 32/33
\]
\[
f(3,13,5) = 2 \times 2 \times 12 \times 4/(3 \times 13 \times 5) = 64/65
\]
\[
f(3,17,5) = 2 \times 2 \times 16 \times 4/(3 \times 17 \times 5) = 256/255
\]
\[
f(3,7,13) = 2 \times 2 \times 6 \times 12/(3 \times 7 \times 13) = 96/91
\]
\[
f(3,5,17) = 2 \times 2 \times 4 \times 16/(3 \times 5 \times 17) = 256/255
\]

From the above, when \(r = 2 \), combinations \((p_1, p_2, p) = (3,7,5), (3,11,5), (3,13,5) \) can be considered.

Let \(q_k \) be 2 and \(n = 1 \), if \(g(p_1, p_2, p) = (p_1^3 - 1)(p_2^3 - 1)(p^2 - 1)/(p_1^3 p_2^3 p^2) \),

\[
g(3,7,5) = 26 \times 342 \times 24/(3^3 7^3 5^2) = 7904/8575 > 32/35
\]
\[
g(3,11,5) = 26 \times 1330 \times 24/(3^3 11^3 5^2) = 55328/59895
\]
\[
g(3,13,5) = 26 \times 2196 \times 24/(3^3 13^3 5^2) = 3904/4225
\]

Since the function \(g \) is the minimum in the case of \(q_k = 2 \) and \(n = 1 \), there is no solution \(q_k \) and \(n \) when \(g > f \), so the case of \((p_1, p_2, p) = (3,7,5) \) becomes unsuitable.

\[
stu/((s + 1)(t + 1)(u + 1)) = 2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1 p_2 p)
\]
\[
(p_1^{q_1+1} - 1)(p_2^{q_2+1} - 1)(p^{n+1} - 1)/(p_1^{q_1+1} p_2^{q_2+1} p^{n+1})
\]
\[
= 2(p_1 - 1)(p_2 - 1)(p - 1)/(p_1 p_2 p)
\]

If \(F(p_1, p_2, p) = (p_1 - 1)(p_2 - 1)(p - 1)/(p_1 p_2 p) \),

\[
F(p_1^{q_1+1}, p_2^{q_2+1}, p^{n+1}) = 2F(p_1, p_2, p)
\]
4. Acknowledgement

In writing this research document, we asked anonymous reviewers to point out several tens of mistakes. We would like to thank you for giving appropriate guidance and counter-arguments.

5. References

Hiroyuki Kojima "The world is made of prime numbers" Kadokawa Shoten, 2017
Fumio Sairaiji Kenichi Shimizu "A story that prime is playing" Kodansha, 2015