Supercapacitor Captures Charging

A new model that predicts the charging timescales of supercapacitors much more accurately than had been previously possible has been unveiled by researchers in the Netherlands and China. [31]

Now, Sadashige Matsuo of the RIKEN Center for Emergent Matter Science and colleagues have created a device called a Josephson junction, which can efficiently split these Cooper pairs as they travel from a superconductor into two one-dimensional normal conductors. [30]

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals the "rules of the road" for electrons both in normal conditions and in the critical moments just before the material transforms into a superconductor. [29]

Superconducting quantum microwave circuits can function as qubits, the building blocks of a future quantum computer. [28]

Physicists have shown that superconducting circuits—circuits that have zero electrical resistance—can function as piston-like mechanical quantum engines. The new perspective may help researchers design quantum computers and other devices with improved efficiencies. [27]

This paper explains the magnetic effect of the superconductive current from the observed effects of the accelerating electrons, causing naturally the experienced changes of the electric field potential along the electric wire. The accelerating electrons explain not only the Maxwell Equations and the Special Relativity, but the Heisenberg Uncertainty Relation, the wave particle duality and the electron’s spin also, building the bridge between the Classical and Quantum Theories.

The changing acceleration of the electrons explains the created negative electric field of the magnetic induction, the Higgs Field, the changing Relativistic Mass and the Gravitational Force, giving a Unified Theory of the physical forces. Taking into account the Planck Distribution Law of the electromagnetic oscillators also, we can explain the electron/proton mass rate and the Weak and Strong Interactions.

Since the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing, we can say that the secret of superconductivity is the quantum entanglement.
Contents

The Quest of Superconductivity

Experiences and Theories

- Supercapacitor model captures complex physics of charging
- Huge disagreement
- Device splits and recombines superconducting electron pairs
- Electronic map reveals ‘rules of the road’ in superconductor
- Red-light cameras for electrons
- When things go sideways
- Performing under pressure
- A path forward

- Ballistic graphene Josephson junctions enter microwave circuits
- Superconducting qubits can function as quantum engines
- Conventional superconductivity
- Superconductivity and magnetic fields
- Room-temperature superconductivity
- Exciton-mediated electron pairing
- Resonating valence bond theory
- Strongly correlated materials

- New superconductor theory may revolutionize electrical engineering
- Unconventional superconductivity in Ba0.6K0.4Fe2As2 from inelastic neutron scattering
- A grand unified theory of exotic superconductivity?
 - The role of magnetism
 - Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity
 - Significance

- Superconductivity’s third side unmasked

- Strongly correlated materials

- Fermions and Bosons
 - The General Weak Interaction

- Higgs Field and Superconductivity

- Superconductivity and Quantum Entanglement

Conclusions

References:
The Quest of Superconductivity

Superconductivity seems to contradict the theory of accelerating charges in the static electric current, caused by the electric force as a result of the electric potential difference, since a closed circle wire no potential difference at all. [1]

On the other hand the electron in the atom also moving in a circle around the proton with a constant velocity and constant impulse momentum with a constant magnetic field. This gives the idea of the centripetal acceleration of the moving charge in the closed circle wire as this is the case in the atomic electron attracted by the proton. Because of this we can think about superconductivity as a quantum phenomenon. [2]

Experiences and Theories

Supercapacitor model captures complex physics of charging

A new model that predicts the charging timescales of supercapacitors much more accurately than had been previously possible has been unveiled by researchers in the Netherlands and China. Cheng Lian and colleagues at Utrecht University and the East China University of Science and Technology built their model by describing the complex porous structures within a supercapacitor as stacks of thin electrode plates. Their work could improve our ability to predict the charging characteristics of supercapacitor energy storage systems used in a wide range of applications including electric vehicles and solar-powered street lighting.

Supercapacitors are used in a variety of applications that require relatively short, intense bursts of electrical energy. They fall between conventional capacitors and batteries in terms of charge/discharge speeds and energy capacity. Supercapacitors store far more charge than conventional dielectric capacitors by using porous electrodes, which can have surface areas as large as several square kilometres. A significant downside of these nanopores is that supercapacitors take far longer to charge than their conventional cousins.

There is currently a poor understanding of how nanopore structures could be optimized to reduce charging times. One approach has been to develop macroscopic models that fit parameters to experimental measurements of the charging process. The problem with this approach is that there seems to be very little correspondence between the parameters and the underlying physics of a supercapacitor.

