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The discovery of Higgs-boson decays in a background of standard-
model processes was assisted by machine learning methods1,2. The 
classifiers used to separate signals such as these from background 
are trained using highly unerring but not completely perfect 
simulations of the physical processes involved, often resulting in 
incorrect labelling of background processes or signals (label noise) 
and systematic errors. Here we use quantum3–6 and classical7,8 
annealing (probabilistic techniques for approximating the global 
maximum or minimum of a given function) to solve a Higgs-
signal-versus-background machine learning optimization problem, 
mapped to a problem of finding the ground state of a corresponding 
Ising spin model. We build a set of weak classifiers based on the 
kinematic observables of the Higgs decay photons, which we then 
use to construct a strong classifier. This strong classifier is highly 
resilient against overtraining and against errors in the correlations 
of the physical observables in the training data. We show that the 
resulting quantum and classical annealing-based classifier systems 
perform comparably to the state-of-the-art machine learning 
methods that are currently used in particle physics9,10. However, in 
contrast to these methods, the annealing-based classifiers are simple 
functions of directly interpretable experimental parameters with 
clear physical meaning. The annealer-trained classifiers use the 
excited states in the vicinity of the ground state and demonstrate 
some advantage over traditional machine learning methods for 
small training datasets. Given the relative simplicity of the algorithm 
and its robustness to error, this technique may find application 
in other areas of experimental particle physics, such as real-time 
decision making in event-selection problems and classification in 
neutrino physics.

The discovery of the Higgs boson at the Large Hadron Collider 
(LHC)1,2 marks the beginning of a new era in particle physics. 
Experimental particle physicists at the LHC are measuring the 
properties of the new boson11,12, searching for heavier Higgs bosons13 
and trying to understand whether the Higgs boson interacts with 
dark matter14. Cosmologists are trying to understand the symmetry-
breaking Higgs phase transition that took place early in the history 
of the Universe and whether that event explains the excess of matter 
compared to antimatter15. The measured mass of the Higgs boson13 
implies that the symmetry-breaking quantum vacuum is metastable16 
unless new physics intervenes. The implications of the discovery  
of the Higgs boson will keep motivating physics research for years  
to come.

One of the key requirements for precisely measuring the properties 
of the Higgs boson is selecting large, high-purity samples that contain 
the production and decay of a Higgs particle. Machine learning 
techniques17 could potentially be used as powerful tools for selecting 
such samples, but challenges remain. These challenges are greater when 
an investigation requires faithful simulation not only of the physics 

observables themselves, but also of their correlations in the data. In 
the measurement of the properties of the Higgs boson11, disagree-
ments between simulations and observations result in label noise and 
systematic uncertainties in the efficiency of the classifiers that adversely 
effect the classification performance and translate into uncertainties on 
the measured properties of the discovered particle.

To address these challenges in the Higgs-signal-versus-background 
optimization problem, we study a binary classifier that is trained 
with classical simulated annealing7,8 and quantum annealing3–6,18. 
To implement quantum annealing we use a programmable quantum 
annealer (D-Wave Systems, Inc.) housed at the University of Southern 
California’s Information Sciences Institute, which comprises 1,098 
superconducting flux qubits. The optimization problem is mapped to 
one of finding the ground state of a corresponding Ising spin model.  
We use the excited states in the vicinity of the ground state in the 
training method to improve the accuracy of the classifiers beyond 
the baseline ground-state-finding model. We refer to this approach as 
quantum annealing for machine learning (QAML).

