An interesting property of Euler’s totient function

Moreno Borrallo, Juan

March 11, 2020

e-mail: juan.morenoborrallo@gmail.com

"Entia non sunt multiplicanda prae necessitatem" (Ockam, W.)
"Dios no juega a los dados con el Universo" (Einstein, Albert)
"Te doy gracias, Padre, porque has ocultado estas cosas a los sabios y entendidos y se las has revelado a la gente sencilla" (Mt 11,25)

Abstract

In this brief paper it is proved that, for some positive integer \(n \) and some prime number \(q < n \) such that \(\gcd(q,n) = 1 \), it holds that the set

\[S = \{ x : 0 \leq x \leq n, \gcd(x,qn) = 1 \} \]

has no less than \(\frac{\varphi(qn)}{2q} \) elements.

2010MSC: 11A99
1 Theorem

Let \(\varphi(n) = n \prod_{p|n} \left(\frac{p-1}{p} \right) \) denote the Euler’s totient function, which counts the number of elements of the set \(\{ x : 0 \leq x \leq n, \gcd(x, n) = 1 \} \). In this paper it is proved the following

Theorem. Let it be some positive integer \(n \), and some prime number \(q < n \) such that \(\gcd(q, n) = 1 \). Then, it holds that \(S = \{ x : 0 \leq x \leq n, \gcd(x, qn) = 1 \} \) has no less than \(\frac{\varphi(qn)}{2q} \) elements.

1.1 Proof for \(n \) being some prime number

If \(n = p \), where \(p \) is some prime number, and \(q < p \), then to get the elements of \(S \) we need to subtract from \(\varphi(p) \) those numbers that are multiples of \(q \); as there are only \(\lfloor \frac{p}{q} \rfloor \) numbers less than \(p \) are relatively prime to \(p \) and not relatively prime to \(pq \), we have that

\[
|S| = \varphi(p) - \lfloor \frac{p}{q} \rfloor
\]

As \(q \mid p \), we can affirm that

\[
\lfloor \frac{p}{q} \rfloor \leq \frac{p - 1}{q} = \frac{\varphi(p)}{q}
\]

And subsequently we get that

\[
|S| \geq \varphi(p) - \frac{\varphi(p)}{q}
\]

Operating, we get that

\[
|S| \geq \varphi(p) \left(1 - \frac{1}{q} \right)
\]

\[
|S| \geq \varphi(p) \left(\frac{q - 1}{q} \right)
\]

As \(\gcd(q, p) = 1 \), and applying the multiplicative properties of \(\varphi(n) \), we get that

\[
\varphi(p) \left(\frac{q - 1}{q} \right) = \frac{\varphi(p) \varphi(q)}{q} = \frac{\varphi(qn)}{q}
\]
Therefore, for \(n \) being some prime number,

\[
| S | \geq \frac{\varphi(qn)}{q} > \frac{\varphi(qn)}{2q}
\]

And the theorem is proved for this particular case.

1.2 Proof for \(n \) being some composite number

If \(n \) is some composite number, then less than \(\left\lfloor \frac{n}{q} \right\rfloor \) numbers less than \(n \) are relatively prime to \(n \) and not relatively prime to \(qn \); concretely, the multiples of \(q \) and each prime factor of \(n \) could be double-excluded by \(\varphi(n) \) and \(\frac{n}{q} \), and therefore need to be added once if necessary. Therefore,

\[
| S | = \varphi(n) - \left\lfloor \frac{n}{q} \right\rfloor + \sum_{p|n} \left(\left\lfloor \frac{n}{qp} \right\rfloor \right)
\]

Where \(\sum_{p|n} \left(\left\lfloor \frac{n}{qp} \right\rfloor \right) \) counts the common multiples of \(q \) and each prime factor of \(n \), which already are double excluded by \(\varphi(n) \) and \(\frac{n}{q} \).

We have that

\[
\left\lfloor \frac{n}{q} \right\rfloor \leq \frac{n-1}{q}
\]

\[
\sum_{p|n} \left(\frac{n}{qp} \right) \geq \sum_{p|n} \left(\frac{n-(q-1)p}{qp} \right)
\]

As

\[
\sum_{p|n} \left(\frac{n-(q-1)p}{qp} \right) = \sum_{p|n} \left(\frac{n}{qp} - 1 + \frac{1}{q} \right)
\]

Thus, we can affirm that

\[
| S | > \varphi(n) - \frac{n-1}{q} + \sum_{p|n} \left(\frac{n}{qp} \right) - \omega(n) + \frac{\omega(n)}{q}
\]

Where \(\omega(n) \) counts the number of distinct prime divisors of \(n \).

Operating, we get that

\[
| S | > \varphi(n) - \frac{n}{q} \left(1 - \sum_{p|n} \left(\frac{1}{p} \right) \right) + \frac{1}{q} - \omega(n) + \frac{\omega(n)}{q}
\]
For \(\omega(n) > 1 \), it is easy to show that

\[
\prod_{p|n} \left(\frac{p - 1}{p} \right) - \frac{1}{n} \geq 1 - \sum_{p|n} \left(\frac{1}{p} \right)
\]

Therefore,

\[
|S| > \varphi(n) - \frac{n}{q} \left(\prod_{p|n} \left(\frac{p - 1}{p} \right) - \frac{1}{n} \right) + \frac{1}{q} - \omega(n) + \frac{\omega(n)}{q}
\]

As \(\varphi(n) = n \prod_{p|n} \left(\frac{p - 1}{p} \right) \), we have that

\[
|S| > \varphi(n) - \varphi(n) \frac{1}{q} + \frac{2}{q} - \omega(n) \left(1 - \frac{1}{q} \right)
\]

Operating,

\[
|S| > \varphi(n) \left(\frac{q - 1}{q} \right) + \frac{2}{q} - \omega(n) \left(\frac{q - 1}{q} \right)
\]

\[
|S| > \varphi(n) \left(\frac{\varphi(q)}{q} \right) + \frac{2}{q} - \omega(n) \left(\frac{\varphi(q)}{q} \right)
\]

As \(\gcd(q, n) = 1 \), and applying the multiplicative properties of \(\varphi(n) \), we have that

\[
\varphi(qn) = \varphi(n) \varphi(q)
\]

Thus,

\[
|S| > \varphi(qn) + 2 - \omega(n) \left(\frac{\varphi(q)}{q} \right)
\]

As the rate of growth of \(\omega(n) \) is much lesser than the rate of growth of \(\frac{\varphi(n)}{2} \), then we can affirm that, excepting the cases \(n = 6 \) and \(n = 15 \), which can be verified manually to fulfill the theorem,

\[
\omega(n) < \frac{\varphi(n)}{2}
\]

Then we have that

\[
\frac{\omega(n) \varphi(q)}{q} < \frac{\varphi(n) \varphi(q)}{2q}
\]
And subsequently

$$\frac{\varphi(qn) + 2}{q} - \omega(n) \left(\frac{\varphi(q)}{q} \right) > \frac{\varphi(qn)}{2q}$$

Therefore, for \(n \) being some composite number,

$$| S | > \frac{\varphi(qn)}{2q}$$

And the theorem is proved.