Huge disagreement

Researchers have also done molecular-scale dynamics simulations, which provide insights into the charging mechanisms of up to a few supercapacitor nanopores. When used to predict the charging times of real devices, however, the results underestimate charging time by a whopping factor of 10^{12}.
In their study, Lian’s team has taken a completely new approach that approximates electrodes as stacks of flat, fully permeable, and infinitesimally thin charged plates. The gaps between the plates are on par with the diameter of a typical nanopore and the researchers found that their new model could reliably reproduce characteristics of supercapacitors on both micron and nanometre scales.

Lian and colleagues used their model to explore the characteristic timescales of charging with both high and low voltages, which provided new insights into the physical mechanisms involved in charging. Given the simplicity of the model, the charging timescales it predicted agreed remarkably well with experimental values; differing by factors of just two or three, instead of many orders of magnitude. The team now hopes that their model could soon enable researchers and engineers in wide-ranging fields to design safer and more effective devices for energy storage.

The research is described in *Physical Review Letters*. [31]
Device splits and recombines superconducting electron pairs

A device that can separate and recombine pairs of electrons may offer a way to study an unusual form of superconductivity, according to RIKEN physicists. This superconducting state would involve exotic particles called Majorana fermions that could prove useful in developing quantum computers.

In **conventional superconductors**, electrical current flows with no resistance due to electrons teaming up to make 'Cooper pairs'. A superconductor touching a normal conductor can sometimes induce superconductivity in that conductor through Cooper pairs from the superconductor penetrating the normal conductor.

Now, Sadashige Matsuo of the RIKEN Center for Emergent Matter Science and colleagues have created a device called a Josephson junction, which can efficiently split these Cooper pairs as they travel from a superconductor into two one-dimensional normal conductors (Fig. 1). Previously, most investigations of Cooper-pair splitting have been done using zero-dimensional **quantum dots** connected by superconductors.

The device had two aluminium electrodes, which become superconducting when cooled to just 1/20th of a degree above absolute zero. The electrodes are bridged by two semiconductor nanowires. The team was able to achieve efficient splitting of Cooper pairs when the electrons traveled in the nanowires without being scattered by objects such as quantum dots. This is in contrast with previous studies.

As Cooper pairs travel between the superconducting electrodes, they can either stick together and travel along a single nanowire conductor, an effect known as local pair tunneling, or they can split so that each electron travels through a different nanowire. Despite their **physical separation**, the two electrons are connected via an effect called **quantum entanglement**.

By fine tuning the voltage that controlled the flow of electrons, the team ensured that more than half of the Cooper pairs split up as they traveled through the nanowires, proving that the device could suppress local pair tunneling (due to the electron–electron interactions in the nanowires). On reaching the other side, the electrons recombined into Cooper pairs. The researchers also found that applying a magnetic field curbed Cooper-pair splitting more than local pair tunneling.

These results indicate that the device could be used to generate what is known as a topological **superconducting state**, in which the superposition of an electron and a hole generates Majorana fermions, a peculiar kind of particle that is equivalent to its own antiparticle. Majorana fermions are of interest because they could be used as quantum 'bits' that carry information in certain types of quantum computer, which promise to have vastly greater processing power than conventional technologies allow.

"Our next step is to seek fingerprints of the Majorana fermions in the superconducting junctions of a double nanowire," Matsuo says. [30]
Electronic map reveals 'rules of the road' in superconductor

Using a clever technique that causes unruly crystals of iron selenide to snap into alignment, Rice University physicists have drawn a detailed map that reveals the "rules of the road" for electrons both in normal conditions and in the critical moments just before the material transforms into a superconductor.

In a study online this week in the American Physical Society journal *Physical Review X (PRX)*, physicist Ming Yi and colleagues offer up a band structure map for iron selenide, a material that has long puzzled physicists because of its structural simplicity and behavioral complexity. The map, which details the electronic states of the material, is a visual summary of data gathered from measurements of a single crystal of iron selenide as it was cooled to the point of superconductivity.

Yi began the angle-resolved photoemission spectroscopy experiments for the study during a postdoctoral stint at the University of California, Berkeley. The technically challenging experiments used powerful synchrotron light from the Stanford Synchrotron Radiation Lightsource (SSRL) to coax the crystal to emit electrons.

"In a sense, these measurements are like taking photographs of electrons that are flying out of the material," she said. "Each photograph tells the lives the electrons were living right before being kicked out of the material by photons. By analyzing all the photos, we can piece together the underlying physics that explains all of their stories."