1Department of Physics, California Institute of Technology, Pasadena, California 91125, USA. 2Department of Physics, University of Southern California, Los Angeles, California 90089, USA. 3Center 
for Quantum Information Science and Technology, University of Southern California, Los Angeles, California 90089, USA.4Departments of Electrical Engineering, Chemistry and Physics, University 
of Southern California, Los Angeles, California 90089, USA. †Present address: DeepMind, London, UK. 
*These authors contributed equally to this work.

g

g

t

t

t H
t

t

t

Figure 1 | Representative Feynman diagrams of processes that 
contribute to the simulated distributions of the Higgs signal and of the 
background standard-model processes. The signal corresponds to the 
production of a Higgs boson (H) through the fusion of two gluons (g), 
which then decays into two photons (γ) (top). The gluon fusion and Higgs 
decay processes both proceed through virtual top quark (t) loops; t is an 
antitop quark. Representative leading-order and next-to-leading-order 
background processes are standard-model two-photon production 
processes (bottom).
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Our criterion for comparing various classifier construction methods 
is the accuracy of the classifier. A classifier that is slow to train may be 
practically more useful than one that is less accurate but faster to train.

We model the Higgs diphoton decay channel H →​ γγ; see Fig. 1 for 
Feynman diagrams of the Higgs production and decay processes. We 
represent this system via the momentum of the Higgs particle,  
the momenta of the two photons, the angle with the beam axis θ and 
the azimuthal angle φ. More specifically, we select eight of the kinematic 
variables that describe the events that are generated as the variables for 
our classifier (see Table 1). The first five are related to the highest (pT

1 ) 
and second-highest (pT

2 ) transverse momentum (the momentum per-
pendicular to the axis defined by the colliding protons) of the photon 
pair: / γγp mT

1 , / γγp mT
2 , ± / γγp p m( )T

1
T
2  and /γγ γγp mT

, where mγγ is the 
invariant mass of the diphoton pair and γγpT

 is the transverse momen-
tum of the diphoton system. The last three are: Δ​η, the separation in 
the pseudorapidity η =​ −​log[tan(θ/2)] of the two photons (η is a pseudo- 
invariant proxy to θ that is commonly used in high-energy physics); 

η φΔ = Δ +ΔR 2 2 , the sum in quadrature of the separation in η and 
in φ of the two photons; and |​ηγγ|​, the pseudorapidity of the diphoton 
system. In Fig. 2 we show the distribution of these variables for the 
signal and background datasets. The differences between these distri-
butions are used by the classifier to distinguish the signal from the 
background. In addition to these eight variables, we incorporate various 
products between them (using rules explained in Supplementary 
Information) for a total of 36 (see Table 2).

We construct weak classifiers from our distributions of kinematic 
variables, as shown in Fig. 2 and described in Methods. We build the 
corresponding Ising problem as follows6. Let = τ τI x y{ , } denote a set 
of training events labelled by the index τ, where xτ is a vector of the 
values of each of the variables that we use, and yτ =​ ±​1 is a binary label 
for whether xτ corresponds to signal (+​1) or background (−​1).  

If ci(xτ) =​ ±​1/N denotes the value of weak classifier i on the event, 
where N is the number of weak classifiers, equal to the number of spins 
or qubits, then with

∑ ∑= =
τ

τ τ
τ

τ τx x xC c c C c y( ) ( ), ( )ij i j i i

and a penalty λ >​ 0 to prevent overtraining, the Ising Hamiltonian is

∑ ∑= +H J s s h s
i j

ij i j
i

i i
,

Table 1 | The kinematic variables used to construct weak classifiers
Variable Description

/ γγp mT
1 Transverse momentum (pT) of the photon with the larger pT 

(photon ‘1’), divided by the invariant mass of the diphoton 
pair (mγγ)

/ γγp mT
2 Transverse momentum (pT) of the photon with the smaller pT 

(photon ‘2’), divided by the invariant mass of the diphoton 
pair (mγγ)

+ / γγp p m( )T
1

T
2 Sum of the transverse momenta of the two photons, divided 

by their invariant mass
− / γγp p m( )T

1
T
2 Difference of the transverse momenta of the two photons, 

divided by their invariant mass
/γγ γγp mT Transverse momentum of the diphoton system, divided by its 

invariant mass
Δ​η Difference between the pseudorapidity η =​ −​log[tan(θ/2)] of 

the two photons, where θ is the angle with the beam axis
Δ​R Sum in quadrature of the separation in pseudorapidity η and 

azimuthal angle φ of the two photons ( η φΔ +Δ2 2)
|​ηγγ|​ Pseudorapidity of the diphoton system
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Figure 2 | Distributions of the eight kinematic variables used to 
construct weak classifiers. The solid green line is the signal distribution 
and the dotted blue line is the background. For each variable the vertical 
axis shows the raw count of the number of events. The total number of 
events simulated in each case is 307,732.