Red-light cameras for electrons

The electron detector tracked both the speed and direction that electrons were traveling when emitted from the crystal. That information contained important clues about the quantum mechanical laws that dictated the traffic patterns at a larger, microscopic scale, where key aspects of superconductivity are believed to arise.

These rules are encoded in a material's electronic structure, Yi said.

"They're like an electronic fingerprint of a material," she said. "Each material has its own unique fingerprint, which describes the allowed energy states electrons can occupy based on quantum mechanics. The electronic structure helps us decide, for example, whether something will be a good conductor or a good insulator or a superconductor."

When things go sideways

Electrical resistance is what causes wires, smartphones and computers to heat up during use, and it costs billions of dollars each year in lost power on electric grids and cooling bills for data centers. Superconductivity, the zero-resistance flow of electricity, could eliminate that waste, but physicists have struggled to understand and explain the behavior of unconventional superconductors like iron selenide.
Yi was in graduate school when the first iron-based superconductors were discovered in 2008, and she’s spent her career studying them. In each of these, an atom-thick layer of iron is sandwiched between other elements. At room temperature, the atoms in this iron layer are arranged in checkerboard squares. But when the materials are cooled near the point of superconductivity, the iron atoms shift and the squares become rectangular. This change brings about direction-dependent behavior, or nematicity, which is believed to play an important but undetermined role in superconductivity.

"Iron selenide is special because in all of the other iron-based materials, nematicity appears together with magnetic order," Yi said. "If you have two orders forming together, it is very difficult to tell which is more important, and how each one affects superconductivity. In iron selenide, you only have nematicity, so it gives us a unique chance to study how nematicity contributes to superconductivity by itself."

Performing under pressure

The upshot of nematicity is that the traffic patterns of electrons—and the quantum rules that cause the patterns—may be quite different for electrons flowing right-to-left, along the long axis of the rectangles, than for the electrons flowing up-and-down along the short axis. But getting a clear look at those traffic patterns in iron selenide has been challenging because of twinning, a property of the crystals that causes the rectangles to randomly change orientation by 90 degrees. Twinning means that long-axis rectangles will run left-to-right about half of the time and up-and-down the other half.

Twinning in iron selenide made it impossible to obtain clear, whole-sample measurements of nematic order in the material until Rice physicists Pengcheng Dai and Tong Chen published a clever solution to the problem in May. Building on a detwinning technique developed by Dai and colleagues in 2014, Chen found he could detwin fragile crystals of iron selenide by gluing them atop a sturdier layer of barium iron arsenide and turning a screw to apply a bit of pressure. The technique causes all the nematic layers in the iron selenide to snap into alignment.

Dai and Chen were co-authors on the PRX paper, and Yi said the detwinning technique was key to getting clear data about the impact of nematicity on iron selenide's electronic behavior.

"This study would not have been possible without the detwinning technique that Pengcheng and Tong developed," Yi said. "It allowed us to take a peek at the arrangements of electronic states as the material system gets ready for superconductivity. We were able to make precise statements about the availability of electrons belonging to different orbitals that could participate in superconductivity when nematic rules have to be obeyed."

A path forward

Yi said the data show that the magnitude of nematic shifts in iron selenide are comparable to the shifts measured in more complicated iron-based superconductors that also feature magnetic order. She said that suggests the nematicity that’s observed in iron selenide could be a universal feature of all iron-based superconductors, regardless of the presence of long-range magnetism. And she hopes that her data allow theorists to explore that possibility and others.
"This set of measurements will provide precise guidance for theoretical models that aim to describe the nematic superconducting state in iron-based superconductors," she said. "That's important because nematicity plays a role in bringing about superconductivity in all of these materials." [29]

Ballistic graphene Josephson junctions enter microwave circuits

Superconducting quantum microwave circuits can function as qubits, the building blocks of a future quantum computer. A critical component of these circuits, the Josephson junction, is typically made using aluminium oxide. Researchers in the Quantum Nanoscience department at the Delft University of Technology have now successfully incorporated a graphene Josephson junction into a superconducting microwave circuit. Their work provides new insight into the interaction of superconductivity and graphene and its possibilities as a material for quantum technologies.

The essential building block of a quantum computer is the quantum bit, or qubit. Unlike regular bits, which can either be one or zero, qubits can be one, zero or a superposition of both these states. This last possibility, that bits can be in a superposition of two states at the same time, allows quantum computers to work in ways not possible with classical computers. The implications are profound: Quantum computers will be able to solve problems that will take a regular computer longer than the age of the universe to solve.

There are many ways to create qubits. One of the tried and tested methods is by using superconducting microwave circuits. These circuits can be engineered in such a way that they behave as harmonic oscillators. "If we put a charge on one side, it will go through the inductor and oscillate back and forth," said Professor Gary Steele. "We make our qubits out of the different states of this charge bouncing back and forth."

An essential element of quantum microwave circuits is the so-called Josephson junction, which can, for example, consist of a non-superconducting material that separates two layers of superconducting material. Pairs of superconducting electrons can tunnel through this barrier, from one superconductor to the other, resulting in a supercurrent that can flow indefinitely long without any voltage applied.

In state-of-the-art Josephson junctions for quantum circuits, the weak link is a thin layer of aluminium oxide separating two aluminium electrodes. "However, these can only be tuned with the use of a magnetic field, potentially leading to cross-talk and on-chip heating, which can complicate their use in future applications," said Steele. Graphene offers a possible solution. It has proven to host robust supercurrents over micron distances that survive in magnetic fields of up to a few Tesla. However, these devices had thus far been limited to direct current (DC) applications. Applications in microwave circuits, such as qubits or parametric amplifiers, had not been explored.
The research team at Delft University of Technology incorporated a graphene Josephson junction into a superconducting microwave circuit. By characterizing their device in the DC regime, they showed that their graphene Josephson junction exhibits ballistic supercurrent that can be tuned by the use of a gate voltage, which prevents the device from heating up. Upon exciting the circuit with microwave radiation, the researchers directly observed the Josephson inductance of the junction, which had up to this point not been directly accessible in graphene superconducting devices.

The researchers believe that graphene Josephson junctions have the potential to play an important part in future quantum computers. "It remains to be seen if they can be made into viable qubits, however," said Steele. While the graphene junctions were good enough for building qubits, they were not as coherent as traditional quantum microwave circuits based on aluminium oxide junctions, so further development of the technology is required. However, in applications that don't require high coherence, gate tunability could be useful now. One such application is in amplifiers, which are also important in quantum infrastructure. Steele: "We are quite excited about using these devices for quantum amplifier applications."

The authors have made all of the data published in the manuscript available in an open repository, including the path all the way back to the data as it was measured from the instrument. In addition, the researchers released all of the software used for measuring the data, analysing the data, and making the plots in the figures under an open-source licence.

The results of the study have been published in *Nature Communications.* [28]
Superconducting qubits can function as quantum engines

Physicists have shown that superconducting circuits—circuits that have zero electrical resistance—can function as piston-like mechanical quantum engines. The new perspective may help researchers design quantum computers and other devices with improved efficiencies.

The physicists, Kewin Sachtleben, Kahio T. Mazon, and Luis G. C. Rego at the Federal University of Santa Catarina in Florianópolis, Brazil, have published a paper on their work on superconducting qubits in a recent issue of Physical Review Letters.

In their study, the physicists explain that superconducting circuits are functionally equivalent to quantum systems in which quantum particles tunnel in a double-quantum well. These wells have the ability to oscillate, meaning the width of the well changes repeatedly. When this happens, the system behaves somewhat like a piston that moves up and down in a cylinder, which changes the volume of the cylinder. This oscillatory behavior allows work to be performed on the system. The researchers show that, in the double-quantum well, part of this work comes from quantum coherent dynamics, which creates friction that decreases the work output. These results provide a better understanding of the connection between quantum and classical thermodynamic work.

"The distinction between 'classical' thermodynamic work, responsible for population transfer, and a quantum component, responsible for creating coherences, is an important result," Mazon told Phys.org. "The creation of coherences, in turn, generates a similar effect to friction, causing a not completely reversible operation of the engine. In our work we have been able to calculate the reaction force caused on the quantum piston wall due to the creation of coherences. In principle this force can be measured, thus constituting the experimental possibility of observing the emergence of coherences during the operation of the quantum engine."

One of the potential benefits of viewing superconducting qubits as quantum engines is that it may allow researchers to incorporate quantum coherent dynamics into future technologies, in particular quantum computers. The physicists explain that a similar behavior can be seen in nature, where quantum coherences improve the efficiency of processes such as photosynthesis, light sensing, and other natural processes.