Table 2 | Map from number to variable or weak classifier
Number Variable Number Variable Number Variable Number Variable

1 pT
1 10 / −p p p( )T

2
T
1

T
2 19 p pT

1
T
2 28 / γγp pT

2
T

2 pT
2 11 η/ΔpT

2 20 /Δp RT
1 29 +p p p( )T

2
T
1

T
2

3 Δ​R 12 ηγγpT
2 21 / γγp pT

1
T

30 + / γγp p p( )T
1

T
2

T

4 γγpT 13 / Δ γγRp1 ( )T 22 +p p p( )T
1

T
1

T
2 31 η /γγ γγpT

5 +p pT
1

T
2 14 + /Δp p R( )T

1
T
2 23 / −p p p( )T

1
T
1

T
2 32 η/ Δγγp1 ( )T

6 −p pT
1

T
2 15 /Δ − 

R p p1 ( )T
1

T
2 24 η/ΔpT

1 33 / − 


γγp p p1 ( )T T
1

T
2

7 Δ​η 16 η/ Δ ΔR1 ( ) 25 η/ γγpT
1 34 + / −p p p p( ) ( )T

1
T
2

T
1

T
2

8 ηγγ 17 η /Δγγ R 26 /Δp RT
2 35 η+ /Δp p( )T

1
T
2

9 η+ γγp p( )T
1

T
2 18 η/ − Δ p p1 ( )T

1
T
2 27 η / −γγ p p( )T

1
T
2 36 η η/Δγγ
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where si =​ ±​1 is the ith Ising spin variable, Jij =​ Cij/4 is the coupling 
between spins i and j, and λ= − + ∑h C Ci i j ij

1
2

 is the local field on 
spin i. The problem that quantum or simulated annealing attempt to 
solve is minimizing H and returning the minimizing, ground-state spin 
configuration s{ }i i

g . The strong classifier is then constructed as

∑= ∈ −x xR s c( ) ( ) [ 1, 1]
i

i i
g

for each new event x that we wish to classify6. We introduce an addi-
tional layer into our study by also constructing strong classifiers from 
excited-state spin configurations.

As benchmarks for traditional machine learning methods, we train a 
deep neural network (DNN) using Keras9 with the Theano backend19, 
and an ensemble of boosted decision trees using XGBoost (XGB)10, 
using optimized choices for training hyperparameters (details of which 
can be found in Supplementary Information).

We compare the ground-state configurations for λ ∈​ {0.01, 0.05, 0.1,  
0.2, 0.4, 0.8}. A larger λ implies an increased penalty against including 
additional variables, and so we expect the variables included at λ =​ 0.8 
to be determining the performance of the classifiers. Table 3 presents 
the relative strength of the variables in determining the performance 
of the classifier by showing how often variables are included in the 
ground-state configuration of the full 36-variable problem derived from 
20 different training sets with 20,000 training events each, as a function 
of the penalty term λ. We find that two of the original kinematic 
variables, pT

1  and |​ηγγ|​, are never included. The number of classifiers 
included in the ground state of the corresponding Hamiltonian of all 
20 training samples is 16 out of 36 for λ ≤​ 0.05 and the following three 
for λ =​ 0.8: (i) / γγp mT