"Quantum machines may have applications in the field of quantum information, where the energy of quantum coherences is used to perform information manipulation in the quantum regime," Mazon said. "It is worth remembering that even photosynthesis can be described according to the working principles of a quantum machine, so unraveling the mysteries of quantum thermodynamics can help us to better understand and interpret various natural processes." [27]

Conventional superconductivity

Conventional superconductivity can be explained by a theory developed by Bardeen, Cooper and Schrieffer (BCS) in 1957. In BCS theory, electrons in a superconductor combine to form pairs, called Cooper pairs, which are able to move through the crystal lattice without resistance when an electric voltage is applied. Even when the voltage is removed, the current continues to flow indefinitely, the most remarkable property of superconductivity, and one that explains the keen interest in their technological potential. [3]
High-temperature superconductivity

In 1986, high-temperature superconductivity was discovered (i.e. superconductivity at temperatures considerably above the previous limit of about 30 K; up to about 130 K). It is believed that BCS theory alone cannot explain this phenomenon and that other effects are at play. These effects are still not yet fully understood; it is possible that they even control superconductivity at low temperatures for some materials. [8]

Superconductivity and magnetic fields

Superconductivity and magnetic fields are normally seen as rivals – very strong magnetic fields normally destroy the superconducting state. Physicists at the Paul Scherer Institute have now demonstrated that a novel superconducting state is only created in the material CeCoIn$_5$ when there are strong external magnetic fields. This state can then be manipulated by modifying the field direction. The material is already superconducting in weaker fields, too. In strong fields, however, an additional second superconducting state is created which means that there are two different superconducting states at the same time in the same material. The new state is coupled with an anti-ferromagnetic order that appears simultaneously with the field. The anti-ferromagnetic order from whose properties the researchers have deduced the existence of the superconducting state was detected with neutrons at PSI and at the Institute Laue-Langevin in Grenoble. [6]

Room-temperature superconductivity

After more than twenty years of intensive research the origin of high-temperature superconductivity is still not clear, but it seems that instead of electron-phonon attraction mechanisms, as in conventional superconductivity, one is dealing with genuine electronic mechanisms (e.g. by antiferromagnetic correlations), and instead of s-wave pairing, d-waves are substantial. One goal of all this research is room-temperature superconductivity. [9]

Exciton-mediated electron pairing

Theoretical work by Neil Ashcroft predicted that solid metallic hydrogen at extremely high pressure (~500 GPa) should become superconducting at approximately room-temperature because of its extremely high speed of sound and expected strong coupling between the conduction electrons and the lattice vibrations (phonons). This prediction is yet to be experimentally verified, as yet the pressure to achieve metallic hydrogen is not known but may be of the order of 500 GPa. In 1964, William A. Little proposed the possibility of high temperature superconductivity in organic polymers. This proposal is based on the exciton-mediated electron pairing, as opposed to phonon-mediated pairing in BCS theory. [9]

Resonating valence bond theory

In condensed matter physics, the resonating valence bond theory (RVB) is a theoretical model that attempts to describe high temperature superconductivity, and in particular the superconductivity in cuprate compounds. It was first proposed by American physicist P. W. Anderson and the Indian theoretical physicist Ganapathy Baskaran in 1987. The theory states that in copper oxide lattices, electrons from neighboring copper atoms interact to form a valence bond, which locks them in place. However, with doping, these electrons can act as mobile Cooper pairs and are able to superconduct. Anderson observed in his 1987 paper that the origins of superconductivity in doped
Strongly correlated materials

Strongly correlated materials are a wide class of electronic materials that show unusual (often technologically useful) electronic and magnetic properties, such as metal-insulator transitions or half-metallicity. The essential feature that defines these materials is that the behavior of their electrons cannot be described effectively in terms of non-interacting entities. Theoretical models of the electronic structure of strongly correlated materials must include electronic correlation to be accurate. Many transition metal oxides belong into this class which may be subdivided according to their behavior, e.g. high-\(T_c\) superconductors, Mott insulators, spin Peierls materials, heavy fermion materials, quasi-low-dimensional materials, etc. The single most intensively studied effect is probably high-temperature superconductivity in doped cuprates, e.g. \(\text{La}_{2-x}\text{Sr}_x\text{CuO}_4\). Other ordering or magnetic phenomena and temperature-induced phase transitions in many transition-metal oxides are also gathered under the term "strongly correlated materials." Typically, strongly correlated materials have incompletely filled \(d\)- or \(f\)-electron shells with narrow energy bands. One can no longer consider any electron in the material as being in a "sea" of the averaged motion of the others (also known as mean field theory). Each single electron has a complex influence on its neighbors.

New superconductor theory may revolutionize electrical engineering

High-temperature superconductors exhibit a frustratingly varied catalog of odd behavior, such as electrons that arrange themselves into stripes or refuse to arrange themselves symmetrically around atoms. Now two physicists propose that such behaviors – and superconductivity itself – can all be traced to a single starting point, and they explain why there are so many variations.
An "antiferromagnetic" state, where the magnetic moments of electrons are opposed, can lead to a variety of unexpected arrangements of electrons in a high-temperature superconductor, then finally to the formation of "Cooper pairs" that conduct without resistance, according to a new theory. [22]

Unconventional superconductivity in Ba$_{0.6}$K$_{0.4}$Fe$_2$As$_2$ from inelastic neutron scattering

In BCS superconductors, the energy gap between the superconducting and normal electronic states is constant, but in unconventional superconductors the gap varies with the direction the electrons are moving. In some directions, the gap may be zero. The puzzle is that the gap does not seem to vary with direction in the iron arsenides. Theorists have argued that, while the size of the gap shows no directional dependence in these new compounds, the sign of the gap is opposite for different electronic states. The standard techniques to measure the gap, such as photoemission, are not sensitive to this change in sign.

But inelastic neutron scattering is sensitive. Osborn, along with Argonne physicist Stephan Rosenkranz, led an international collaboration to perform neutron experiments using samples of the new compounds made in Argonne's Materials Science Division, and discovered a magnetic excitation in the superconducting state that can only exist if the energy gap changes sign from one electron orbital to another.

"Our results suggest that the mechanism that makes electrons pair together could be provided by antiferromagnetic fluctuations rather than lattice vibrations," Rosenkranz said. "It certainly gives direct evidence that the superconductivity is unconventional."

Inelastic neutron scattering continues to be an important tool in identifying unconventional superconductivity, not only in the iron arsenides, but also in new families of superconductors that may be discovered in the future. [23]

A grand unified theory of exotic superconductivity?

The role of magnetism

In all known types of high-Tc superconductors—copper-based (cuprate), iron-based, and so-called heavy fermion compounds—superconductivity emerges from the "extinction" of antiferromagnetism, the ordered arrangement of electrons on adjacent atoms having anti-aligned spin directions. Electrons arrayed like tiny magnets in this alternating spin pattern are at their lowest energy state, but this antiferromagnetic order is not beneficial to superconductivity.

However if the interactions between electrons that cause antiferromagnetic order can be maintained while the actual order itself is prevented, then superconductivity can appear. "In this situation, whenever one electron approaches another electron, it tries to anti-align its magnetic state," Davis said. Even if the electrons never achieve antiferromagnetic order, these
antiferromagnetic interactions exert the dominant influence on the behavior of the material. "This antiferromagnetic influence is universal across all these types of materials," Davis said.

Many scientists have proposed that these antiferromagnetic interactions play a role in the ability of electrons to eventually pair up with anti-aligned spins—a condition necessary for them to carry current with no resistance. The complicating factor has been the existence of many different types of "intertwined" electronic phases that also emerge in the different types of high-Tc superconductors—sometimes appearing to compete with superconductivity and sometimes coexisting with it. [24]

Concepts relating magnetic interactions, intertwined electronic orders, and strongly correlated superconductivity

Unconventional superconductivity (SC) is said to occur when Cooper pair formation is dominated by repulsive electron–electron interactions, so that the symmetry of the pair wave function is other than an isotropic s-wave. The strong, on-site, repulsive electron–electron interactions that are the proximate cause of such SC are more typically drivers of commensurate magnetism. Indeed, it is the suppression of commensurate antiferromagnetism (AF) that usually allows this type of unconventional superconductivity to emerge. Importantly, however, intervening between these AF and SC phases, intertwined electronic ordered phases (IP) of an unexpected nature are frequently discovered. For this reason, it has been extremely difficult to distinguish the microscopic essence of the correlated superconductivity from the often spectacular phenomenology of the IPs. Here we introduce a model conceptual framework within which to understand the relationship between AF electron–electron interactions, IPs, and correlated SC. We demonstrate its effectiveness in simultaneously explaining the consequences of AF interactions for the copper-based, iron-based, and heavy-fermion superconductors, as well as for their quite distinct IPs.