2 , (ii) Δ γγ −R p( )T
1 and (iii) / γγp pT

2
T

. These three 
classifiers have the greatest effect on the performance of the network, 
but would have been difficult to guess a priori in their composite form. 
The physical reason for why these variables are important for the clas-
sifier can be gleaned by considering the kinematics of the system. The 
key difference between an event in which a Higgs boson decays to two 
photons and another process that produces two photons in its final state 
is the production of the heavy particle in the event. A heavy particle 
will require considerably more energy to boost perpendicular to the 
beamline and hence we would expect real Higgs events to have a char-
acteristically lower γγpT

 than do background events. Because the system 
with the Higgs boson has less transverse boost, we would expect  
the two photons to have similar pT spectra. Consequently, the second 
most energetic photon will typically be higher than in events without 
the heavy process. The pT of the first photon is largely determined by 
the overall energy that is available in the collision, which is also  

set by mγγ; hence / γγp mT
1  is largely stochastic and provides little 

discrimination.
We estimate the receiver operating characteristic (ROC) curves on 

the training set and construct a final output classifier such that for 

Table 3 | Variable inclusion in the ground states of instances of the Ising problem
λ 0 0.01 0.02 0.05 0.1 0.2 0.4 0.8 λ 0 0.01 0.02 0.05 0.1 0.2 0.4 0.8

1 0 0 0 0 0 0 0 0 19 20 20 20 20 20 18 0 0
2 20 20 20 20 20 20 20 20 20 0 0 0 0 0 0 0 0
3 20 20 20 20 20 20 0 0 21 0 0 0 0 0 0 0 0
4 20 20 20 20 20 20 2 0 22 19 19 19 19 1 0 0 0
5 19 19 19 19 19 19 19 0 23 0 0 0 0 0 0 0 0
6 20 20 20 20 20 20 20 0 24 20 20 20 20 20 20 7 0
7 20 20 20 20 20 20 20 9 25 0 0 0 0 0 0 0 0
8 0 0 0 0 0 0 0 0 26 3 2 1 0 0 0 0 0
9 5 4 4 1 0 0 0 0 27 0 0 0 0 0 0 0 0
10 20 20 20 20 20 20 20 18 28 20 20 20 20 20 20 20 20
11 20 20 20 20 20 14 17 0 29 19 19 19 16 1 0 0 0
12 20 20 20 20 20 20 20 0 30 7 6 4 1 0 0 0 0
13 20 20 20 20 20 20 20 20 31 0 0 0 0 0 0 0 0
14 19 19 19 19 19 12 0 0 32 15 15 15 11 5 0 0 0
15 20 20 20 20 20 20 20 2 33 0 0 0 0 0 0 0 0
16 17 17 16 10 6 4 1 0 34 19 19 19 19 16 0 0 0
17 20 20 20 20 14 1 0 0 35 20 20 20 20 20 20 20 19
18 20 20 20 17 2 0 0 0 36 20 20 20 20 20 20 3 0

The variables are listed by number (see Table 2). We show how many out of 20 training sets had the given variable turned on in the ground-state configuration. Of the 36 variables, 3 were included for 
all values of the penalty term λ and for all of the training sets, p

T
2, / Δ γγRp1 ( )

T
 and / γγp p

T
2

T
; the variables / −p p p( )

T
2

T
1

T
2  and η+ /Δp p( )

T
1

T
2  were present in almost all; and 7 were never included, among which 

are the original kinematic variables p
T
1 and ηγγ. 
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Figure 3 | Receiver operating characteristic (ROC) curves for the 
annealer-trained networks with f = 0.05, the DNN and XGB.  
a–d, Results shown are for the 36-variable networks at λ =​ 0.05, trained 
on 100 (a and b) or 20,000 (c and d) events. The ROC curve illustrates 
the diagnostic ability of a binary classifier system as its discrimination 
threshold is varied, and is created by plotting the background rejection 
against the signal efficiency at various threshold settings. The short-
dashed black line indicates no discrimination. Solid lines correspond to 
quantum (QA; green) or simulated (SA; blue) annealing, and dotted lines 
to the DNN (red) or XGB (cyan). Error bars are defined by the variation 
over the training sets and statistical error; 1σ error bars for quantum 
annealing and the DNN are shown as light blue and pale yellow shading, 
respectively, in a and c. The 1σ error bars for simulated annealing and XGB 
are included in b and d, but are too small to be visible owing to the larger 
number of events. For 100 events the annealer-trained networks have a 
larger AUROC, as shown directly in Fig. 4. The situation is reversed for 
20,000 training events.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.
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a signal efficiency εS we use the strong classifier sampled from the 
annealer with the maximum background rejection rB. We construct 
such compound classifiers for simulated and quantum annealing using 
excited states within a fraction f of the ground-state energy Eg—that is, 
all {si} such that H({si}) <​ (1 −​ f)Eg (note that Eg <​ 0). Simulated anneal-
ing is used as a natural comparison to quantum annealing on these fully 
connected problems.