Significance

This study describes a unified theory explaining the rich ordering phenomena, each associated with a different symmetry breaking, that often accompany high-temperature superconductivity. The essence of this theory is an "antiferromagnetic interaction," the interaction that favors the development of magnetic order where the magnetic moments reverse direction from one crystal unit cell to the next. We apply this theory to explain the superconductivity, as well as all observed accompanying ordering phenomena in the copper-oxide superconductors, the iron-based superconductors, and the heavy fermion superconductors. [25]
Superconductivity's third side unmasked

Shimojima and colleagues were surprised to discover that interactions between electron spins do not cause the electrons to form Cooper pairs in the pnictides. Instead, the coupling is mediated by the electron clouds surrounding the atomic cores. Some of these so-called orbitals have the same energy, which causes interactions and electron fluctuations that are sufficiently strong to mediate superconductivity.

This could spur the discovery of new superconductors based on this mechanism. “Our work establishes the electron orbitals as a third kind of pairing glue for electron pairs in superconductors, next to lattice vibrations and electron spins,” explains Shimojima. “We believe that this finding is a step towards the dream of achieving room-temperature superconductivity,” he concludes. [17]

Strongly correlated materials

Strongly correlated materials give us the idea of diffraction patterns explaining the electron-proton mass rate. [13]

This explains the theories relating the superconductivity with the strong interaction. [14]
Fermions and Bosons
The fermions are the diffraction patterns of the bosons such a way that they are both sides of the same thing. We can generalize the weak interaction on all of the decaying matter constructions, even on the biological too.

The General Weak Interaction
The Weak Interactions T-asymmetry is in conjunction with the T-asymmetry of the Second Law of Thermodynamics, meaning that locally lowering entropy (on extremely high temperature) causes for example the Hydrogen fusion. The arrow of time by the Second Law of Thermodynamics shows the increasing entropy and decreasing information by the Weak Interaction, changing the temperature dependent diffraction patterns. The Fluctuation Theorem says that there is a probability that entropy will flow in a direction opposite to that dictated by the Second Law of Thermodynamics. In this case the information is growing that is the matter formulas are emerging from the chaos. [18] One of these new matter formulas is the superconducting matter.

Higgs Field and Superconductivity
The simplest implementation of the mechanism adds an extra Higgs field to the gauge theory. The specific spontaneous symmetry breaking of the underlying local symmetry, which is similar to that one appearing in the theory of superconductivity, triggers conversion of the longitudinal field component to the Higgs boson, which interacts with itself and (at least of part of) the other fields in the theory, so as to produce mass terms for the above-mentioned three gauge bosons, and also to the above-mentioned fermions (see below). [16]

The Higgs mechanism occurs whenever a charged field has a vacuum expectation value. In the nonrelativistic context, this is the Landau model of a charged Bose–Einstein condensate, also known as a superconductor. In the relativistic condensate, the condensate is a scalar field, and is relativistically invariant.

The Higgs mechanism is a type of superconductivity which occurs in the vacuum. It occurs when all of space is filled with a sea of particles which are charged, or, in field language, when a charged field has a nonzero vacuum expectation value. Interaction with the quantum fluid filling the space prevents certain forces from propagating over long distances (as it does in a superconducting medium; e.g., in the Ginzburg–Landau theory).

A superconductor expels all magnetic fields from its interior, a phenomenon known as the Meissner effect. This was mysterious for a long time, because it implies that electromagnetic forces somehow become short-range inside the superconductor. Contrast this with the behavior of an ordinary metal. In a metal, the conductivity shields electric fields by rearranging charges on the surface until the total field cancels in the interior. But magnetic fields can penetrate to any distance, and if a magnetic monopole (an isolated magnetic pole) is surrounded by a metal the field can escape without collimating into a string. In a superconductor, however, electric charges move with no dissipation, and this allows for permanent surface currents, not just surface charges. When magnetic fields are introduced at the boundary of a superconductor, they produce surface currents which exactly
neutralize them. The Meissner effect is due to currents in a thin surface layer, whose thickness, the London penetration depth, can be calculated from a simple model (the Ginzburg–Landau theory).

This simple model treats superconductivity as a charged Bose–Einstein condensate. Suppose that a superconductor contains bosons with charge q. The wavefunction of the bosons can be described by introducing a quantum field, ψ, which obeys the Schrödinger equation as a field equation (in units where the reduced Planck constant, \hbar, is set to 1):

$$i \frac{\partial}{\partial t} \psi = \frac{(\nabla - iqA)^2}{2m} \psi.$$

The operator $\psi(x)$ annihilates a boson at the point x, while its adjoint ψ^{\dagger} creates a new boson at the same point. The wavefunction of the Bose–Einstein condensate is then the expectation value ψ of $\psi(x)$, which is a classical function that obeys the same equation. The interpretation of the expectation value is that it is the phase that one should give to a newly created boson so that it will coherently superpose with all the other bosons already in the condensate.