In our experiments, quantum annealing struggles to find the true 
minimum of the objective function. This is probably a consequence 
of the fact that the current generation of D-Wave quantum annealers 
suffers from non-negligible noise on the programmed Hamiltonian. 
The problem of noise is compounded by the relatively sparse graph, 
which requires a chain of qubits to embed the fully connected logical 
Hamiltonian. In our case, 12 qubits are ferromagnetically coupled 

to act as a single logical qubit. We therefore study and interrogate 
current-generation quantum annealers and interpret their performance 
as a lower bound for the performance of future systems with lower 
noise and denser hardware graphs.

In Fig. 3 we plot the ROC curves illustrating the ability to discrimi-
nate between signal and background for each algorithm, with f =​ 0.05 
and training datasets with 100 or 20,000 events. We observe a clear 
separation between the annealing-based classifiers and the binary-
decision-tree-based XGB and DNN classifiers, with the advantage of 
the annealers appearing for small training datasets, but disappearing 
for the larger datasets. In Fig. 4 we plot the area under the ROC 
curve for each algorithm, for training datasets of various sizes and 
f =​ 0.05 (the largest value we used). An ideal classifier would have 
an area of 1. We find that quantum and simulated annealing have 
comparable performance, implying high robustness to approximate 
solutions of the training problem. This feature appears to general-
ize across the domain of QAML applications (Li, R. et al., submitted  
manuscript). Here the asymptotic performance of the QAML model is 
achieved with just 1,000 training events, and thereafter the algorithm 
does not benefit from additional data. This is not true for the DNN or 
XGB. A notable finding of our work is that QAML has an advantage 
over both the DNN and XGB when training datasets are small. This is 
shown in Fig. 5 in terms of the integral of the true negative differences 
over signal efficiency for various ROCs. In the same regime of small 
training datasets, quantum annealing develops a small advantage over 
simulated annealing as the fraction of excited states f used increases, 
saturating at f =​ 0.05. However, the uncertainties are too large to draw 
definitive conclusions in this regard. In the regime of large training 
datasets, simulated annealing has a small advantage over quantum 
annealing, to a significance of approximately 2σ.

In our study we have explored QAML, a simple method inspired by 
the prospect of using quantum annealing as an optimization technique 
for constructing classifiers, and applied the technique to the detection 
of Higgs decays. The training data are represented in a compact 
representation of O(N2) couplers and local biases in the Hamiltonian 
for N weak classifiers. The resulting strong classifiers perform compa-
rably to the state-of-the-art standard methods that are currently used in 
high-energy physics, and have an advantage when the training datasets 
are small. The role of quantum annealing is that of a subroutine for 
sampling the Ising problem that may in the future have advantages 
over classical samplers, either when used directly or as a way of seeding 
classical solvers with high-quality initial states.

QAML is resistant to overfitting because it involves an explicit 
linearization of correlations. It is also less sensitive to errors in the 
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Figure 4 | Area under the ROC curve (AUROC) for the annealer-trained 
networks with f = 0.05, the DNN and XGB. Results shown are for the 
36-variable networks at λ =​ 0.05. As in Fig. 3, the solid lines correspond 
to quantum (green) or simulated (blue) annealing, and dotted lines to the 
DNN (red) or XGB (cyan). The vertical lines denote 1σ error bars, defined 
by the variation over the training sets (grey) plus statistical error (green); 
see Supplementary Information section 6 for details of the uncertainty 
analysis. Whereas the DNN and XGB have an advantage for large training 
datasets, we find that the annealer-trained networks perform better for 
small training datasets. The overall performance of QAML and its features, 
including the advantage at small training-dataset sizes and saturation of 
the AUROC at approximately 0.64, are stable across a range of values of 
λ. An extended version of this plot, for various values of λ, is shown in 
Supplementary Fig. 2.
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Figure 5 | Difference between the AUROCs for different algorithms.  
a, Quantum annealing versus the DNN (QA −​ DNN). b, Quantum 
annealing versus XGB (QA −​ XGB). c, Quantum versus simulated 
annealing (QA −​ SA). In all cases, the difference is shown as a function of 
training-dataset size and fraction f above the minimum energy returned 

(the same values of f are used for quantum and simulated annealing in c). 
Formally, we plot ∫ ε ε ε−r r[ ( ) ( )]di

0
1

B
QA

S B S S, where rB is the maximum 
background rejection, i ∈​ {DNN, XGB, SA} and εS is the signal efficiency. 
The vertical lines denote 1σ error bars. The large error bars are due to 
noise on the programmed Hamiltonian.

© 2017 Macmillan Publishers Limited, part of Springer Nature. All rights reserved.



Letter RESEARCH

1 9  o c t o b e r  2 0 1 7  |  V O L  5 5 0  |  N A T U RE   |  3 7 9

Monte Carlo correlation estimates than are DNNs or binary decision 
trees, owing to the truncation of the tails of the distributions (see 
Supplementary Information). A useful aspect of the model is that it 
is interpretable directly, with each weak classifier corresponding to a 
physically relevant variable, or product or ratio of variables, and the 
strong classifier being a simple linear combination thereof. This is in 
contrast to the creation of black-box machine learning discriminants, 
such as when using DNNs or XGB, developing techniques for the inter-
pretability of which is still an active area of research20.

Being able to use quantum annealing to optimize classifiers in a 
physics problem opens up further opportunities for research. There 
have been several recent theoretical advances in quantum machine 
learning21–27; we demonstrate that elements of this technique can 
already be applied to current- and next-generation quantum annealing 
architectures. The near future will see applications of these techniques 
to more complex problems in particle physics and other sciences; for 
example, this work has motivated similar studies in computational 
biology (Li, R. et al., submitted manuscript). We envision that QAML 
could be used in the context of data certification in high-energy physics, 
where training with small datasets could be particularly useful. The 
robustness of QAML will enable both a substantial reduction in the 
level of human intervention and an increase in the accuracy of quickly 
assessing and certifying particle-collision data for analysis. Being 
impervious to overtraining, QAML is a good candidate for boosting10. 
We foresee studies to evaluate this application using future versions 
and architectures of quantum annealers or even classical optimization 
techniques such as simulated annealing. Multi-stage classifiers—which 
find the most influential variables via training and output them to form 
a smarter classifier—could be used to mitigate the influence of hard-
ware noise in the quantum annealer. With more available qubits, or 
more efficient architectures, integer weights could be used in place of 
binary weights through a straightforward extension of the encoding 
scheme used in this work.

Online Content Methods, along with any additional Extended Data display items and 
Source Data, are available in the online version of the paper; references unique to 
these sections appear only in the online paper.
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Methods
Problem construction. We simulate 3 ×​ 105 125-GeV-mass Higgs-particle decays 
produced by gluon fusion at =ŝ 8 TeV using PYTHIA 6.428, and 3 ×​ 105 back-
ground events corresponding to standard-model processes using SHERPA29. We 
restrict the simulated events to those processes with realistic detector acceptance 
and with trigger requirements that lie directly under the Higgs peak (to ensure that 
the classifier cannot select on mass information); that is, those for which |​η|​ <​ 2.5, 
with one photon having pT >​ 32 GeV and the other having pT >​ 25 GeV, and with 
total diphoton invariant mass 122.5 GeV <​ mγγ <​ 127.5 GeV. The main Feynman 
diagrams are shown in Fig. 1. The resulting distributions for eight kinematic 
variables in this problem are shown in Fig. 2. The complete procedure for the 
construction of the weak classifier is provided in Supplementary Information.