When there is a charged condensate, the electromagnetic interactions are screened. To see this, consider the effect of a gauge transformation on the field. A gauge transformation rotates the phase of the condensate by an amount which changes from point to point, and shifts the vector potential by a gradient:

$$\psi \rightarrow e^{iq\phi(x)} \psi$$
$$A \rightarrow A + \nabla \phi.$$

When there is no condensate, this transformation only changes the definition of the phase of ψ at every point. But when there is a condensate, the phase of the condensate defines a preferred choice of phase.

The condensate wave function can be written as

$$\psi(x) = \rho(x) e^{i\theta(x)},$$

where ρ is real amplitude, which determines the local density of the condensate. If the condensate were neutral, the flow would be along the gradients of θ, the direction in which the phase of the Schrödinger field changes. If the phase θ changes slowly, the flow is slow and has very little energy. But now θ can be made equal to zero just by making a gauge transformation to rotate the phase of the field.

The energy of slow changes of phase can be calculated from the Schrödinger kinetic energy,

$$H = \frac{1}{2m} [(qA + \nabla)\psi]^2,$$

and taking the density of the condensate ρ to be constant,

$$H \approx \frac{\rho^2}{2m} (qA + \nabla \theta)^2.$$

Fixing the choice of gauge so that the condensate has the same phase everywhere, the electromagnetic field energy has an extra term,
\[
\frac{q^2 \rho^2}{2m} A^2.
\]

When this term is present, electromagnetic interactions become short-ranged. Every field mode, no matter how long the wavelength, oscillates with a nonzero frequency. The lowest frequency can be read off from the energy of a long wavelength \(A \) mode,

\[
E \approx \frac{\hat{A}^2}{2} + \frac{q^2 \rho^2}{2m} A^2.
\]

This is a harmonic oscillator with frequency

\[
\sqrt{\frac{1}{m} q^2 \rho^2}.
\]

The quantity \(|\psi|^2 (=\rho^2) \) is the density of the condensate of superconducting particles.

In an actual superconductor, the charged particles are electrons, which are fermions not bosons. So in order to have superconductivity, the electrons need to somehow bind into Cooper pairs. [12]

The charge of the condensate \(q \) is therefore twice the electron charge \(e \). The pairing in a normal superconductor is due to lattice vibrations, and is in fact very weak; this means that the pairs are very loosely bound. The description of a Bose–Einstein condensate of loosely bound pairs is actually more difficult than the description of a condensate of elementary particles, and was only worked out in 1957 by Bardeen, Cooper and Schrieffer in the famous BCS theory. [3]

Superconductivity and Quantum Entanglement

We have seen that the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements, as strongly correlated materials and Exciton-mediated electron pairing. [26]

Conclusions

Probably in the superconductivity there is no electric current at all, but a permanent magnetic field as the result of the electron’s spin in the same direction in the case of the circular wire on a low temperature. [6]

We think that there is an electric current since we measure a magnetic field. Because of this saying that the superconductivity is a quantum mechanical phenomenon.

Since the acceleration of the electrons is centripetal in a circular wire, in the atom or in the spin, there is a steady current and no electromagnetic induction. This way there is no changing in the Higgs field, since it needs a changing acceleration. [18]
The superconductivity is temperature dependent; it means that the General Weak Interaction is very relevant to create this quantum state of the matter. [19]

We have seen that the superconductivity is basically a quantum mechanical phenomenon and some entangled particles give this opportunity to specific matters, like Cooper Pairs or other entanglements. [26]

References:
[1] https://www.academia.edu/3833335/The_Magnetic_field_of_the_Electric_current
[6] Superconductivity switched on by magnetic field http://phys.org/news/2013-12-
superconductivity-magnetic-field.html#jCp
[13] https://www.academia.edu/3834454/3_Dimensional_String_Theory
side-unmasked.html#nRlv
[18] https://www.academia.edu/4158863/Higgs_Field_and_Quantum_Gravity
[19] https://www.academia.edu/4221717/General_Weak_Interaction
[26] The Secret of Quantum Entanglement
 https://www.academia.edu/7229968/The_Secret_of_Quantum_Entanglement
[28] Ballistic graphene Josephson junctions enter microwave circuits
[29] Electronic map reveals 'rules of the road' in superconductor
[30] Device splits and recombines superconducting electron pairs
[31] Supercapacitor model captures complex physics of charging
 https://physicsworld.com/a/supercapacitor-model-captures-complex-physics-of-charging/