There are 666 floating-point parameters in our Ising Hamiltonian on  
36 variables. XGBoost with a maximum depth of 10 has up to 1,024 decisions (each 
a free variable or parameter) in each tree. Our DNN has 2,000 local biases and 
approximately 500,000 weights on or between the two 1,000-node hidden layers.
Data collection and analysis. For simulated annealing, all of the Ising 
Hamiltonians are run 104 times, with various numbers of linear sweeps (but all 
around 1,000) from an initial inverse temperature of β =​ 0.1 to a final inverse 
temperature of β =​ 5. Ground-state energies are estimated using simulated 
annealing with 104 linear sweeps from β =​ 0.1 to β =​ 10. For quantum annealing,  
we first create for each instance a heuristic embedding using the D-Wave 
application program interface. Quantum annealing is run with 50 gauges18  
(a randomization procedure designed to average out random errors on the local 
fields and couplers) at the minimum possible annealing time of 5 μ​s for 200 samples 
per gauge and a chain strength of 6.

We collect all data across programming cycles for quantum annealing and 
consider the ensemble of resulting solutions as a single block. For simulated and 
quantum annealing, we construct a histogram of the unique solutions that are 
returned from the algorithm, and exclude those states with low enough rates of 
occurrence that we cannot be certain of their inclusion in further runs. This is 
done by excluding any solution that occurs fewer than three times, because such 
solutions have a greater than 5% chance of exclusion in subsequent batches of 104 
solutions. In this way, we determine a robust lower bound on the performance 
of the ensemble classifier. Details on the data and error analysis are provided in 
Supplementary Information.
Weak-classifier construction. We define S(v) as the distribution of the signal of 
variable v, and similarly B(v) is the distribution of the background for variable v. 
For a given value of v, we compute the 70th percentile of S(v), vcut, and then find 
the percentile that corresponds to B(vcut). If the percentile in B(vcut) is less than 
70, then we centre vcut (v′​ =​ v −​ vcut) and reflect across the vertical axis (v″​​ =​ −​v′​) 
so that S(v″​) >​ B(v″​) for v″​ >​ 0, and thus the region v″​ >​ 0 is predominantly signal 

and the region v″​ <​ 0 is predominantly background. If the percentile in B(vcut) is 
more than 70, then we compute the 30th percentile of S(v) (yielding vcut,new); if 
the percentile in B(vcut,new) is more than 30, then we centre at vcut,new but do not 
reflect across the vertical axis, because the requirement that S(v″​​) >​ B(v″​) for v″​ >​ 0  
is already satisfied. If neither of these conditions is satisfied, the we reject the 
variable as unsuitable for the construction of a weak classifier. We then determine 
the 10th percentile for S(v) and the 90th for B(v), v+1 and v−1, respectively.  
The weak classifier is
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By construction, c(v) has all of the properties that we seek in a weak classifier. 
Because this procedure removes information about the tails of the distributions 
and does not take into account correlations between our kinematic variables, we 
introduce products and ratios of the kinematic variables to our description. If we 
had to flip the distribution for variable i, then we define gi =​ 1/vi; otherwise, gi =​ vi. 
We then introduce all of the functions of the form p(gi, gj) =​ gigj and perform the 
weak-classifier construction on these combinations.
Instances and variable inclusion. We use eight kinematic variables, listed in Table 1.  
They involve functions of the individual and diphoton mass, as well as the angles 
of the photons and the diphoton system. Taking products of these kinematic 
variables, we obtain a total of 36 variables that pass the weak-classifier construc-
tion procedure for the vast majority of the training sets. These 36 weak classifiers 
(or a subset thereof) are the set from which we built our strong classifiers. For each 
size of training set (100, 1,000, 5,000, 10,000, 15,000 or 20,000), we generated 20 
training sets and the corresponding Ising problem for λ =​ 0.05. To compare the 
performance of simulated and quantum annealing, we estimate the ground-state 
solution of these Ising problems by running simulated annealing for a large number 
of sweeps (104) with a low final temperature (0.1 in normalized energy units).
Data availability. The data that support the findings of this study are available from 
the corresponding author on reasonable request. The data shown in the figures are 
provided as Supplementary Data.
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